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NOTE SUR LES USAGES DU PAPIER QUADRILLÉ

§ 1. — Applications classiques.

Le papier quadrillé est formé comme on le sait par le
tracé de 2 réseaux orthogonaux de parallèles équidistantes.
Si l'on prend 2 d'entre elles comme axes de coordonnées et
le côté d'un des carrés du quadrillage comme unité de

longueur, on peut aisément placer à l'œil un point dont les 2

coordonnées sont connues et cela avec une approximation de

un dixième. La plupart des applications du papier quadrillé
sont basées sur ce fait. Ce sont donc simplement des
constructions de géométrie analytique à 2 dimensions 1.

De ce nombre sont les constructions classiques de courbes
données par leurs équations. On a par exemple tracé ci-contre
la parabole y — œ2 (fig. 1), en construisant certains points de

coordonnées simples. Les constructions de graphiques ou
d'abaques2 sont également facilitées par l'emploi du papier
quadrillé, principalement les constructions de graphiques
dans lesquelles une des variables, ne prend que des valeurs
entières. (Statistiques annuelles, mensuelles, etc...)

Dans la construction des courbes algébriques, il est
souvent avantageux, au lieu de chercher les coordonnées exactes
des points de la courbe, de chercher à placer par rapport à

la courbe des points voisins et dont les 2 coordonnées soient
entières de façon à avoir des calculs simples. Si, par exemple3,

1 Les dimensions les plus habituelles du papier quadrillé sont voisines de Va cm. On trouve
suivant les marques : 0,491 cm., 0,493 cm., 0,496 cm., 0,499 cm., 0,535 cm., etc. 11 y a d'ailleurs
des quadrillages plus serrés : 0,396 cm., etc., ou plus larges, 0,789 cm. Il existe enfin pour les
constructions plus précises du papier dit millimétrique bien connu des physiciens et dont
nous n'aurons pas l'occasion de parler ci-dessus.

Note de la Rédaction. — L'usage du papier millimétrique s'est également répandu dans les
sections scientifiques des établissements secondaires. Il est indispensable à la résolution
graphique des équations.

2 Nomographic de M. M. d'OcAGNti.
3 Le lecteur est prié ici, comme dans toute la suite de la Note, de vouloir bien refaire au fur

et à mesure les diverses figures sur du papier quadrillé.
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on veut construire le folium de Descartes x3 -f- y3— 15.^ 0

il sera commode de remarquer (fig. 2) que les points A et B

sont à l'intérieur de la boucle et GDEFGH sont à l'extérieur,
tous ces points étant d'ailleurs très voisins de la courbe. Ce
dernier procédé, appliqué avec un peu d'habileté,, est
certainement le plus rapide pour la construction des courbes.
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Fi#. 1. Fig. 2.

La résolution des équations par des intersections de courbes

est une application bien connue des tracés graphiques.
Par exemple, pour résoudre une équation de la forme
x2 + px + q 0, on construira une fois pour toutes la parabole

y x2 avec grand soin, et on la fera couper par la
droite y + px -f- q 0. Les abscisses des points d'intersection

seront les racines cherchées. De même, on résoudra une
équation du 3me degré: x3 + px + q 0 par le tracé d'une
parabole cubique y x3 et d'une droite: y -f- px + q 0.
Sans vouloir insister davantage sur ces exemples classiques,
citons cependant comme dernière application à des équations
algébriques la résolution de l'équation :

xb -\-_px5 -\- qx2 + rx -f- s — 0

par l'intersection de la même parabole cubique y
la conique :

y2 + pxy 4" qy + rx% + sx — o

x3 et de

Le papier quadrillé sert de façon simple à l'évaluation des
aires limitées par un contour quelconque. Reprenons par
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exemple la boucle du folium de Descartes construit précédemment

(fig. 3) et prenons pour unité de longueur le double du
côté du quadrillage, pour avoir une approximation suffisante,
ce qui donne une aire 4 fois plus grande que l'aire demandée.
Traçons 2 contours polygonaux utilisant uniquement des

lignes du quadrillage et aussi voisins que possible de la courbe
donnée et comptons le nombre des carrés contenus dans
chaque polygone. Nous aurons ainsi l'aire de chacun d'eux
et il suffira d'en prendre la demi-somme pour avoir
approximativement l'aire cherchée. Ici, on pourra par exemple

y
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î
/j- y fiffe

L sièmêèêêèt

0 \

' A

Fig. 3.

remarquer que le polygone recouvert de hachures a une aire
8 9

égale à -y- On trouve ainsi que l'aire du polygone qui suit
extérieurement la courbe est 175, l'unité d'aire étant la surface

de l'un des carrés. Pour avoir la demi-somme cherchée,
il suffit de compter le nombre des carrés compris entre les
2 polygones, en comptant 2 carrés pour.un, de façon à avoir
la moitié de cette aire. On trouve ainsi 29| et par suite, pour

> 1
1 aire cherchée, 145 ^ •

11 est d'ailleurs plus avantageux de

compter le nombre de carrés qui existent entre l'un des 2 po-
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lygones et la courbe même, en estimant à l'œil les fractions
de carrés, mais ce procédé demande une certaine habitude.
Remarquons que ici l'aire considérée est exactement 150.

§2. — Points entiers.

Nous appellerons pour abréger point entier clu plan tout
point dont les deux coordonnées sont des nombres entiers,
positifs ou négatifs, et point commensurable tout point dont
les 2 coordonnées sont des nombres commensurables, l'unité
de longueur étant le côté du carré qui sert de base au quadrillage

et les axes de coordonnées étant 2 perpendiculaires du
quadrillage. Nous nous occuperons presque exclusivement
des points entiers. Nous allons voir comment la considération
de tels points facilite la construction d'un grand nombre de

figures planes, en étudiant auparavant les propriétés les plus
élémentaires des droites passant par des points à coordonnées
commensurables.

Remarquons d'abord que, étant donné n points commensurables,

on peut toujours, avec un rapport d'homothétie convenable,

les rendre entiers, en prenant un côté de quadrillage
assez petit. Aussi suffira-t-il de prouver, dans certains cas,
l'existence de points commensurables répondant à des conditions

données, pour en déduire l'existence de points entiers
répondant aux mêmes conditions.

Au point de vue qui nous occupe les droites du plan peuvent
être rangées en plusieurs catégories : 1° les droites qui ne
contiennent aucun point commensurable. Ex. : x f/3.
2° les droites qui contiennent un point et un seul à

coordonnées commensurables. Ex. : y — xV3. 3° les droites
qui contiennent 2 et par suite une infinité de points à

coordonnées commensurables. Nous supposerons d'ailleurs qu'il
y ait au moins un de ces points à coordonnées entières. Il est
alors visible qu'une telle droite contient une infinité de points
à coordonnées entières. Si, en effet, nous supposons que le

point entier de cette droite soit l'origine, et le point commensurable

le point j jle point entier ad, bc fait partie de la

même droite et par suite les points m. ad, m. bc en font
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également partie. On verrait aisément qu'il y a sur une telle
droite 2 points tels que A,B par exemple (fig. 4) qui sont entiers

et à la dislance minima, tout autre point entier de la droite
étant à une distance de A représentée par m. AB [m étant un
entier positif ou négatif]. Il est souvent commode de définir
une droite telle que celle-ci par un point entier, A, par exemple,
et par les coordonnées a, b. du point B voisin par rapport à A,

pris pour origine ; a et b sont donc des nombres premiers entre

eux et — est le coefficient angulaire de la droite. Les droites
a °

que nous aurons à considérer seront le plus souvent définies
ainsi. Par exemple la droite de la figure précédente est la

droite A (3, I).
On voit que 2 droites A(a, b) et A(—a, —b) sont

identiques. Si l'on change le signe d'un des 2 nombres a ou è,

Fig. 4. Fig. 5.

et d'un seulement, on obtient une droite symétrique de la

première par rapport à l'un des axes de coordonnées.
Exemple : AB: AB" etc... (fig. 5). Il est facile de voir que
la droite A(—b, a), ici AG, est perpendiculaire sur AB.

Ce qui précède donne immédiatement la solution des 2

problèmes suivants: Mener par un point entier une parallèle
ou une perpendiculaire à une droite donnée. On a par exemple,

sur la figure, mené par D la parallèle DE à AB, et par F
la perpendiculaire FG à AB.

Nous allons généraliser ceci en considérant des quadrillages

à bases différentes. Nous appelons base d'un quadrillage.

un quelconque des segments tels que AM (fig. 6) qui sert
de côté à un des carrés du quadrillage, et qui représente la
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distance de 2 parallèles voisines. Considérons maintenant le

quadrillage ayant pour base un segment quelconque AB, dont
les deux extrémités sont entières, c'est-à-dire le quadrillage
tracé en pointillé. On voit que tous les points entiers, ou si
l'on veut tous les sommets du nouveau quadrillage, sont des
sommets de l'ancien, mais que la réciproque n'est pas vraie.
On peut montrer que tout, point commensurable de l'un des

quadrillages est un point commensurable de l'autre. Nous
nous contenterons de l'établir sur un cas particulier en
considérant par exemple le point entier a du premier quadrillage

et montrant qu'il est commensurable dans le second.
Le lecteur généralisera sans peine cette démonstration : AB
est partagé par les verticales du premier quadrillage en un
nombre entier de segments égaux : ici 2 : AN et NB. Les
coordonnées de N sont donc commensurables, dans le
quadrillage de base AB. Il en sera de même pour les coordonnées

de P où la verticale de a coupe BK. D'ailleurs ici P est
entier dans le nouveau quadrillage. Dans ce nouveau
quadrillage, a partage dans un rapport commensurable le
segment P à extrémités commensurables. Il a donc des
coordonnées commensurables.

Remarquons que malgré la propriété qui précède, les

longueurs AM et AB qui servent de bases aux deux quadrillages
peuvent être incommensurables. C'est d'ailleurs le cas ici :

AB AM/T

La considération de quadrillages à bases différentes va
nous permettre de'résoudre le problème suivant: Mener par
un point entier une droite faisant avec une droite donnée un
angle V, tel que tg V soit commensurable. [Il sera dans la

pratique commode de définir par exemple l'angle V par l'angle
d'une droite quelconque AP avec une horizontale AH du

quadrillage (fig. 7)]. La direction AP est ici définie par les
coordonnées 3, 2 du point P. Soit AB la droite donnée et M le

point par lequel doit être menée la droite cherchée.
Construisons le quadrillage de base AB et soit N le point de ce

quadrillage de coordonnées 3, 2. On voit immédiatement que
la droite cherchée est la parallèle MM' menée par M à AN.
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Un cas particulier assez intéressant de ce qui précède est le

suivant: Mener par un point une droite faisant 45° avec une
droite donnée. Exemple. Les deux directions 2, 1 et 1, 3 font
45°. (CD et CE). Les exemples qui précèdent et que l'on

pourra généraliser aisément montrent comment il est
possible d'effectuer un grand nombre de constructions sur papier
quadrillé. La seule précaution à prendre est de profiter de

l'arbitraire, qui existe habituellement sur le choix des
données, pour introduire le plus grand nombre possible de

points entiers dans l'énoncé. On arrive ainsi à vérifier rapi¬

dement des énoncés compliqués de géométrie. Malheureusement

toutes les figures ne se prêtent pas à de pareilles
constructions. Par exemple il est impossible de construire
un triangle équilatéral dont les 3 sommets soient entiers (car
si ceci avait lieu la tangente trigonométrique de l'angle de
2 côtés serait commensurable). Les courbes quelconques
contiennent rarement des points entiers. Signalons comme
cas simple souvent utilisé le cercle dont le centre est un point
entier et de rayon 5, cercle qui contient 12 points entiers1.

Nous ne continuerons pas davantage la théorie des points
entiers, nous contentant d'énumérer quelques résultats
particuliers faciles à établir:

1 Le triangle dont les sommets ont pour coordonnées 10, 0; 0, 10 ; —6, —8 a en particulier les
pieds des hauteurs, l'orthocentre, le centre du cercle circonscrit et du cercle des 9 points, les
milieux des côtés qui sont des points entiers. Le point de Lemoine et le centre de gravité
sont commensurable« et deviendraient entiers par une homothétie convenable.
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L'aire d'un polygone dont les sommets sont des points
entiers est représentée par un nombre entier ou par la moitié
d'un nombre entier (l'unité d'aire étant l'aire du carré de base
du quadrillage).

Le lieu des points du plan équidistants de 2 points entiers
ne contient des points entiers que si les 2 points donnés sont
de même parité, c'est-à-dire si les 2 coordonnées de l'un des
2 points par rapport à l'autre, sont de même parité.

Un cercle défini par 3 points commensurables contient une
infinité de points commensurables. En particulier, il est

coupé en un point commensurable, par toute droite à coefficient

angulaire commensurable, qui passe par un point
commensurable cle ce cercle.

La distance dun point commensurable à une droite, définie

par 2 points commensurables, n'est commensurable que
s'il existe sur la droite 2 points commensurables ci distance
commensurable. Pour préciser ceci, remarquons que en général

cela n'a pas lieu pour une droite quelconque. Ceci aurait
lieu par exemple pour une droite de direction 3, 4 car
32 -f- 42 52. Si maintenant on prend une droite quelconque,
et par exemple 2 points entiers consécutifs A et B sur cette
droite, à une distance â étant en général incommensurable)

on peut évaluer aisément la distance d'un point quelconque

M (fig. 8) à AB. cl étant cette distance, d. § est un nombre

entier (double de l'aire MAB) ici 7. Donc d est le quotient
7

par § de cet entier ; ici d ——r y 5

Dans tout ce qui précède, nous avons laissé systématiquement

de côté une notion qui se rattache simplement à celle
des points entiers : la notion d'entiers imaginaires h On

appelle ainsi tout nombre a -f- bi dans lequel a et b sont des

entiers positifs ou négatifs, i ayant la signification connue :

(i2 — 1). Les affixes de ces nombres sont tous les points
entiers du plan. Nous ne traiterons pas cette question nous
bornant à citer un seul théorème qui concerne les quadrillages

de bases différentes :

Les affixes cles multiples, réels ou imaginaires, d'un nom-

1 Théorie des Nombres de M. Cahen.
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bre, réel ou imaginaire, a, sont les sommets d un quadrillage

ayant pour base le segment OA qui joint l'origine au point A,

afjßxe de a.

§ 3. — Applications diverses des propriétés des points entiers.

Les applications à l'arithmétique de la théorie des points
entiers sont très nombreuses. Nous serons obligés de faire

un choix parmi elles, et de donner simplement quelques
exemples de ces diverses applications.

Etant donné la courbe f \x, y) 0 ou plus généralement

f(x,y,a) 0 représentée par une équation homogène, a

désignant par exemple une longueur de la figure, tout point

\M
\
\ > B

A.

M

/0 // F"
pN//

Fig. 8. Fig. 9.

entier de cette courbe donnera une solution en nombres
entiers de l'équation f[x, y, et) 0. Un point commensurable

de coordonnées j ^ donnera une solution en nombres

entiers de f(x, ?/, ka) 0. Citons un exemple de ce genre
d'applications: Prenons une droite fixe A qui sera une ligne
verticale du quadrillage et 2 points 0 et F, symétriques par
rapport à A, et entiers. Prenons un point M commensurable
variable sur A, menons MN, perpendiculaire en M à FM,
(fig. 9) et abaissons enfin ON perpendiculaire sur MN. Il est
facile de voir que les coordonnées de N sont commensura-
bles. Le lieu de ce point est d'ailleurs une strophoïde. On
aura donc des solutions en nombres entiers de l'équation

x(x2 + y2) n ka[x2 — y2]



14 A. SAINTE LAGUË

La plupart de ces applications concernent le carré de la
distance de 2 points entiers, nombre qui est un entier,
somme de deux carrés. Prenons par exemple la parabole
y2 4 px, p étant un nombre entier. On aura des points
entiers de cette parabole en posant y "Imp et par suite
x m2p. Soit F le foyer de cette parabole (fig. 10), A sa
directrice, et M un point entier de cette conique. On a

MF =: MN qui donne une solution en nombres entiers de
2

a2 b2 + c2, car MF est une somme de 2 carrés. Dans le

m
N fM

/ /

///
0 F\ \

\
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\

y \,
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A
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> x A
--I\
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..M N

u-

\
\ a, J \

N \
\
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Fig. 10. Fig. H.

cas de la figure on a : p I, x 4, y 4 d'où l'égalité :

52 32 + 42.

Prenons 2 points M et N (fig. 11) sommets d'un quadrillage
2

de base AB. Le carré de leur distance est le produit par AB
d'une somme de 2 carrés, ici 32 et 22 car NP 3. AB et MP

2. AB. Mais d'autre part le carré de cette distance est la
somme des carrés de MQ et NQ. Si l'on remarque enfin que
AB AC + BC on voit que l'on a démontré le théorème :

Le produit d'une somme de 2 carrés par une somme de 2
carrés est encore une somme de 2 carrés.

Dans le cas de la figure on a : 72 + 42 (22 + l2) (32 + 22)

La considération des points entiers, équidistants de 2

points entiers donnés, montrerait qu'un nombre peut être
de plusieurs façons une somme de 2 carrés. Nous allons
étendre ceci à une somme de 4 carrés. Prenons 2 couples de

points diamétralement opposés dans un même cercle AB et
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CD (fig. 12). On petit par exetaple les obtenir en prenant à

l'aide de quadrillages de base arbitraire un rectangle
quelconque : ici le rectangle 2,1 du quadrillage de base 3,1. Soit

M un point entier quelconque du plan. L'égalité connue:

MA2 •+ MB2 MC2 + MB2

montre qu'un nombre peut s'écrire de plusieurs façons sous

forme d'une somme de 4 carrés, car chaque terme, tel que
MA2, est une somme de 2 carrés. On a ici l'égalité : l2 + 62

2S

*
M

]
N"

M
Q|

C

D \c \\ B
Ai

Fiff- 12. Fig. 13.

+ 82 + 132 32 + + 72 + 142. Cette représentation des

sommes de 4 carrés permet de résoudre diverses questions.
Par exemple si l'on veut trouver 2 sommes de 4 carrés égales
et portant sur 8 entiers consécutifs on voit qu'il suffira de

partir du carré ABCD (fig. 13). Les points M, N, P, etc,.,
répondent à la question. On a pour le point M : 2" + 52 + 72

-p 82 32 -f 42 + 62 + 92. Si l'on prend un poi-nt tel que Q
pour lequel un même carré se retrouve dans les deux membres

on aura des égalités concernant les sommes de 3 carrés.
Ici : 22 + 62 + T1 32 + 4'2 + 82 L

1 On obtiendrait de pareilles égalités en considérant le quadrillage « cubique » des points
entiers de l'espace : le plan, lieu des points équidistants de 2 points donnés, contient parfois
des points entiers pour lesquels on a des sommes de 3 carrés. On peut étendre certaines des
propriétés du plan à de tels points entiers mais non toutes. En particulier la représentation
par imaginaires du plan ne se retrouve pas dans l'espace. Signalons encore l'impossibilité
d'obtenir des quadrillages « cubiques » à bases différentes, si l'on veut que les 3 directions
d'un tel quadrillage soient distinctes de celles du premier.
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§ 4. — Applications diverses du papier quadrillé.

On peut employer le papier quadrillé pour étudier commodément

certaines questions. Quelques dessins industriels
(canevas, dallages, carrelages.,.) utilisent le carré du
quadrillage comme point, pour tracer de façon grossière certaines

courbes. En géographie on peut citer la méthode « des

carreaux» pour l'agrandissement des cartes (Un procédé
analogue permettrait de tracer des projections homographiques
d'une figure donnée. Par exemple, une amplification
d'ordonnée dans le rapport 2, fera correspondre à un carré de
la première figure 2 carrés superposés de la seconde, etc...).
On peut encore se servir du papier quadrillé pour étudier

Fig. 14. Fig. 15.

; ;

y x ~S\" '3Txly—~

c

; j AB
i ; C

—i

X
î

[sr- - r — *

i i -

-Xj—
; i—:h —

3— A A
» A

Fig. 16.

les propriétés des déterminants, des carrés magiques, du

triangle arithmétique de Pascal, les mouvements des pièces
d'un échiquier, etc.. ou encore pour établir certains théorèmes

d'arithmétique : Exemple : La somme des n premiers
nombres impairs est n2. Dans la figure (fig. 14) les polygones
successifs contiennent un nombre impair de carrés et l'on
voit ainsi que la somme des 5 premiers impairs est 52.

Le carré de la somme de 2 nombres entiers a et b est égal à

la somme des carrés des 2 nombres augmentée du double

produit de ces nombres. On voit (fig. 15) que si l'on prend
a — 5 et b 3 le carré ABCD est formé de 4 parties qui
contiennent respectivement 5x5; 3x5; 5x3; 3x3
carrés, ce qui donne la propriété.

Donnons un exemple plus compliqué de ces démonstra-
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lions figurées. Supposons que toutes les cases d'un quadrillage

contiennent des entiers tels, que la somme des nombres
de cases horizontales donne le nombre situé au-dessous de

la seconde : les 3 nombres A, B, C (fig. 16) donnent
A + B — C 0 (Le lecteur fera sans peine des applications
de ceci au cas du triangle arithmétique de Pascal). Représentons

encore ceci par les coefficients 1, 1 et — 1 mis sur les
3 cases considérées (Sur la figure on a pris 3 nouvelles

vl +1

^-1 rl+2 +1

-4

+4 +3+3 A

A

Fig. 17.

cases au-dessous des premières). Ceci posé, en n'introduisant
ainsi que des totaux nuls on pourra affecter certaines cases
de coefficients, toutes les cases marquées donnant un total
égal à 0. Par exemple, sur la figure 17, les diverses parties
de la figure répondent à cette condition et l'on voit aisément
apparaître les coefficients du binôme. Ne voulant pas allonger

outre mesure cette Note nous laissons au lecteur le soin
d'énoncer le théorème correspondant et d'en déduire des
propriétés du triangle de Pascal 1.

A. Sainte Laguë (Douai).
1 Le lecteur trouvera un très grand nombre de ces démonstrations figurées dans la Théorie

des Nombres de Lucas.

L'Enseignement mathém., 12« année; 1910
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