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NOTE SUR LES USAGES DU PAPIER QUADRILLE

§ 1. — Applications classiques.

Le papier quadrillé est formé comme on le sait par le
tracé de 2 réseaux orthogonaux de paralleles équidistantes.
Si l'on prend 2 d’entre elles comme axes de coordonnées et
le coté d'un des carrés du quadrillage comme unité de lon-
gueur, on peut aisément placer a I'eeil un point dont les 2
coordonnées sont connues et cela avec une approximation de
un dixiéme. La plupart des applications du papier quadrillé
sont basées sur ce fait. Ce sont donc simplement des cons-
tructions de géométrie analytique a4 2 dimensions .-

De ce nombre sont les constructions classiques de courbes
données par leurs équations. On a par exemple tracé ci-contre
la parabole y — 2 (fig. 1), en construisant certains points de
coordonnées simples. Les constructions de graphiques ou
d’abaques?® sont également facilitées par ’emploi du papier
quadrillé, principalement les constructions de graphiques
dans lesquelles une des variables ne prend que des valeurs
entiéres. (Statistiques annu;el\l‘es,' mensuelles, etc...)

Dans la construction des courbes algébriques, il est sou-
ventavantageux, au lieu de ch‘ercher les coordonnées exactes
des points de la courbe, de chercher a placer par rapport a
la courbe des points voisins et dont les 2 coordonnées soient
entiéres de facon a avoir des calculs simples. Si, par exemple?,

! Les dimensions les plus habituelles du papier quadrillé sont voisines de 1/z em. On trouve
suivant les marques : 0,491 cm., 0,493 cm., 0,496 ecm., 0,499 cm., 0,535 cm., ete. Ily a d’ailleurs
des quadrillages plus serrés : 0,396 cm., ete., ou plus larges, 0,789 cm. Il existe enfin pour les
constructions plus précises du papier dit millimétrique bien connu des physiciens et dont
nous n’aurons pas l'occasion de parler ci-dessus.

Note de la Rédaction. — L'usage du papier millimétrique s’est également répandu dans les

sections scientifiques .des détablissements secondaires. Il est indispensable a la résolution
graphique des équations.

2 Nomographie de M. M. d’OCAGNE,

3 Le lecteur est prié ici, comme dans toute la suite de la Note, de vouloir bien refaire au fur
et a mesure les diverses figures sur du papier quadrillé.

R ——————




6 ' A. SAINTE LAGUEL

on veut construire le folium de Descartes x* 4 y®— 152y =0
il sera commode de remarquer (fig. 2) que les points A et B
sont a l'intérieur de ia boucle et CDEFGH sont a I'extérieur,
tous ces points étant d’ailleurs irés voisins de la courbe. Ce
dernier procédé, appliqué avec un peu d’habileté,. est certai-
nement le plus rapide pour la construction des courbes.
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Fig. 1. Fig. 2.

La résolution des équations par des intersections de cour-
bes est une application bien connue des tracés graphiques.
Par exemple, pour résoudre une équation de la forme
2% + px 4+ g = 0, on construira une fois pour toutes la para-
bole y = «? avec grand soin, et on la fera couper par la
droite ¥ 4+ px 4+ ¢ = 0. Les abscisses des points d’intersec-
tion seront les racines cherchées. De méme, on résoudra une
équation du 3™° degré: x* 4+ pxr + ¢ = 0 par le tracé d’une
" parabole cubique y = x® et d’une droite: y + pxr 4+ ¢ = 0.
Sans vouloir insister davantage sur ces exemples classiques,
citons cependant comme derniére application & des équations
algébriques la résolution de I’équation:

x® + pat + qat 4+ re 4 s =0

par U'intersection de la méme parabole cubique y = 2* et de

la conique:
2y 4+ pxy + gy + ra* 4+ sx =0 .

Le papier quadrillé sert de facon simple a ’évaluation des
aires limitées par un contour quelconque. Reprenons par
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exemple la boucle du folium de Descartes construit précédem-
ment (fig. 3) et prenons pour unité de longueur le double du
coté du quadrillage, pour avoir une approximation suffisante,
ce qui donne une aire 4 fois plus grande que l'aire demandée.
Tracons 2 contours- polygonaux utilisant uniquement des
lignes du quadrillage et aussi voisins que possiblede lacourbe
donnée et comptons le nombre des carrés contenus dans

chaque polygone. Nous aurons ainsi 'aire de chacun d’eux .

et il suffira d’en prendre la demi-somme pour avoir approxi-
mativement l'aire cherchée. Ici, on pourra par exemple

| , AT
i //7 \
///
_ vl
B / NE R
/
/ AR
/ y
7 // .
. 4 {
/ .l/ / /_
da
7
i e
ey B
0 ' AT X
Fig. 3.

remarquer que le polygone recouvert de hachures a une aire

coale 3 20 On tr oy . .
ega € a 5 - n trouve ainsi que I'aire du polygone qui suit

extérieurement la courbe est 175, 'unité d’aire étant la sur-
face de I'un des carrés. Pour avoir la demi-somme cherchee
1l suffit de compter le nombre des carrés compris entre les

-2 polygones, en comptant 2 carrés pour.un, de facon i avoir .

la moitié de cette aire. On trouve ainsi 295 et par suite, pour

- v 1 :
'aire cherchée, 1455 . 11 est d’ailleurs plus avantageux de

compter le nombre de carrés qui existent entre I'un des 2 po-
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lygones et la courbe méme, en estimant a I'eil les fractions
de carrés, mais ce procédé demande une certaine habitude.
Remarquons que ici 'aire considérée est exactement 150.

§ 2. — Points entiers.

Nous appellerons pour abréger point entier du plan tout
point dont les deux coordonnées sont des nombres entiers,
positifs ou négatifs, et point commensurable tout point dont
les 2 coordonnées sont des nombres commensurables, 'unité
de longueur étant le c6té du carré qui sert de base au quadril-
lage et les axes de coordonnées étant 2 perpendiculaires du
quadrillage. Nous nous occuperons presque exclusivement
des points entiers. Nous allons voir comment la considération
de tels points facilite la construction d'un grand nombre de
figures planes, en étudiant auparavant les propriétés les plus
élémentaires des droites passant par des points a coordonnées
commensurables.

Remarquons d’abord que, étant donné n points commensu-
rables, on peut toujours, avec un rapport d’homothétie conve-
nable, les rendre entiers, en prenant un c6té de quadrillage
assez petit. Aussi suffira-t-il de prouver, dans certains cas,
I'existence de points commensurables répondant a des condi-
tions données, pour en déduire l'existence de points entiers
répondant aux mémes conditions.

. Au point de vue qui nous occupe les droites du plan peuvent
étre rangées en plusieurs catégories: 1° les droites qui ne
contiennent aucun point commensurable. Ex. : x = V3.
2° les droites qui contiennent un point et un seul a coor-
données commensurables. Ex.: y == x/3. 3° les droites
qui contiennent 2 et par suite une infinité de points a coor-
données commensurables. Nous supposerons d’ailleurs qu'il
y ait au moins un de ces points & coordonnées entiéres. Il est
alors visible qu’une telle droite contient une infinité de points
4 coordonnées entiéres. Si, en effet, nous supposons que le
point entier de cette droite soit l'origine, et le point commen-

surable le point% , %le point entier ad, bc fait partie de la

méme droite et par suite les points m. ad, m. bc en font
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également partie. On verrait aisément qu'il y a sur une telle
droite 2 points tels que A, B par exemple (fig. 4) qui sont entiers
et 4 la distance minima, tout autre point entier de la droite
étant a une distance de A représentée par m. AB [m étant un
entier posilif ou négatif]. Il est souvent commode de définir
une droite telle que celle-ci par un pointentier, A, par exemple,
et par les coordonnées a, b. du point B voisin par rapport aA,
pris pour origine; @ et b sontdonc des nombres premiers entre

! ) . . .
eux el — est le coefficient angulaire de la droite. Les droites
a

que nous aurons a considérer seront le plus souvent définies
ainsi. Par exemple la droite de la figure précédente est la
droite A (3, 1).

On voit que 2 droites A(a, b) et A(—a, — b) sont iden-
tiques. Si I'on change le signe d'un des 2 nombres « ou 0,

\

C .
— B B
L B ] \B’ D
,/ A_ P
Fig. 4. - Fig. 5.

et d'un seulement, on obtient une droite symétrique de la
premiére par rapport a l'un des axes de coordonnées.
Exemple : AB: AB” etc... (fig. 5). Il est facile de voir que
la droite A(— b, a), ici AC, est perpendiculaire sur AB.

Ce qui précéde donne immédiatement la solution des 2
problémes suivants: Mener par un point entier une paralléle
ou une perpendiculaire a une droite donnée. On a par exem-
ple, sur la figure, mené par D la parallele DE a AB, et par F
la perpendiculaire FG a AB.

Nous allons généraliser ceci en considérant des quadril-
lages a bases différentes. Nous appelons base d’'un quadril-
lage. un quelconque des segments tels que AM (fig. 6) qui sert
de coté a un des carrés du quadrillage, et qui représente la

s 1= Pt A s e
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distance de 2 parallé¢les voisines. Considérons maintenant le
quadrillage ayant pour base un segment quelconque AB, dont
les deux extrémités sont entiéres, c’est-a-dire le quadrillage
tracé en pointillé. On voit que tous les points entiers, ou si
I'on veut tous les sommets du nouveau quadrillage, sont des
‘'sommets de 'ancien, mais que la réciproque n’est pas vraie.
On peut montrer que tout point commensurable de I'un des
quadrillages est un point commensurable de l'autre. Nous
nous contenterons de l'établir sur un cas particulier en con-
sidérant par exemple le point entier « du premier quadril-
lage et montrant qu’il est commensurable dans le second.
Le lecteur généralisera sans peine cette démonstration: AB
est partagé par les verticales du premier quadrillage en un
nombre entier de segments égaux: ici 2: AN et NB. Les
coordonnées de N sont donc commensurables, dans le qua-
drillage de base AB. Il en sera de méme pour les coordon-
nées de P ou la verticale de « coupe BK. Dailleurs ici P est
entier dans le nouveau quadrillage. Dans ce nouveau qua-
drillage, « partage dans un rapport commensurable le seg-
ment P 4 extrémités commensurables. Il a donc des coor-
données commensurables. ;

Remarquons que malgré la propriété qui précede, les lon-
gueurs AM et AB qui servent de bases aux deux quadrillages
peuvent étre incommensurables. C'est d’ailleurs le cas ici:

AB = AMY/'5 .

La considération de quadrillages a bases différentes va
nous permettre de'résoudre le probléme suivant: Mener par
un point entier une droite faisant avec une droite donnée un
angle V, tel que tg V soit commensurable. [1l sera dans la pra-
tique commode de définir par exemple 1'angle V par I'angle

d’'une droite quelconque AP avec une horizontale AH du
quadrillage (fig. 7)]. La direction AP est ici définie par les
coordonnées 3, 2 du point P. Soit AB la droite donnée et M le
point par lequel doit étre menée la droite cherchée. Cons-
truisons le quadrillage de base AB et soit N le point de ce
quadrillage de coordonnées 3, 2. On voit immédiatement que
la droite cherchée est la parallele MM" menée par M a AN.
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Un cas particulier assez intéressant de ce qui précede est le
suivant: Mener par un point une droite faisant 45° avec une
droite donnée. Exemple. Les deux directions 2, 1 et 1, 3 font
45°. (CD et CE). Les exemples qui précedent et que l'on
pourra généraliser aisément montrent comment il est pos-
sible d’effectuer un grand nombre de constructions sur papier
quadrillé. La seule précaution a prendre est de profiter de
larbitraire, qui existe habituellement sur le choix des don-
nées, pour introduire le plus grand nombre possible de
points entiers dans 'énoncé. On arrive ainsi a vérifier rapi-
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Py ) P \ 7\ YL \ P \ Prs
- \N AT \\ N~ \ . / e \ // -1 l\
"N\ ) \ - L-"h "N\
\ "{ LY N .- \\ ,/ N 7 -~ Nl
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= \ - L’ },’ \ - L~
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\L - N g \\ \ \ TS \,,/ AN
X P X L~ s e \ \
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Fig. 6. Fig. 7.

dement des énoncés compliqués de géométrie. Malheureu-
sement toutes les figures ne se prétent pas a de pareilles
construclions. Par exemple il est impossible de construire
un triangle équilatéral dont les 3 sommets soient entiers (car
si ceci avait lien la tangente trigonométrique de l'angle de
2 cotés serait commensurable). Les courbes quelconques
contiennent rarement des points entiers. Signalons comme
cas simple souvent utilisé le cercle dont le centre est un point
entier et de rayon 5, cercle qui contient 12 points enliers .

Nous ne continuerons pas davantage la théorie des points
entiers, nous contentant d’énumérer quelques résultats par-
ticuliers, faciles a établir:

1 Le triangle dont les sommets ont pour coondonnces 10,0;0,10; —6, —8 a en partlcuhel les
pieds des hauteurs, I'or thocentre, le centre du cercle c1rconse11t et du cercle des 9 points, les
milieux des cdtés qui sont des points entiers. Le point de Lemoine et le centre de gravité
sont commensurables et deviendraient entiers par une homothétie convenable.
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L’aire -d’'un polygone dont les sommets sont des points en-
tiers est représentée par un nombre entier ou par la moitié
d’un nombre entier (I'unité d'aire étant I'aire du carré de base
du quadrillage).

Le lreu des points du plan équidistants de 2 points entiers
ne contient des points entiers que st les 2 points donnés sont
de méme parité, c'est-a-dire si les 2 coordonnées de 'un des
2 points par rapport a l'autre, sont de méme parité.

Un cercle défini par 3 points commensurables contient une
infinité de points commensurables. En particulier, il est
coupé en un point commensurable, par toute droite a coeffi-
cient angulaire commensurable, qui passe par un point com-
mensurable de ce cercle.

La distance d’'un point commensurable a une drotite, défi-
nee par 2 points commensurables, n’est commensurable que
S’il existe sur la droite 2 points commensurables a distance
commensurable. Pour préciser ceci, remarquons que en géné-
ral cela n’a pas lieu pour une droite quelconque. Ceci aurait
lieu par exemple pour une droite de direction 3, 4 car
3% 4 4* — 52 Si maintenant on prend une droite quelconque,
et par exemple 2 points entiers consécutifs A et B sur cette
droite, a une distance J (¢ élant en géneral incommensura-
ble) on peut évaluer aisément la distance d’un point quelcon-
que M (fig. 8) a AB. d étant cette distance, d.J est un nom-

bre entier (double de I'aire MAB) ici 7. Donc d est le quotient
7

Vs

Dans tout ce qui précede, nous avons laissé systématique-
ment de coté une notion qui se rattache simplement & celle
des points entiers : la notion d'entiers imaginaires '. On
appelle ainsi tout nombre @ + b dans lequel @ et b sont des
entiers positifs ou négatifs, 7 ayant la signification connue:
(12 = — 1). Les aflixes de ces nombres sont tous les points
entiers du plan. Nous ne traiterons pas celte question nous
bornant a citer un seul théoréme qui concerne les quadrilla-
ges de bases différentes :

Les affixes des multiples, réels ou imaginaires, d’'un nom-

par ¢ de cet enlier; ici d ==

1 Théorie des Nombres de M. CAHEN.
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bre, réel ou imaginaire, a, sont les sommets d’un quadrillage
ayant pour base le segment OA qui joint lorigine au point A,
affixe de a.

§ 3. — Applications diverses des propriétés des points entiers.

Les applications a l'arithmétique de la théorie des points
entiers sont trés nombreuses. Nous serons obligés de faire
un choix parmi elles, et de donner simplement quelques
exemples de ces diverses applications.

Etant donné la courbe f(r, y) = 0 ou plus généralement
flr,y,a) — 0 représentée par une équation homogene, a
désignant par exemple une longueur de la figure, tout point

A

Fig. 8. Fig. 9.

entier de cette courbe donnera une solution en nombres
entiers de 'équation f(x, ¥, @) = 0. Un point commensura-

ble de coordonnées% ,%

entiers de f(x, v, ka) = 0. Citons un exemple de ce genre
d’applications: Prenons une droite fixe A qui sera une ligne
verticale du quadrillage et 2 points O et F, symétriques par
rapport a A, et entiers. Prenons un point M commensurable
variable sur A, menons MN, perpendiculaire en M a FM,
(fig. 9) et abaissons enfin ON perpendiculaire sur MN. Il est
facile de voir que les coordonnées de N sont commensura-
bles. Le lieu de ce point est d'ailleurs une strophoide. On
aura donc des solutions en nombres entiers de I'équation

donnera une solution en nombres

x{a® 4 %) = ka(a® — ¥%) .

o
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La plupart de ces applicatiens concernent le carré de la
distance de 2 points entiers, nombre qui est un entier,
somme de deux carrés. Prenons par exemple la parabole
y* =4 px, p étant un nombre entier. On aura des points
entiers de cette parabole en posant y — 2mp et par suite
x = m?p. Soit F le foyer de cette parabole (fig. 10), A sa
directrice, et M un point entier de cette conique. On a

2 T . y .
MF = MN qui donne une solution en nombres entiers de

[y —-2 ’
a® = b% + c?, car MF est une somme de 2 carrés. Dans le
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Fig. 10. Fig. 11.

cas de la figure on a: p =1, = 4, y = 4 d'ou l'égalité:
b2 — 32 4 4%,

Prenons 2 points M et N (fig. 11) sommets d'un quadrillage
de base AB. Le carré de leur distance est le produit par AB’
d’une somme de 2 carrés, 1ci 3% et 22 car NP = 3. AB et MP
— 2. AB. Mais d’autre part le carré de cette distance est la
somme des carrés de MQ et NQ. Si I'on remarque enfin que
AB — AC2 -+ BCZ, on voit que 'on a démontré le théoréme :

Le produit d’'une somme de 2 carrés par une somme de 2
carrés est encore une somme de 2 carrés.

Dans le cas de la figure on a: 7% 4 4> = (22 4 1%)(3% 4 2%

La considération des points enliers, équidistants de 2
points entiers donnés, montrerait qu’'un nombre peut étre
de plusieurs facons une somme de 2 carrés. Nous allouns
étendre ceci a4 une somme de 4 carrés. Prenons 2 couples de
points diamétralement opposés dans un méme cercle AB et
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GD ‘(ﬁg. 12). On peut par exemple les obtenir en prenant a
Paide de quadrillages de base arbitraire un rectangle quel-
conque : ici le rectangle 2,1 du quadrillage de base 3,1. Soit

M un point entier quelconque du plan. L’égalité connue:
MA2 4+ MB? — MC? 4+ MD?

montre qu'un nombre peut s’écrire de plusieurs facons sous
forme d’'une somme de 4 carrés, car chaque terme, tel que

2
MA ,

est une somme de 2 carrés. On a ici I'égalité: 1% 4- 62

¥
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N -1 N \ Mo \‘
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\ ‘ 17 \ \
\ \ \ 3 =
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p // \ =27 \
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- \ - \ \
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\ L1 \b N \
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== = \\ = = X o -
\ _ :
/'/ v \ Y _-[ A :
4 o \ \ 17T A
_-r” \\. \ -T . \
\ \ “h \
\ v \
Fig. 12. Fig. 13.

4 8% L 132 =23% + 4% + 7% + 14%. Cette représentation des
sommes de 4 carrés permet de résoudre diverses questions.
Par exemple si 'on veut trouver 2 sommes de 4 carrés égales
et portant sur 8 entiers consécutils on voit qu’il suffira de
partir du carré ABCD (fig. 13). Les points M, N, P, etc...
répondent a la question. On a pour le point M: 2* 4 5* 4 72
+ 8 =23*+ 4* 476 4+ 92 Si I'on prend un point tel que Q
pour lequél un méme carré se retrouve dans les deux mem-
bres on aura des égalités concernant les sommes de 3 carrés.

Tci: 22 4+ 62 & 72 =32 1 42 | § 1,

! On obtiendrait de pareilles égalités en considérant le quadrillage « cubique » des points
entiers de 'espace : le plan, lieu des points équidistants de 2 points donnés, contient parfois

des points entiers pour lesquels on a des sommes de 3 carrés. On peut étendre certaines des

propriétés du plan a de tels points entiers mais non toutes. En particulier la représentation
par imaginaires du plan ne se retrouve pas dans l’espace. Signalons encore I'impossibilité
dzobtemr des quadrillages « cubiques » a bases différentes, si l'on veut que les 3 directions
d’un tel quadrillage soient distinctes de celles du premier. . ’

R s~
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§ 4. — Applications diverses du papier quadrillé.

On peut employer le papier quadrillé pour étudier commo- .
dément certaines questions. Quelques dessins industriels
(canevas, dallages, carrelages...) utilisent le carré du qua-
drillage comme point, pour tracer de facon grossiére certai-
nes courbes. En géographie on peut citer la méthode « des
carreaux » pour 'agrandissement des cartes (Un procédé ana-
logue permettrait de tracer des projections homographiques
d’une figure donnée. Par exemple, une amplification d’or-
donnée dans le rapport 2, fera correspondre a un carré de
la premiere figure 2 carrés superposés de la seconde, etc...).
On peut encore se servir du papier quadrillé pour étudier
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les propriétés des déterminants, des carrés magiques du
triangle arithmétique de Pascal, les mouvements des piéces

‘d’un échiquier, etc.. ou encore pour établir certains théore-

mes d’arithmétique : Exemple : La somme des n premiers
nombres impairs est n*. Dans la figure (fig. 14) les polygones
successifs contiennent un nombre impair de carrés et 'on
voit ainsi que la somme des 5 premiers impairs est 52,

Le carré de la somme de 2 nombres entiers a et b est égal a
la somme des carrés des 2 nombres augmentée du double
produit de ces nombres. On voit (fig. 15) que si 'on prend
a=2>5 et b =23 le carré ABCD est formé de 4 parties qui
contiennent respectivement 5><5; 3><5; 5> 3; 33
carrés, ce qui donne la propriété.

Donnons un exemple plus compliqué de ces démonstra-
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lions figurées. Supposbns que toutes les cases d'un quadril-
lage contliennent des entiers tels, que la somme des nombres
de cases horizontales donne le nombre situé au-dessous de
la seconde : les 3 nombres A, B, C (fig. 16) donnent
A + B — G =0 (Le lecteur fera sans peine des applications
de ceci au cas du triangle arithmétique de Pascal). Représen-
tons encore ceci par les coeflicients 1, 1 et — 1 mis sur les
3 cases considérées (Sur la figure on a pris 3 nouvelles

Al A2+ +4l+331+1
-1
Al

A

Fig. 11.

cases au-dessous des premiéres). Ceci posé, en n'introduisant
ainsl que des totaux nuls on pourra affecter certaines cases
de coeflicients, toutes les cases marquées donnant un total
égal a 0. Par exemple, sur la figure 17, les diverses parties
de la figure répondent & cette condition et I'on voit aisément
apparaitre les coeflicients du binome. Ne voulant pas allon-
ger outre mesure celte Note nous laissons au lecteur le soin
d’énoncer le théoréme correspondant et d’en déduire des
propriétés du triangle de Pascal .

A. SaintE Lacui (Douai).

! Le lecteur trouvera un trés grand nombre de ces démonstrations figurées dans la Théorie
des Nombres de Lucas.

[’Enseignement mathém., 12¢ année ; 1910
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