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Le produit sera 6272. .

De méme, 38 < 95 donnerait immédiatement 33 centaines et
62 >< 5 ou 310 unités, soit 3610 comme produit.

Voici maintenant un troisiéme exemple, relatif a deux facteurs
de 3 chiffres, I'un de ces facteurs étant compris entre 990 et 1000.
Soit 749 >< 998 . A — B’ = 749 — 2 = 747 nous représente des
milliers ; A'B’ = 251 >< 2 = 502, des unités.

Le produit est 747502. ‘

On appliquerait encore la méme régle avec tacilité a deux fac-
teurs de 4 chiffres, I'un de ces facteurs étant compris entre 9990
et 10 000.

En général, lorsque B’ n’a qu’un chiffre, la formation du pro-
duit A'B’ n’offre aucune difficulté, avec un peu d’exercice; car on
poit le complément A’ formé suivant le procédé classique.

Parmi les applications possibles de la regle qui précede, il y a
lieu d’indiquer : '

La formation des puissances de 9;

Les produits dont les facteurs se composent du chiffre 9 répété
plusieurs fois;

Ceux de deux nombres voisins de 100, etc.

Il y en aurait sans doute bien d’autres encore. J’ai voulu me
borner a montrer quel parti on peut tirer des compléments arith-
métiques dans les exercices de calcul mental.

Albert LLecomre (Romorantin).

Une démonstration du théoréme d’Arnoux.

M. C.-A. Laisant présente, dans I’Enseignement mathématique,
X¢ année (p. 220-225, 1908}, un nouveau théoréme d’arithmétique
da a M. G. Arnvoux et que celui-ci a établi implicitement dans son
« Arithmetique Graphique (introduction a I'étude des fonctions
arithmétiques)», p. 29-31, 1906).

M. G. Tarry, de méme que M. Laisant, reconnait la portée de
ce théoreme, qui parait jouer un role important dans certains do-
maines de 'arithmétique.

Bien que la démonstration de M. Laisant soit simple et élégante,
il n’est cependant pas inutile de donner une autre démonstration
de cet intéressant théoreme, dont voici I’énoncé :

Tntorime p’Arnovx. — Soit M = m, m, ... m_un nombre com-

pose, dont les facteurs my, m, , ... m_sont premiers entre eux deux

X d . @ . M

a deux ; appelons p, , p,, ... les quotients E=Emymy .. mp
1

Sta,, a,, ... a_sont des nombres tels que lon ait

ap, — . om . —— ~ . oo - .
¥y mult. m, + r, agp, = mult, my 4 r, ... a,p, = mult. m, 4 r,
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il s’ensuit qu’on aura aussi
a, w4+ a, uy, + ..., + a, p, = mult. M | r.

Voici ma démonstration :

Si m, et r avaient un facteur commun, ce facteur diviserait aussi
m,, a cause de la seconde équation de condition, a, M, = mult.
m, + r, m, et m, auraient alors un facteur commun, ce qui est
contraire a4 I’hypothese m, et m, premiers entre eux. Par consé-
quent m, et r sont premiers entre eux.

Un raisonnement analogue montre que m,, m,, ... m, , et par
conséquent M lui-méme, sont premiers avec 7.

En considérant les équations de condition, on voit que le pro-
duit

(r—a; p,)(r—a; p,)(r— ag vg) .o (r—a, .U‘n)7

c’est-a-dire
P —Ta, o TP QT + Sr T,

est divisible par le produit m, m, m, ... m, , donc par M.

Les coefficients P, Q, ..... , S, T sont évidemment divisibles
par M, puisque les produits de 2, 3 ou un plus grand nombre de
My, Moy e , M, , sont divisibles par M.

Par conséquent r* — 3 a, m, r" ' est divisible par M.

r"~1 et M sont premiers entre eux; donc » — =2 a, p, est divi-
sible par M.

T. Havasur (Tokio).

A propos d'un article de M. Kariya concernant un théoréme
sur le triangle.

Je vois (avec un peu de retard) que dans I’ Enseignement Matheé-
matique, M. Kariva (Tokio) a exposé un théoreme sur le triangle
(E. M., 1904, p. 130), lequel a donné lieu a un certain nombre de
remarques intéressantes (méme année, p. 236, et année 1905, p. 44).

Le méme théoreme et la plupart des remarques auxquelles il a
donné lieu, ont été donnés par moi, dans le Journal de Math.
Spéciales de M. G. pE Loncecuampes (année 1890, page 104 et suiv.,
page 124 et suiv.), dans un article intitulé : Sur un groupe de
quatre coniques remarquables du plan d’un triangle. Je donne, en
outre, dans le méme Recueil, p. 265, un petit article intitulé :
Probleme sur le triangle, qui généralise beaucoup le théoréme de
Kariya. '

Je ne crois pas qu’il faille attacher une trop grande importance
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