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Le produit sera 6272.
De même, 38 X 95 donnerait immédiatement 33 centaines et

62 X 5 ou 310 unités, soit 3610 comme produit.
Voici maintenant un troisième exemple, relatif à deux facteurs

de 3 chiffres, l'un de ces facteurs étant compris entre 990 et 1000.
Soit 749 X 998 A — EL 749 — 2 747 nous représente des

milliers ; A'B' 251 X 2 502, des unités.
Le produit est 747502.
On appliquerait encore la même règle avec facilité à deux

facteurs de 4 chiffres, l'un de ces facteurs étant compris entre 9990
et 10 000.

En général, lorsque EL n'a qu'un chiffre, la formation du produit

A'B' n'offre aucune difficulté, avec un peu d'exercice; car on
voit le complément A' formé suivant le procédé classique.

Parmi les applications possibles de la règle qui précède, il y a
lieu d'indiquer :

La formation des puissances de 9 ;

Les produits dont les facteurs se composent du chiffre 9 répété
plusieurs fois ;

Ceux de deux nombres voisins de 100, etc.
Il y en aurait sans doute bien d'autres encore. J'ai voulu me

borner à montrer quel parti on peut tirer des compléments
arithmétiques dans les exercices de calcul mental.

Albert Lecomte (Romorantin).

Une démonstration du théorème d'Arnoux.

M. C.-A. Laisant présente, dans YEnseignement mathématique,
Xe année (p. 220-225, 1908), un nouveau théorème d'arithmétique
du à M. G. Arnoux et que celui-ci a établi implicitement dans son
« Arithmétique Graphique (introduction à l'étude des fonctions
arithmétiques)», p. 29-31, 1906).

M. G. Tarry, de même que M. Laisant, reconnaît la portée de
ce théorème, qui paraît jouer un rôle important dans certains
domaines de l'arithmétique.

Bien que la démonstration de M. Laisant soit simple et élégante,
il n'est cependant pas inutile de donner une autre démonstration
de cet intéressant théorème, dont voici l'énoncé :

Théorème d'Arnoux. — Soit M mi m2 mn un nombre composé,

dont les facteurs n^ m2, mn sont premiers entre eux deux
à deux ; appelons pA g,2, les quotients ~ m2 m3 mn
Si a2, an sont des nombres tels que Von ait

mult. m, 4- r a2p2 mult. m2 -}- r, anpfl ~ mult. /nfl + r,
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il s'ensuit qu'on aura aussi

ai + ^2 ,u2 + + <*n pn mult. M -f- r.

Voici ma démonstration :

Si mi et r avaient un facteur com m un, ce facteur diviserait aussi
m2, à cause de la seconde équation de condition, a2 M2 mult.
m2 H" r-> m\ et auraient alors un facteur commun, ce qui est
contraire à l'hypothèse ms et premiers entre eux. Par conséquent

ml et r sont premiers entre eux.
Un raisonnement analogue montre que m2, m3 mn et par

conséquent M, lui-même, sont premiers avec r.
En considérant les équations de condition, on voit que le produit

(/ a1 p.j) (r p,2) (r a3 u 3) (r an u n)

c'est-à-dire

r11 — 2 fl] fA1 rn 1 +^P/^~2 + Qr7l~3 + + Sr -f T,

est divisible par le produit mi m2 m3 mn donc par M.
Les coefficients P, Q, S, T sont évidemment divisibles

par M, puisque les produits de 2, 3 ou un plus grand nombre de
/w>2 fj,n sont divisibles par M.

Par conséquent r11 — 2 aA /r, rn~1 est divisible par M.
iJl~l et M sont premiers entre eux; donc r — 2 ai est

divisible par M.
T. Hayashi (Tokio).

A propos d'un article de M. Kariya concernant un théorème
sur le triangle.

Je vois (avec un peu de retard) que dans VEnseignement
Mathématique, M. Kariya (Tokio) a exposé un théorème sur le triangle
(E. M., 1904, p. 130), lequel a donné lieu à un certain nombre de

remarques intéressantes (même année, p. 236, et année 1905, p. 44).
Le même théorème et la plupart des remarques auxquelles il a

donné lieu, ont été donnés par moi, dans le Journal de Math.
Spéciales de M. G. de Longchamps (année 1890, page 104 et suiv.,
page 124 et suiv.), dans un article intitulé : Sur un groupe de

quatre coniques remarquables du plan d'un triangle. Je donne, en
outre, dans le même Recueil, p. 265, un petit article intitulé :

Problème sur le triangle, qui généralise beaucoup le théorème de

Kariya.
Je ne crois pas qu'il faille attacher une trop grande importance


	démonstration du théorème d'Arnoux.

