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92 G. COMBEBIAC

§ I.

Une relation d’égalité de l'espece définie plus haut est

alors exprimée par l'égalité des valeurs d’une fonction
numérique binaire et le probléme revient, par suite, a dé-
terminer les fonctions F(x,, «x,) de deux variables qui satis-
font aux deux conditions suivantes, équivalentes aux condi-
tions (a) et (b).

«')F(x,, x,) est une fonction croissante de x,, décrois-
sante de &, et prend toutes les valeurs comprises entre ses
valeurs extrémes lorsque 'une des variables décrit un seg-
ment :

') il exisle une relation entre les valeurs des trois expres-
sions F(x,, x,) , F(x,, x;) , Flxr,, x,).

En se bornant aux fonctions analytiques (ou, du moins,
dérivables), il est facile de déterminer la forme générale des
fonctions possédant la propriété (4).

Les expressions F(x,, x,), F(x,, x, et F(r,, r;) peuvent
en effet étre considérées comme trois fonctions de trois va-
riables indépendantes x,, x, et x; ; la condition pour qu'il
existe une relation entre ces trois fonctions est que leur dé-
terminant fonctionnel soit nul, ce qui s’écrit, en désignant
respectivement par I el F les fonctions dérivées de F par
rapport a ses deux arguments, |

F: (71, 22) F; (g, x5) F; (ary, x5} + F; (25, 23) F; (21, 23) F; (g, x5) = 0~
ou
- F2 ('%'1 ’ ‘1'3) 1] F2 ('2‘2 ] '1‘3) .
Fl(xuzﬁ) —— -+ F.z(xu?('z) 7 = 0.
F (21, 2 F (s, x5)

En égalant x; &4 une constante et posant

égalité précédente est une équation aux dérivées partielles
en r, et r, et sa solution générale est

i a = & [ fla — fla |
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Il est vraisemblable que ce résullat est indépendant de la
condition de dérivabilité, qui a été admise pour sa démons-
tration, et que les fonctions non dérivables ou méme dis-
continues satisfaisant a la condition (') doivent pouvoir se
mettre sous la forme précédente. Mais, pour satislaire aux
conditions (&), il est nécessaire que f(x) soit une fonction
croissante ou décroissante, toujours déterminée et prenant
toutes les valeurs de — o a 4 o (elle est, par suite, conti-
" nue). |

Il est évident d'ailleurs que toute fonction de F définit la
méme métrique, car elle définit la méme relation d’égalité
pour les segments. Parmi les fonctions définissant la méme
métrique, une jouit de propriétés particulieres, c’est

flas) — flas) 5

pour cette fonction la relation fondamentale prend la forme

flew — flad = [ flas — flaa | + [ ) — rlea |

Deux segments quelconques (x, , x,) et (x;, x,) donnent tou-
jours lieu & un nombre défini par I'expression

et qui est leur rapport dans la métrique considérée. Les rap-
ports des divers segments a un segment choisiarbitrairement
sous le nom d'unité sont dits les mesures de ces segments.

Observons enfin que rien n’empéche de prendre pour abs-
cisse f(x), de sorte qu'une fonction métrique pourra toujours
se mettre sous la forme x, — x,.

L’exposé précédent a été développé sur ’ensemble numé-
rique afin de simplifier les démonstrations et de pouvoir
s'appuyer sur des propriétés connues. Mais il est facile de se
rendre compte que les résultats, dans ce qu’ils ont d’essen-
tiel, peuvent étre établis au moyen de raisonnements direc-
tement -développés sur les continus, indépendamment de
toute application préalable de ces derniers sur Iensemble
numérique, et en faisant seulement intervenir, outre les pro-
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priétés générales des continus, les propriétés (@) et (b) de la
relation d’égalité qui définit une métrique. Il suffira de rap-
peler que la notion de rapport s’établit, par les procédés
classiques’, au moyen de ces deux propriétés des continus :
divisibilité d’'un segment quelconque en n segmenls égaux
entr'eux et existence, deux segments quelconques étant don-
nés, de multiples de I'un plus grands que l'autre (axiome
d’Archimede).

On sait que ces deux propriétés appartiennent aussi a l'en-
semble des nombres rationnels; cet ensemble admet, par
conséquent, des métriques ayant les mémes caractéres es-
sentiels. Des lors une remarque s’impose. Rien n’empéche
de substituer, dans toutes les applications des Mathémati-
ques, I’ensemble des nombres rationnels a I'ensemble des
nombres réels?. Il est évident que la précision que comporte
'expression mathématique n’en resterait pas moins illimitée,
seulement le rapport de deux segments serait toujours ra-
tionnel, les segments devenant tous, par hypothese, com-
mensurables entr'eux.

Il est clair que, dans la pratique, rien ne serait changé
dans la maniére d’opérer actuelle ; mais 'on peut conclure
de la que, contrairement 4 une idée courante, la notion de
nombre irrationnel n’est nullement inhérente a celle de me-
sure et qu'elle n’est nullement nécessaire aux applications
mathématiques ; cette notion appartient donc essentiellement
et exclusivement, — ainsi que le fail d’ailleurs observer M. F.
Krein dans son profond ouvrage : Anwendung der Differen-
tial- und Integralrechnung auf Geometrie, —au domaine des
Mathématiques exactes, c’est-a-dire a I'analyse numérique.

§ IT1.

On a vu qu’a toute mélrique est associée une opération sur
les segments ou plutot sur leurs grandeurs, qui peuvt étre
définie de la maniere suivante :

1 (f. R. BaRg, Lecons sur les Théories générales de UAnalyse, p. 33 a 39 ; Gauthier-Villars,
Paris, 1907. ]

3 11 suffit. pour cela, de convenir que tout segment est un ensemble dense et dénombrable ;
cette convention remplacerait simplement celle qui affirme Pexistence des éléments limites
et qui est spéciale aux continus. '
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