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On verrait enfin que I on peut aussi définir la métrique en
fonction de Fun des groupes de transformations qui lui sont
associés.

Une métrique peut donc êlre définie de trois manières
différentes, savoir : au moyen d'une relation d'égalité applicable

aux segments et pouvant être déterminée, dans le cas
des continus, par une fonction numérique de deux éléments,
au moyen d'une opération d'addition définie pour les
segments, enfin au moyen d'un groupe de transformations se

rapportant aux éléments mêmes de l'ensemble ordonné
primitif. Ces trois points de vue se complètent l'un l'autre et
les trois modes de définition peuvent trouver des applications

dans le domaine physique.
On examinera dans un prochain article de quelle manière

doit être généralisée la notion de mesure pour pouvoir
s'appliquer aux continus à plusieurs dimensions.

G. Combebiac (Montauban).

SUR LE MOMENT MAGNETIQUE
A PROPOS DES DEUX SIGNIFICATIONS DU TERME DE MOMENT DANS

LA MÉCANIQUE

ET SUR LES CENTRES DE GRAVITÉ MAGNÉTIQUES

L — Centre de gravité et équilibre d'un corps pesant tournant

autour d'un point fixe. — Rappelons que dans la théorie
des forces parallèles, on appelle moment d'une force par
rapport à un plan le produit de la force par la distance de son
point d'application au plan, et qu'on démontre que le
moment de la résultante est égal à la somme des moments des
composantes. Etant donnée une force de direction constante
et proportionnelle à l'élément de masse, telle que la pesanteur,

et un système d'axes rectangulaires dont l'origine est
choisie arbitrairement, on détermine la position du centre
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de gravité, c'est-à-dire du point d'application de la résultante

par les équations

Hmx Hmy _
Hinz

y Jt > "''l —— ^ >

Hm H m Hm

m étant l'élément de masse dont les coordonnées sont x, y,
Désignons par a. ßs y, les numérateurs des seconds membres

; on voit que ce sont les moments du corps par rapport

aux plans coordonnés. 11 est aisé de montrer que ce
sont aussi les trois projections sur les axes d'un vecteur qui
a pour direction la droite joignant l'origine au centre de gravité

et pour valeur le produit de la longueur de cette droite
par la masse totale du corps. En effet, considérons un plan
passant par l'origine et dont la normale fait avec les axes les
angles A, y ; la distance d'un point x, y, z à ce plan est

x cos X -f- y cos a -}- z cos v

et, par conséquent, le moment du corps par rapport à ce

plan est

cos XHmx -f- cos (xS/nj -f- cos vHmz

expression qui est la somme des projections sur cette
normale des moments a, /S, y pris respectivement sur les axes,
et par conséquent aussi la projection de la résultante de

a. /S, y, qui a pour valeur

S V/a2 + ß2 +
et dont les cosinus directeurs sont

a ß Y xi Vi zi
8 ' 8 ' 8

1 °U d apreS (1)

en faisant

i [/K+ /t + 2î

et l'on a en outre, comme on l'a dit ci-dessus, â Him. C'est
le moment de masse du corps par rapport à un plan normal

à la droite L

Jusqu'ici il n'est pas question d'un moment de rotation et
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c'est en établissant les conditions d'équilibre d'un corps
pesant mobile autour de l'origine que la seconde signification
du terme intervient. Rappelons que le moment d'une force

par rapport à un axe de rotation est le produit de la
projection de la force sur un plan normal à Vaxe par la
distance du point, d"application à l'axe. On démontre que le

travail élémentaire, dû à une rotation autour de l'axe, est

proportionnel au moment, et il en résulte que les équations
d'équilibre du corps mobile autour de l'origine sont les
suivantes

(2) ßZ — TY 0 TX — aZ 0 aY — (3X 0

dans lesquelles a, ß, y, ont la même signification que ci-dessus

et X, Y, Z, sont les composantes de la force F rapportée
à l'unité de masse. Ges équations impliquent celles que

l'on obtient en remplaçant a, /3, y, par x1 yi, zi et celles-ci
sont équivalentes aux suivantes

~y± — zi — L
X ~ Y ~ Z — F

•

La condition d'équilibre est que la droite qui joint le centre

de gravité à l'origine soit parallèle à la force.
Lorsque la condition n'est pas satisfaite, la force exerce

une action rotative et le moment est la résultante des trois
moments exprimés par les premiers membres des (2). Or
ces trois doubles produits sont les projections sur les axes
du produit vectoriel de la force F et du moment $, d'où
résuite que ce vecteur est normal au plan de F et de $ et qu'il
a pour valeur

F 8 sin (F8)

Si l'on suppose que F et sin (Fd) soient variables, le
facteur d est l'élément constant qui ne dépend que du corps et
du point fixe et qui devient le moment de rotation si ion
suppose F égal à l'unité et que l'angle de F et de / soit droit.
C'est ainsi que la quantité § en gardant sa valeur numérique
devient assimilable à un moment de rotation, mais il faut
observer que la direction du vecteur â est la même que celle
de /, tandis que la direction du vecteur, moment de rotation,
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est normale à I et à F. Pour éviter la confusion, il serait
préférable de désigner S par moment de masse et d'appeler
moment de rotation disponible la quantité (â).

II. — Centres de gravité magnétiques. — L'action d une
force magnétique sur un aimant diffère, comme on va le voir,
de celle que nous venons d'étudier par le fait que la masse
magnétique est réductible à deux centres de gravité donnant
lieu à un couple de rotation, de telle sorte qu'il n'y a pas
lieu de considérer un point fixe autour duquel le corps peut
tourner.

Nous admettons que dans chaque élément de volume, il se

trouve deux masses magnétiques égales, — et ^2, la
première négative, la seconde positive. Considérons toutes les
masses élémentaires en valeur absolue, abstraction faite de

leur signe et désignons les par p de telle sorte que,
numériquement,

(3) p. z^r -J- [j-2 rzz: 2^ zzz 2ua

et appliquons leur la règle pour trouver le centre de gravité.
On a pour les coordonnées du centre magnétique absolu

(4| *' ?£ / ,- §£.
Soient .iq et x2 les valeurs de x pour les masses p^ et p2

correspondant à p ; nous admettons que

(5, *' ÎL+f>, / * + », ,' ÎL+^,

(6) x2 oc± -j- dl cos X j2 — Ji + dt cos p. r2 =zz z± + dl cos v,

dl est la distance élémentaire constante des deux masses pi et

p2 et À, p, v sont les angles avec les axes de la direction de

l'aimantation et sont variables.
Déterminons de même le centre de gravité magnétique

négatif et le centre de gravité magnétique positif ; on a

(7> **= -kr •



MOMENT MAGNÉTIQUE 101

et ces mêmes équations pour les autres coordonnées. En
tenant compte de (3), de (5) et de (6), les (4) deviennent

2Su-iXi -4— Su-i dl cos ~k

x - 22^

et, d'autre part, à cause de (6), (7) donne

il résulte de ces deux dernières équations

Les deux centres, positif et négatif se trouvent sur une
droite passant par le centre absolu, de part et d'autre et à

égales distances de ce centre.
Assimilons la masse magnétique absolue à la masse matérielle

d'un corps ayant ce même volume. La densité sera une
fonction de x, y, z, qui est l'aimantation du corps aimanté
au point considéré et le centre de gravité pourra être déterminé

par des intégrales de volume. Puisque, pour chaque
élément de volume, en supposant un champ magnétique
uniforme, les deux forces agissant sur les masses et peuvent

être tansportées au centre '%i
en laissant un couple

élémentaire, c'est au centre absolu que la résultante totale
s'applique, nrais cette résultante est nulle.

Quant à l'action rotative, les équations (2) sont applicables
à la force magnétique supposée proportionnelle à la masse
magnétique, à cette différence près qu'il faut tenir compte du
signe des masses ^ et g2. En effet le moment de rotation de
la force par rapport à l'axe des x est :

en désignant par X, Y, Z les composantes de F suivant les
directions positives des axes, car la force qui agit sur la
masse —ja1 est dirigée en sens contraire de Ja composante
Z ou Y. Il en résulte, à cause des (6) que les moments déjà
désignés par a, /3, y dans (2) ont ici pour valeur

2

[Sp.2j2 S^lJ z [S(J-2^2 Y

2 ((J-2 '^2 [J-l OC-i) 2 [J-2 Jz P-iJ'l) ' S([i-2^2 — [J-l &l) »
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expressions qu'on peut désigner par moments de magnétisme

par analogie avec moments de masse, mais qu'il n'y a

pas lieu de prendre par rapport à une origine arbitraire, car
ces expressions se mettent, à cause de (6), sous la forme :

(10) cos X —: (ora — .rj

On a donc, en gardant pour $ le sens qui lui a été attribué
et qui devient la longueur de la droite qui joint les deux centres

de gravité, multipliée par la masse totale positive

S V7*2 + + T2 •

C'est le moment de masse magnétique par rapport à un
plan normal à la droite qui joint les deux centres de gravité
magnétiques.

On voit ainsi que le vecteur d est un moment dans l'acception

du terme qui est relative à la composition des forces
parallèles, sauf que les masses sont accouplées deux à deux
égales et de signes contraires, et qu'il en résulte que ce
vecteur a pour direction la droite qui joint les deux centres et

pour valeur, la longueur de cette droite multipliée par la

masse totale positive ou négative en valeur absolue.
Comme dans le cas du corps pesant, ce sont les équations

d'équilibre rotatif qui font intervenir la notion de moment de
rotation. Ces équalions sont les mêmes que (2) et, en
remplaçant a, ß- y, par leurs valeurs (10) conduisent à la condition

d'équilibre

analogue à celle obtenue pour la pesanteur, sauf que la droite
qui doit être parallèle à la force est celle qui joint les deux
centres, et que par conséquent la position d'équilibre est
indépendante de l'origine arbitraire. Lorsque la condition n'est

pas satisfaite, le champ exerce sur l'aimant une action rotative

et on peut déduire le moment résultant des trois
moments a, jS, y,-comme on l'a fait pour la pesanteur, ce qui
donne pour le vecteur moment la valeur absolue

F 8-. sin (F 8)
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et pour sa direction la normale à F et à S. La même remarque
relative à la signification de S trouve ici sa place. On éviterait

la confusion que peut provoquer le double sens de

l'expression moment en désignant § par moment de magnétisme,
et en représentant par (d) la quantité qu'on appellerait
moment de rotation disponible. Il importe de remarquer aussi

que tandis que pour la masse matérielle on peut mesurer
séparément la masse elle-même et la distance du centre de

gravité au point fixe, le moment magnétique seul, qui est le
produit des deux éléments, est susceptible d'être évalué.

111. — Aimantation uniforme et application à la sphère
pleine. — Dans le cas de l'aimantation uniforme, les quantités

(ui et ^2« ^ iu-> v deviennent constantes et il en résulte
que les (8) donnent

x — x. — dl cos X y — r ~ dl cos u. z — z — dl cos v2 1 «/ 2 J 1 » 2 1

La distance des deux centres est dl, distance cles deux
masses élémentaires et la direction de dl est celle de l'aimantation.

Appliquant ces considérations à la sphère, rappelons que
l'aimantation uniforme satisfait dans ce cas aux équations
d'équilibre magnétique intérieur exprimant l'aimantation par
induction dans un champ uniforme, équations que nous ne
faisons que mentionner ici. Prenons l'axe des Z parallèle à

l'aimantation et l'origine au centre de la sphère; les deux cendres

se trouvent sur l'axe des z et on a

z2 — zt dl

La masse magnétique Ip,, ou est égale au volume de
la sphère multiplié par une densité hypothétique p, ce qui
donne, en appelant a le rayon de la sphère, pour $

S — g Tiaspdl

On va voir que p devient une densité de surlace, si la
masse magnétique qui la constitue, au lieu d'agir sur un bras
de levier infiniment court, agit sur un levier fini. Pour le
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montrer, au lieu de calculer le couple résultant en appliquant

les résultantes aux centres respectifs, composons les
couples élémentaires le long de chaque tube d'aimantation
parallèle à OZ. Soit MN le tube de section ds pour le point
de la surface N donné par bangle ZON égal à 9 et soit dl la

longueur de l'aimant élémentaire. Les masses

élémentaires s'annulent deux à deux et
ne laissent subsister que la première en
M négative et la dernière en N positive,
constituant un couple dont le bras de levier
est MN et la masse pdlds, Pour composer
les couples relatifs à tous les points M de
la sphère, cherchons le centre de gravité

de la couche sphérique d'épaisseur constante dl et

appliquons-y une force égale cà la masse totale de la couche. Le
centre se trouve sur OZ par raison de symétrie et on a

Pour calculer 2mz;, on a

Hmz
S m

pdla2 sin ftddd® cos 0

6 et (f étant les coordonnées angulaires, car on obtient, comme
le montre la figure, la surface ds normale au tube MN en
projetant sur le plan normal à OZ la surface élémentaire
sphérique. On intègre pour la demi-sphère supérieure entre 0
et 27T pour <p et entre 0 et ^/a pour 6», ce qui donne

2tsa3

3~ pdl

Pour obtenir 2m, il faut intégrer la valeur de m entre les

mêmes limites et on trouve

Par conséquent
7za'2pdl

2

Z'=3a

et le moment du couple résultant est

— ana2Ç)dl
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Pour la sphère inférieure, le couple est le même et le

moment total est

~ a tm2ocU

Dans cette expression p est la densité d'une couche dont
la surface est celle du grand cercle de la sphère et dont
l'épaisseur infiniment petite est la longueur de l'aimant
élémentaire, tandis que le bras de levier est 4/s a.

Gomme on l'a dit plus haut, c'est le moment seul qu'on
peut mesurer et c'est pourquoi le produit pdl est la seule variable

existant réellement au point de vue expérimental, bien
que p et dl soient définis théoriquement h

IV. — Aimantation non uniforme par induction dans un
champ uniforme. — Le vecteur aimantation est dans ce cas,
comme on le sait, solénoïdal et il en résulte certaines
conséquences relativement à la détermination du centre absolu et
des centres secondaires et de la masse magnétique ou, ce
qui revient au même, du moment de rotation disponible.
Nous supposons connues les lignes d'aimantation, ainsi que
le potentiel intérieur total V, et nous considérons les filets
d'aimantation prolongés dans l'intérieur du corps entre les
surfaces terminales. En un point quelconque d'un filet, le
produit du vecteur par la section est constant, puisque le

1 Si l'on cherche à se rendre compte du processus qui, dans le cas plus simple du magnétisme

rémanent, transforme la somme des actions rotatives moléculaires en une action rotative,

sur un volume fini, c'est dans la composition des couples élémentaires que se trouve la
solution. En effet, deux molécules consécutives du filet d'aimantation tendent à tourner dans
le même sens et leur solidarité ne le permet pas. Une sorte de frottement intérieur magnétique

ne laisse subsister que les forces extrêmes en M et en N et le couple a pour bras de
levier MN. Une expérience, que je viens de réaliser au Laboratoire de Physique de l'Université

de Genève, doit être mentionnée ici — deux rangées de petites boussoles dont la cage a
\ 6min5 de diamètre, l'aiguille 13mm de long et dont les centres sont disposés suivant une
ligne droite, sont supportées horizontalement sur un disque de carton suspendu à un fil de
caoutchouc d'une force de torsion très faible. En premier lieu les boussoles sont en contact
de manière que chacune des deux rangées distantes l'une de l'autre de lcra occupe une
longueur de 16cm5. A ce degré de rapprochement les aiguilles sont solidaires et orientées
suivant la ligne des centres, si le champ extérieur ne dépasse pas une certaine limite. En
plaçant un barreau aimanté dans le voisinage du carton et dans son plan, symétriquement
par rapport au centre, le centre du barreau qui a 32cm de long se trouvant à 25cm du centre
du carton, les rangées s'orientent parallèlement au barreau et dans l'oscillation les aiguilles
restent dirigées suivant la ligne des centres consécutifs. — En second lieu, on supprime deux
boussoles dans chaque rangée et on les espace également, ce qui porte la distance de deux
centres consécutifs de 16mm5 à 20mm6. Cette augmentation suffit pour que les aiguilles cessent
d'être solidaires, que le carton ne s'oriente plus par rapport au barreau; dans les oscillations
du carton, chaque aiguille reste à chaque instant parallèle au barreau. 24 décembre 1909.

L'Enseignement mathém., 12« année; 1910. 8
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vecteur est solénoïdal et ce produit a pour expression en le

multipliant par k,
i dY J-kiâd°>

k étant le coefficient d'aimantation, da la section du filet,
et dl l'élément de longueur compté sur la ligne d'aimantation.

Par définition, l'aimantation est — k ~ et, d'autre part,
le moment magnétique est égal à l'aimantation multipliée
par le volume dadl ; donc ce produit est égal à ^ en sorte
que la masse magnétique est constante dans un même filet.
Le centre absolu d'un filet est donc le centre de gravité de
la ligne d'aimantation prise de son point d'entrée à son point
de sortie du volume aimanté. On déduit de cette propriété
que si le corps a un axe de symétrie parallèle au champ,
ce qui donne lieu à des lignes d'aimantation symétriques par
rapport à cet axe, le centre de gravité absolue sera sur cet
axe puisqu'il sera le centre de gravité du système de masses
dû à tous les centres des courbes qui sont elles-mêmes
symétriques et les deux centres seront également sur cet axe.
Si le corps a un plan de symétrie normal à son axe, le centre
absolu sera dans ce plan par la même raison. L'équation (8)

appliquée à un filet d'aimantation donne

/ da. dx
dl

/, rj di
da. dl

L'intégrale au numérateur s'obtient en remarquant que,
dVle produit der étant constant, on peut intégrer le facteur

dx ce qui donne
7 / X dV

~ k {*a ~ *a>) -Jï da

xa et xa, étant les valeurs de x correspondant aux extrémités

du filet, et d'autre part, le produit -4* da est égal à ^ ds

aux points xa et xa, dn étant la normale à la surface du volume
aimanté prise du dedans en dehors et ds l'élément de cette
surface. On retrouve ainsi la réduction connue de l'intégrale
de volume, relative au moment, à une intégrale de surface.
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On peut se proposer de calculer l'intégrale au dénominateur

de x[— x qui est la masse magnétique totale positive
ou négative. En intégrant par rapport au filet entre ses deux
extrémités, on aura, comme dans ce qui précède,

/ dY j // j \

— k — ds (la — la')
dn

la — la' étant la longueur du filet compris entre l'entrée et la

sortie du volume aimanté, expression qu'il faudra intégrer
par rapport à la surface totale du corps, et dans laquelle
la — la', est une fonction du point de la surface auquel se

rapporte l'élément de surface ds.
Dans le cas de la sphère on a, e étant l'angle du rayon vecteur

avec l'axe,
dY

— /• - — p cos 0 la — la' — R cos 0, ds — R2 sin 0 dû do
dn

et l'intégrale pour la demi-sphère est bien,

ï •

L. de la Rive (Genève).

PROBLÈMES RELATIFS
A LA PROJECTION AZIMUTALE ÉQUIVALENTE

DE LAMBERT 1

La projection azimutale équivalente de Lambert, imaginée
par ce dernier en 1772, trouve de plus en plus son emploi
lorsqu'on se propose de représenter des portions d'une
certaine étendue de la surface du globe terrestre2.

1 Les principaux résultats de ce travail ont fait l'objet d'une conférence de l'auteur, tenue le
10 octobre 1909, à la Société suisse des Professeurs de mathématiques.

2 Voir Encyklopädie der mathematischen Wissenschaften, Bd. VI, 1, A.
Lambert, Beiträge zum Gebrauche der Mathematik. III. Teil, p. 105, Berlin, 1772.
Brandenburger, Ueber Lamberts flächentreue Azimutalprojektion. (Vierteljahrsschrift der

naturforschenden Gesellschaft Zürich, Jahrg. 54, S. 436-44S, 1909.)
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