Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 12 (1910)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Kapitel: propos d'un article de M. Kariya concernant un théorème sur le triangle.

Autor: Boutin, Aug.

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.09.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

il s'ensuit qu'on aura aussi

$$a_1 \mu_1 + a_2 \mu_2 + \dots + a_n \mu_n = \text{mult. M} + r.$$

Voici ma démonstration :

Si m_1 et r avaient un facteur commun, ce facteur diviserait aussi m_2 , à cause de la seconde équation de condition, $a_2 M_2 = \text{mult}$. $m_2 + r$, m_4 et m_2 auraient alors un facteur commun, ce qui est contraire à l'hypothèse m_1 et m_2 premiers entre eux. Par conséquent m_1 et r sont premiers entre eux.

Un raisonnement analogue montre que m_2 , m_3 , ... m_n , et par

conséquent M lui-même, sont premiers avec r.

En considérant les équations de condition, on voit que le produit

$$(r - a_1 \mu_1) (r - a_2 \mu_2) (r - a_3 \mu_3) \dots (r - a_n \mu_n)$$
,

c'est-à-dire

$$r^{n} - \sum a_{1} \mu_{1} r^{n-1} + \Pr^{n-2} + Qr^{n-3} + \dots + Sr + T,$$

est divisible par le produit $m_1 m_2 m_3 \dots m_n$, donc par M. Les coefficients P, Q,, S, T sont évidemment divisibles par M, puisque les produits de 2, 3 ou un plus grand nombre de μ_1 , μ_2 ,, μ_n , sont divisibles par M.

Par conséquent $r^n = \sum a_1 \mu_1 r^{n-1}$ est divisible par M.

 r^{n-1} et M sont premiers entre eux; donc $r = \sum a_1 \mu_1$ est divisible par M.

T. Hayashi (Tokio).

A propos d'un article de M. Kariya concernant un théorème sur le triangle.

Je vois (avec un peu de retard) que dans l'Enseignement Mathématique, M. Kariya (Tokio) a exposé un théorème sur le triangle (E. M., 1904, p. 130), lequel a donné lieu à un certain nombre de remarques intéressantes (même année, p. 236, et année 1905, p. 44).

Le même théorème et la plupart des remarques auxquelles il a donné lieu, ont été donnés par moi, dans le Journal de Math. Spéciales de M. G. de Longchamps (année 1890, page 104 et suiv., page 124 et suiv.), dans un article intitulé: Sur un groupe de quatre coniques remarquables du plan d'un triangle. Je donne, en outre, dans le même Recueil, p. 265, un petit article intitulé: Problème sur le triangle, qui généralise beaucoup le théorème de Kariya.

Je ne crois pas qu'il faille attacher une trop grande importance

à ces questions de priorité; ma petite indication ne sera pourtant pas inutile, en rappelant l'attention sur un Recueil où l'on trouve beaucoup de résultats sur le triangle, que l'on retrouve aujourd'hui.

Paris, 16 février 1910.

Aug. Boutin.

CHRONIQUE

Commission internationale pour l'unification des notations vectorielles.

Sur la proposition de la section de mécanique, le Congrès international des mathématiciens, tenu à Rome en avril 1908, avait chargé son Comité de constituer une commission pour l'étude de la question importante de l'unification de la notation vectorielle. Cette commission, nommée en octobre 1909, a été composée comme suit :

MM. Abraham (Milan), Ball (Cambridge), Hadamard (Paris), Langevin (Paris), Lori (Padoue), Marcolongo (Naples), Prandtl (Gættingue), Stekloff (S'-Pétersbourg), Whitehead (Cambridge), Wilson (Cambridge, Mass. U. S. A.)

Académie royale de Belgique. — Prix proposés.

L'Académie met au concours les questions suivantes :

On demande de nouvelles recherches sur les développements des fonctions (réelles ou analytiques) en séries de polynômes. (Prix de 800 francs).

Résumer les travaux sur les systèmes de coniques dans l'espace et faire de nouvelles recherches sur ces systèmes. (Prix de 600 francs.)

Les mémoires doivent être inédits, rédigés en français ou en flamand et adressés, franco, à Monsieur le Secrétaire perpétuel de l'Académie avant le 1^{er} août 1911.

Faculté des Sciences de Paris. — Thèses de Doctorat.

Thèses de sciences mathématiques soutenues en 1909 (jusqu'à octobre 1909) :

Gambier (Bertrand). — Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est à points critiques fixes. (1909, in-4°, 55 p.)