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MOMENT MAGNETIQUE 97

On verrait enfin que 'on peut aussi définir la métrique en
fonction de I'un des groupes de transformations qui lui sont
ass0Ciés.

Une métrique peut donc élre définie de trois maniéres
différentes, savoir : au moyen d’une relation d'égalité appli-
cable aux segments-et pouvant étre déterminée, dans le cas
des continus, par une fonction numérique de deux éléments,
au moyen d'une opération d’addition définie pour les seg-

“ments, enfin au moyen d'un gloupe de transformations se
rapportant aux éléments mémes de ’ensemble ordonné pri-
mitif. Ces trois poinls de vue se completent 'un I'autre et
les trois modes de définilion peuvent trouver des applica-
tions dans le domaine physique.

On examinera dans un prochain article de quelle maniéere
doit étre généralisée la notion de mesure pour pouvoir s’ap-
pliquer aux continus a plusieurs dimensions.

G. ComBEBIAC (Montauban).

SUR LE MOMENT MAGNETIQUE
A PROPOS DES DEUX SIGNIFICATIONS DU TERME DE MOMENT DANS

LA MECANIQUE

ET SUR LES CENTRES DE GRAVITE MAGNETIQUES

I. — CGentre de gravité et équilibre d'un corps pesant tour-
nant autour d'un point fixe. — Rappelons que dans la théorie
des forces paralleles, on appelle momentd’une force par rap-
port & un plan le produit de la force par la distance de son
point d’application au plan, et qu'on démontre que le mo-
ment de la résultante est égal &4 la somme des moments des
composantes. Etant donnée une force de direction constante
et proportionnelle 4 I'élément de masse, telle que la pesan-
teur, et un systéme d’axes rectangulaires dont I'origine est
choisie arbitrairement, on détermine la position du centre
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de gravité, c'est-a-dire du point d’application de la vésul-
tante par les équations

) v — Ymx - Zmy o Smz
Y7 Ym N= Sm '

m étant 'élément de masse dont les coordonnées sont x, y, z.
Désignons par «. 8. v, les numérateurs des seconds mem-
bres ; on voit que ce sont les moments du corps par rap-
port aux plans coordonnés. Il est aisé de montrer que ce
sont aussi les trois projections sur les axes d'un vecteur qui
a pour direction la droite joignantl'origine au centre de gra-
vité et pour valeur le produit de la longueur de celte droite
par la masse totale du corps. En effet, considérons un plan
passant par 'origine et dont la normale fait avec les axes les
angles 2, u, v ; la distance d’un point x, ¥, z a ce plan est

x cos k-4 y cos p. 4 z cos v

et, par conséquent, le moment du corps par rapport a ce
plan est

cos AXmx + cos pXmy -+ cos vEmz ,

expression qui est la somme des projections sur cette nor-
male des moments «, 3, y pris respectivement sur les axes,
et par conséquent aussi la projection de la résultante de
a. 3, ¥, qui a pour valeur

b=V ot 4 2 £ ¢
et dont les cosinus direcleurs sont

B
3

, :8(-’ ou d’apres (1) s , I , z_;

A
8 ’

en faisant

i 2 2 2
l:‘/xl—}—yi-}—zl

et I’'on a en outre, comme on 'a dit ci-dessus, ¢ = Ilm. C’est
le moment de masse du corps par rapport a un plan nor-

mal a la droite /.
Jusqu’ici il n’est pas question d'un moment de rotation et
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c'est en établissant les conditions d’équilibre d'un corps pe-
sanl mobile autour de 'origine que la seconde signification
du terme intervient. Rappelons que le moment d’une force
par rapport a un are de rotation est le produil de la pro-
Jjection de la force sur un plan normal a Uaxe par la dis-
tance du point d’application a l'axe. On démontre que le
travail élémentaire, d a4 une rotation autour de l'axe, est
proportionnel au moment, et il en résulte que les équations
d’équilibre du corps mobile autour de l'origine sont les sui-
vantes

(2) BZ —yY =0, X\—aZ =0, aY —X=0,

dans lesquelles «, 8, v, ont la méme signification que ci-des-
sus et X, Y, Z, sont les composantes de la force F rappor-
tée a l'unité de masse. Ces équations impliquent celles que
I'on obtient en remplacant o, 3, v, par &, , ¥, . z, el celles-ci
sont équivalentes aux suivantes

R g G
X Y Z F

La condition d’équilibre est que la droite qui joint le cen-
tre de gravité a l'origine soit parallele a la force.

Lorsque la condition n’est pas satisfaite, la force exerce
une action rotative et le moment esl la résultante des trois
moments exprimés par les premiers membres des (2). Or
ces trois doubles produits sont les projections sur les axes
du produit vectoriel de la force F et du moment J, d'ou ré-
sulte que ce vecteur est normal au plan de F etde 0 et qu'il
a pour valeur

F.5. sin (Fd) .

Si 'on suppose que F et sin (Fd) soient variables, le fac-
teur d estl'élément constant qui ne dépend que du corps et
du point fixe et qui devient le moment de rotation si |'on
suppose F égal a I'unité et que 'angle de F et de /soit droit.
C’est ainsi que la quantité ¢ en gardant sa valeur numérique
devient assimilable a un moment de rotation, mais il faut ob-
server que la direction du vectenr ¢ est la méme que celle
de [, tandis que la direction du vecteur, moment de rotation,
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est normale a [ et a F. Pour éviter la confusion, il serait pré-
férable de désigner ¢ par moment de masse et d’appeler mo-
ment de rotation disponible la quantité (9).

Il. — Centres de gravité magnétiques. — L’action d'une
force magnétique sur un aimant differe, comme on va le voir,
de celle que nous venons d’étudier par le fait que la masse
magnétique est réductible a deux centres de gravité donnant
lien & un couple de rotation, de telle sorte qu’il n'y a pas
lieu de considérer un point fixe autour duquel le corps peut
tourner.

Nous admettons que dans chaque élément de volume, il se
trouve deux masses magnéliques égales, — p, el u,, la pre-
miére négative, la seconde positive. Considérons toutes les
masses élémentaires en valeur absolue, abstraction faite de

leur signe et désignons les par u’ de telle sorte que, numé-
riquement,

(3) o= g 4 e = 2py = 2u,

et appliquons leur la réegle pour trouver le centre de gravité.
On a pour les coordonnées du cenire magnétique absolu

X'z L, Xply’ L, Zyp's

S T T R 0 T TR

v

(4) 2" —

Soient x, et &, les valeurs de x pour les masses u, et g,
correspondant a u’' ; nous admettons que

x X ’ § k , -4 z
(5) S W.:)i‘;ﬂ?z 2 H; 3

2 Y

y —

(6) ) + dlcos h, y =19y 4+ dl cos p, 75 = 7 + dl cos v,

d( est la distance élémentaire constante des deuxmasses p, et
pa et A, u, v sont les angles avec les axes de la direction de
I’aimantation et sont variables. -

Déterminons de méme le centre de gravité magnétique né-
gatif et le centre de gravité magnétique positif; on a

' 2%1-11'1 re ETngz

= X
1 ’E}h ’ 2 EP'?‘ ’

(7) x
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et ces mémes équations pour les autres coordonnées. En te-
nant compte de (3), de (5) et de (6), les (4) deviennent

_ 22pyxy + Xy dl cos__?\
—— 22“1

’

et, d’autre part, a cause de (6), (7) donne

’ ' ug dl A
(8) xz — x1 :M

2&’-1
il résulte de ces deux derniéres équati_ons
Ly 12 ! ! '/ v/ ’ ,.’
9 x,__x,+x2—x1_.x1+x2 ,./—-)_1_‘_32 H,_éi—l—éz.
e L e R e

Les deux centres, positif et négalif se trouvent sur une
droite passant par le centre absolu, de part et d’autre et a
égales distances de ce centre.

Assimilons la masse magnétique absolue a la masse maté-
rielle d’'un corps ayant ce méme volume. La densité sera une
fonction de x, v, z, qui est 'aimantation du corps aimanté
au point considéré et le centre de gravité pourra étre déter-
miné par des intégrales de volume. Puisque, pour chaque
élément de volume, en supposant un champ magnétique uni-
forme, les deux forces agissant sur les masses u, et p, peu-

Xy + 29
2
élémentaire, c’estau centre absolu que la résultante totale s’ap-

vent étre tansportées au centre en laissant un couple

- plique, mais cette résultante est nulle.

Quant a I'action rotative, les ¢quations (2) sont applicables
a la force magnétique supposée proportionnelle a la masse
magnétique, a cette différence pres qu’il faut tenir compte du
signe des masses y, et u,. En effet le moment de rotation de
la force par rapport a I'axe des x est :

[Zpays — Dpaa] Z — [Bpaze — Bz Y|

en désignant par X, Y, Z les composantes de F suivant les
directions positives des axes, car la force qui agit sur la
masse — u, est dirigée en sens contraire de Ja composante
Z ou'Y. Il en résulte, a cause des (6) que les moments déja
désignés par «, B8, y dans (2) ont ici pour valeur

T(pads — pas) . Blpays — pays) » Dlpazz — pay) ,
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expressions qu'on peut désigner par moments de magné-
tisme par analogie avec moments de masse, mais qu'il n’y a
pas lieu de prendre par rapport 4 une origine arbitraire, car
ces expressions se mettent, a cause de (6), sous la forme :

(10) 2Zpdl cos A = (x; — x;) Zuy .
On a donc, en gardant pour d le sens qui lui a été attribué

et qui devient la longueur de la droite qui jointles deux cen-
tres de gravité, multipliée par la masse totale positive

=V at + p + 2.

C’est le moment de masse magnétique par rapport a un
plan normal a la droite qui joint les deux centres de gravité
magnétiques. -

On voit ainsi que le vecteur d est un moment dans ['accep-
tion du terme qui est relative a la composition des forces
paralleles, sauf que les masses sont accouplées deux a deux
égales et de signes conlraires, et qu’il en résulte que ce vec-
teur a pour direction la droite qui joint les deux centres et
pour valeur, la longueur de cette droite multipliée par la
masse totale positive ou négative en valeur absolue.

Comme dans le cas du corps pesant, ce sont les équations
d’équilibre rotatif qui font intervenir lanotion de momentde
rotation. Ces équations sont les mémes que (2) et, en rem-
placant a, 8. v, par leurs valeurs (10) conduisent ala condi-
tion d’équilibre

! 4 14 ! !
X — P Z —— z
Yy x Ya J1 1

X Y

analogue a celle obtenue pour la pesanteur, sauf que la droite
qui doit étre parallele a la force est celle qui joint les deux
cenlres, et que par conséquent la position d'équilibre est
indépendante de I'origine arbitraire. Lorsque la condition n’est
pas satisfaite, le champ exerce sur I'aimant une action rota-

tive et on peut déduire le moment résultant des trois mo-

ments a, 8, y, comme on I'a fait pour la pesanteur, ce qui
donne pour le vecteur moment la valeur absolue

F .3 sin (F .3

s e
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et pour sa direction la normale a I et 4 J. La méme remarque
relative a la signification de & trouve ici sa place. On évite-
rait la_confusion que peut provoquer le double sens de I'ex-
pression moment en désignant ¢ par moment de magnélisme,
et en représentant par (d) la quantité qu'on appellerait mo-
ment de rotation disponible. 1l importe de remarquer aussi
que tandis que pour la mmasse matérielle on peut mesurer sé-
parément la masse elle-méme et la distance du centre de
gravité au point fixe, le moment magnétique seul, qui est le
produit des deux éléments, est susceptible d'étre évaluvé.

I11. — Aimantation uniforme et application a la spheére
pleine. — Dans le cas de I"aimantation uniforme, les quanti-
tés uy et py. A, p, v deviennent constantes et il en résulte
que les (8) donnent

/ ’

x;——x;:dl cos A y;—y;:dl cos . z2-21:dl cos v.

La distance des deux centres est dl, distance des deux
masses elementaires et la direction de dl est celle de 'aiman-
tation.

Appliquant ces considérations a la sphere, rappelons que
I'atmantation uniforme satisfait dans ce cas aux équations
d’équilibre magnétique intérieur exprimant l'aimantation par
induction dans un champ uniforme, équations que nous ne
faisons que mentionner ici. Prenons I'axe des Z parallele &
I'aimantation et ['origine au centre de la sphére; les deux cen-
‘tres se trouvent sur 'axe des z et on a

2 — Ty = dl .

La masse magnétique 2y, ou 3p, est égale au volume de
la sphere multipli¢ par une densité hypothétique o, ce qui
donne, en appelant « le rayon de la sphere, pour ¢

4
0 = dl Xy = 7 napdl .

On va voir que p devient une densité de surface, si la
masse magnétique qui la constitue, au lieu d'agir sur un bras
de levier infiniment court, agit sur un levier fini. Pour le
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montrer; au lieu de calculer le couple résultant en appli-

quant les résultantes aux centres respectifs, composons les

couples élémentaires le long de chaque tube d’aimantation

paralléle a OZ. Soit MN le tube de section ds pour le point

de la surface N donné par 'angle ZON égal a0 et soit di la

longueur de 'aimant élémentaire. Les mas-

— ses élémentaires s’annulent deux 4 deux et

N ne laissent subsistqr que la premiére en

M négative et la derniere en N posilive,

constituant un couple dont le brasde levier

est MN et la masse pdids. Pour composer

0) M - les couples relatifs a tous les points M de

la sphére, cherchons le centre de gravité

de la couche sphérique d’épaisseur constante di et appli-

quons-y une force égale a la masse lotale de la couche. Le
centre se trouve sur OZ par raison de symétrie et on a

z

2msz
Zy == .
! Xm
Pour calculer Smz, on a
z=—acosl et m=—pdla®sin 0didyo cos § ,

6 et élantles coordonnées angulaires, car on obtient, comme
le montre la figure, la surface ds normale au tube MN en pro-
jetant sur le plan normal a OZ la surface élémentaire sphé-
rique. On intégre pour la demi-sphere supérieure entre O
et 2 pour ¢ et entre O et ™/2 pour s, ce qui donne

2rald
= edl
Pour obtenir Em, il faut intégrer la valeur de m entre les
mémes limites et on trouve
ra’pdl .
Par conséquent

Zqy /= a

SUNN

et le moment du couple résultant est

2
3 ara®odl .
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Pour la sphére inférieure, le couple est le méme et le
moment total est

4
:9)— a . ‘nazpdl .

Dans cetle expression p est la densité d'une couche dont
la surface est celle du grand cercle de la sphére et dont
'épaisseur infiniment petite est la longueur de I'aimant élé-
mentaire, tandis que le bras de levier est */s a.

Comme on l'a dit plus haut, c’est le moment seul qu'on
peut mesurer et ¢’est pourquoi le produit pd/ est laseule varia-
ble existant réellement au point de vue expérimental, bien
que p et d/ soient définis théoriquement'.

IV. — Aimantation non uniforme par induction dans un
champ uniforme. — Le vecteur aimantation est dans ce cas,
comme on le sait, solénoidal et il en résulte certaines consé-
quences relativement a la détermination du centre absolu et
des centres secondaires et de la masse magnétique ou, ce
qui revient au méme, du moment de rotation disponible.
Nous supposons connues les lignes d’aimantation, ainsi que
le potentiel intérieur total V, et nous considérons les filets
d’aimantation prolongés dans l'intérieur du corps entre les
surfaces terminales. En un point quelconque d’un filet, le
produit du vecteur par la section est constant, puisque le

-

1 Si on cherche & se rendre compte du processus qui, dans le cas plus simple du magné-
tisme rémanent, transforme la somme des actions rotatives moléculaires en une action rota-
tive sur un volume fini, c’est dans la composition des couples élémentaires que se trouve la
solution. En effet, deux molécules conséecutives du filet d’aimaniation tendent a tourner dans
le méme sens et leur solidarité ne le permet pas. Une sorte de frottement intérieur magné-
tique ne laisse subsister que les forces extrémes en M et en N et le couple a pour bras de
levier MN. Une expérience, que je viens de réaliser au Laboratoire de Physique de ¥Univer-
sité de Genéve, doit étre mentionnée ici — deux rangées de petites boussoles dont la cage a
16mm5 de diamétre, l'aiguille 13mm de long et dont les centres sont disposés suivant une
ligne droite, sont supportées horizontalement sur un disque de carton suspendu a un fil de
caoutchouc d’une force de torsion trés faible. En premier lieu les boussoles sont en contact
de maniére que chacune des deux rangées distantes 'une de lautre de 1°m occupe une lon-
gueur de 16em5. A ce degré de rapprochement les aiguilles sont solidaires et orientées sui-
vant la ligne des centres, si le champ extérieur ne dépasse pas une certaine limite. En
plagant un barreau aimanté dans le voisinage du carton et dans son plan, symétriquement
par rapport au centre, le centre du barreau qui a 32¢m de long se trouvant a 25¢m du centre
du carton, les rangées s’orientent parallélement au barreau et dans l'oscillation les aiguilles
restent dirigées suivant la ligne des centres consécutifs. — En second lieu, on supprime deux
boussoles dans chaque rangée et on les espace également, ce qui porte la distance de deux
centres consécutifs de 16mm5 a 20mmg. Cette augmentation suffit pour que les aiguilles cessent
d’étre solidaires, que le carton ne s’oriente plus par rapport au barreau ; dans les oscillations
du carton, chaque aiguille reste a chaque instant paraliéle au barreau. 24 décembre 1909.

L’Enseignement mathém., 12¢ année ; 1910. 8
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vecteur est solénoidal et ce produit a pour expression en le
multipliant par £,
dVv

— k2
a4

k étant le coeflicient d’aimantation, dg la section du filet,
et d/ I'élément de longueur compté sur la ligne d’aimanta-

dV
tion. Par définition, 'aimantation est — %k — et, d’autre part,

le moment magnétique est égal a lalmantatlon multipliée
par le volume dodl; donc ce produit est égal a u, en sorte
que la masse magnétique est constante dans un méme filet.
Le centre absolu d'un filet est donc le centre de gravité de
la ligne d’aimantation prise de son point d’entrée a son point
de sortie du volume aimanté. On déduit de cette propriété
que si le corps a un axe de symétrie parallele au champ,
ce qui donne lieu a des lignes d’aimantation symétriques par
rapport a cet axe, le centre de gravité absolue sera sur cet
axe puisqu’il sera le centre de gravité du systéme de masses
di a tous les centres des courbes qui sont elles-mémes symé-
triques et les deux centres seront également sur cet axe.
Si le corps a un plan de symétrie normal a son axe, le centre
absolu sera dans ce plan par la méme raison. L’équation (8)
appliquée a un filet d’aimantation donne

kf ds. dx
LR dV
o —7 do. dl

L’intégrale au numérateur s’obtient en remarquant que,
le pI‘OdUltcfj de étant constant, on peut intégrer le facteur
dx ce qui donne

—L‘(xa——xa,) %dc,
x, et x, étant les valeurs de x correspondant aux extrémi-

tés du filet, et d’autre part, le prodmt dc est égal a4 dsv

aux points x_ et x_, dn étant lanormale & la surface du Volume
aimanté prise du dedans en dehors et ds I'élément de cette
surface. On retrouve ainsi la réduction connue de I'intégrale
de volume, relative au moment, &2 une intégrale de surface.
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On peut se proposer de calculer I'intégrale au dénomina-
teur de 4, — « qui est la masse magnétique totale positive
ou négative. En intégrant par rapport au filet entre ses deux
extrémités, on aura, comme dans ce qui précede,

av
— k z{—’-{ dS ([a-—- la,’)

lo — ly étant la longueur du filet compris entre 'entrée et la
sortie du volume aimanté, expression qu’il faudra intégrer
par rapport a la surface totale du corps, et dans laquelle
lo — ly, est une fonction du point de la surface auquel se
rapporte ’élément de surface ds. '

Dans le cas de la sphere on a, ¢ étant I'angle du rayon vec-
teur avec l'axe,

v
_A%“PCOSO la — low = R cos 0, ds == R? sin 0d0do

et I'intégrale pour la demi-sphére est bien,

.. pE LA Rive (Geneve).

| PROBLEMES RELATIFS
A LA PROJECTION AZIMUTALE EQUIVALENTE
DE LAMBERT ! |

I

La projection azimutale équivalente de Lambert, imaginée
par ce dernier en 1772, trouve de plus en plus son emploi
lorsqu’on se propose de représenter des portions d'une cer-
taine étendue de la surface du globe terrestre?.

! Les principaux résultats de ce travail ont fait I'objet d’une conférence de Vauteur, tenue le
10 octobre 1909, a la Société suisse des Professeurs de mathématiques.

* Voir Encyklopdidie der mathematischen Wissenschaften, Bd. VI, 1, A.

LaMBurt, Beitrage zum Gebrauche der Mathematik. 111. Teil, p. 105, Bexhn 1772.

BRANDF\:B!«‘RGFR, Ueber Lamberts flichentrene Azimutalprojektion. (Vaerteéjahlsschrift der
naturforschenden Gesellschaft Zirvich, Jahrg. 54, S. 436-448, 1909.)
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