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POUR UNE THÉORIE DE LA MESURE

L'idée de mesure esta la base de toutes les applications des

Mathématiques. C'est à elle que l'on doit l'introduction du
nombre dans le domaine physique et, par conséquent, la
soumission, bien qu'encore incomplète, de ce domaine aux
Mathématiques. Elle est, ainsi que l'a fait observer un
biologiste doublé d'un clairvoyant psychologue, l'élément
primordial et indispensable de toute science1. Il est donc permis

de regretter la parcimonie avec laquelle quelques
considérations, d'ailleurs généralement dépourvues de précision,
lui sont consacrées dans les cours d'Arithmétique et de voir
là une lacune à combler.

En outre, la Géométrie métrique (la seule encore dont les

principes soient nettement établis) est, en définitive, l'étude
d'un système de mesure, de sorte que c'est aussi dans une
théorie générale de la mesure que la Géométrie (en sa substance

purement rationnelle) doit trouver son véritable
fondement.

On se propose, dans ce premier article, de rechercher
quels pourraient être les éléments essentiels d'une théorie
purement rationnelle de la mesure pour les continus à une
dimension.

SI.

On entend, en général, par grandeur, ce qui est susceptible
de mesure, c'est-à-dire susceptible de représentation

numérique, et l'on distingue deux sortes de grandeurs,
celles que l'on représente au moyen des nombres naturels
et celles que l'on représente au moyen du continu numérique.

1 F. Le Dantec, Science et conscience ; Paris, 1908.
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Pour les premières, le mécanisme de la représentation est
si simple et si naturel qu'il paraît inutile de s'y arrêter.

La question est loin d'être aussi facile pour les grandeurs
de la deuxième catégorie. Le continu numérique (ou
l'ensemble des nombres réels, nous faisons ici une confusion
sans conséquence), bien que dense, est composé d'éléments
distincts, tandis que Y individualité disparaît du domaine
physique justement lorsque l'on s'efforce d'y introduire la

précision. Les grandeurs physiques, pour pouvoir être
représentées numériquement, doivent donc subir une transformation,

toute conventionnelle d'ailleurs, qui en fait les êtres
purement rationnels que sont les ensembles applicables sur
le continu numérique. Le sont ces ensembles auxquels l'on
doit donner le nom de continus. La notion de ces ensembles
ordonnés, étant ainsi purement rationnelle, peut évidemment

être établie, en dehors de toute intuition expérimentale,

par des procédés purement logiques et, par suite, la

notion de mesure acquiert elle-même un caractère franchement

rationnel et prend place dans le domaine proprement
mathématique.

Puisqu'un continu, par définition, peut toujours être
supposé appliqué sur le continu numérique (ou l'ensemble des
nombres réels), il doit suffire de développer sur celui-ci la
notion de mesure. On peut pourtant donner à cette notion
une définition susceptible de s'appliquer à d'autres ensembles

ordonnés que les continus.
Supposons que l'on ait pu définir, pour les segments1 d'un

ensemble ordonné M, une « relation d'égalité2» satisfaisant
aux conditions suivantes :

a) Etant donné un segment (md, m2), il existe toujours, à

droite d'un élément quelconque, m'^de Vensemble, un et un seul

1 J'appelle segment d'un ensemble ordonné l'ensemble formé par les éléments compris entre
deux éléments déterminés et par ces deux éléments.

2 Définir, pour les éléments d'un ensemble, une «relation d'égalité», c'est répartir ces
éléments en ensembles s'excluant deux à deux, de sorte que chaque élément m n'est contenu que
dans un seul de ces ensembles partiels, que l'on peut, par conséquent, désigner par F (m) ; la
relation d'égalité entre deux éléments pourra alors s'exprimer sous la forme :

F (m) F {m')

où le signe exprime l'identité de deux ensembles et possède, par suite, toutes ses
propriétés habituelles.
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élément nP tel que les deux segments (m 1
m2) et (m(, né) soient

"<( égaux ».

b) Siles deuxgroupes ordonnés de trois éléments (m4, m2, m3),

(m(, m\ nig) sont tels que les segments (m4, m2) et (m(, rafi)

d'une part, (nu, 1113) et (m^ m[) d'autre part, sont égaux, il en

doit être de même des segments (m2, m3) et (nfi, 11V).

On dira alors que Ton a défini pour l'ensemble M (ou
mieux pour ses segments) un système de mesure.

On peut aussi individualiser ce qu'ont de commun les
segments égaux enlr'eux et en faire un « abstrait rationnel »,

auquel on peut donner le nom de grandeur. La proposition
(b) est alors équivalente à la suivante: «trois éléments mi,
77?2 et m3 étant donnés, la grandeur du segment [m,, /?/3) est
déterminée en fonction des grandeurs a et b des segments
(7724, 7??2) et (77?2, m3) ». On l'appelle somme des grandeurs a et
b et on la désigne par l'expression a -(- b ; sa définition
s'exprime alors par la formule

(«?i, 17?ai + (/j?a, ms) (77?!, m3)

d'où l'on déduit facilement la propriété suivante :

{a + h) + C a -f \b -f- c)

On peut généraliser les notions qui viennent d'etre
établies (y compris celle d'addition) en faisant abstraction de
l'idée d'ordre. Il est intéressant de remarquer qu'une relation

d'égalité satisfaisant à ce qui subsiste alors des conditions

(a) et (b) ne suffit pas pour ordonner l'ensemble M. On
en a un exemple dans la notion de vecteur en Géométrie,
qui détermine évidemment une telle relation pour les couples
de points de l'espace.

Pour développer en toute généralité une théorie de la
mesure pour les ensembles ordonnés à une dimension, il y
aurait lieu d'abord de déterminer ceux de ces ensembles qui
comportent des relations d'égalité satisfaisant aux conditions,
(a) et (b). On se bornera dans ce qui va suivre à déterminer
les systèmes de mesure ou métriques dont est susceptible
l'ensemble des nombres réels, pris comme type des continus

à une dimension.
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§11.

Une relation d'égalité de l'espèce définie plus haut est
alors exprimée par l'égalité des valeurs d'une fonction
numérique binaire et le problème revient, par suite, à

déterminer les fonctions F (xi, ,r2) "de deux variables qui satisfont

aux deux conditions suivantes, équivalentes aux conditions

(a) et (b).

a) F [x{, x<2) est une fonction croissante de x2, décroissante

de xt et prend toutes les valeurs comprises entre ses
valeurs extrêmes lorsque l'une des variables décrit un
segment ;

b') il existe une relation entre les valeurs des trois expressions

F (Xi, x^ F (xA x3) F (x2, x3).
En se bornant aux fonctions analytiques (ou, du moins,

dérivables), il est facile de déterminer la forme générale des
fonctions possédant la propriété (b1).

Les expressions F (xt x2) F (xl, x3) et F (,r2, x3) peuvent
en effet être considérées comme trois fonctions de trois
variables indépendantes œi, x2 et x3 ; la condition pour qu'il
existe une relation entre ces trois fonctions est que leur
déterminant fonctionnel soit nul, ce qui s'écrit, en désignant
respectivement par F^ et F^ les fonctions dérivées de F par
rapport à ses deux arguments,

U (xt, x2) U {x2, .Tg) (xt, xt\ -f (x2, x3) F^ (xt, x%) F[ (x± x3) Ö '

OU

f' (,Xi Xg) F2 (#*, ,r8)
F (#t, x2) —, f- F2 [x\ x2) — — 0

Fi(xi,xs) Ft {x2, x3)

En égalant.x3 à une constante et posant

K (x » *s)R dx — f(x)
X X3)

l'égalité précédente est une équation aux dérivées partielles
en x] et x2 et sa solution générale est

F [x±, x2) — <ï> |7W — •
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Il est vraisemblable que ce résultat est indépendant de la

condition de dérivabilité, qui a été admise pour sa démonstration,

et que les fonctions non dérivables ou même
discontinues satisfaisant à la condition (b') doivent pouvoir se

mettre sous la forme précédente. Mais, pour satisfaire aux
conditions (a'), il est nécessaire que f(x) soit une (onction
croissante ou décroissante, toujours déterminée et prenant
toutes les valeurs de — oo à + oo (elle est, par suite, continue).

Il est évident d'ailleurs que toute fonction de F définit la

même métrique, car elle définit la même relation d'égalité
pour les segments. Parmi les fonctions définissant la même

métrique, une jouit de propriétés particulières, c'est

f(oc%\ — f(.r±) ;

pour cette fonction la relation fondamentale prend la forme

f{a-s) — f(oct) |~f(art) — f{xt)J + JVfo) ~ /"(**«)] *

Deux segments quelconques (ä?j x2) et (xz, xA) donnent
toujours lieu à un nombre défini par l'expression

a — /'W — fi**)
61 ~ f{3T%) — f(Xt)

et qui est leur rapport dans la métrique considérée. Les
rapports des divers segments à un segment choisi arbitrairement
sous le nom à"unité sont dits les mesures de ces segments.

Observons enfin que rien n'empêche de prendre pour
abscisse/^), de sorte qu'une fonction métrique pourra toujours
se mettre sous la forme ,r2 — xi.

L'exposé précédent a été développé sur l'ensemble numérique

afin de simplifier les démonstrations et de pouvoir
s'appuyer sur des propriétés connues. Mais il est facile de se
rendre compte que les résultats, dans ce qu'ils ont d'essentiel,

peuvent être établis au moyen de raisonnements
directement développés sur les continus, indépendamment de
toute application préalable de ces derniers sur l'ensemble
numérique, et en faisant seulement intervenir, outre les pro-
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priétés générales des continus, les propriétés [a) et (b) de la
relation d'égalité qui définit une métrique. Il suffira de
rappeler que la notion de rapport s'établit, par les procédés
classiques1, au moyen de ces deux propriétés des continus :

divisibilité d'un segment quelconque en n segments égaux
entr'eux et existence, deux segments quelconques étant donnés,

de multiples de l'un plus grands que l'autre (axiome
d'Arehi mède).

On sait que ces deux propriétés appartiennent aussi à

l'ensemble des nombres rationnels; cet ensemble admet, par
conséquent, des métriques ayant les mêmes caractères
essentiels. Dès lors une remarque s'impose. Rien n'empêche
de substituer, dans toutes les applications des Mathématiques,

l'ensemble des nombres rationnels à l'ensemble des
nombres réels2. Il est évident que la précision que comporte
l'expression mathématique n'en resterait pas moins illimitée,
seulement le rapport de deux segments serait toujours
rationne), les segments devenant tous, par hypothèse, com-
mensurables entr'eux.

Il est clair que, dans la pratique, rien ne serait changé
dans la manière d'opérer actuelle ; mais l'on peut conclure
de là que, contrairement à une idée courante, la notion de
nombre irrationnel n'est nullement inhérente à celle de
mesure et qu'elle n'est nullement nécessaire aux applications
mathématiques ; cette notion appartient donc essentiellement
et exclusivement, — ainsi que le l'ait d'ailleurs observer M. F.
Klein dans son profond ouvrage : Anwendung der Differential-

und Integralrechnung auf Geometrie, — au domaine des

Mathématiques exactes, c'est-à-dire à l'analyse numérique.

§ HI.

On a vu qu'à toute métrique est associée une opération sur
les segments ou plutôt sur leurs grandeurs, qui peut être
définie de la manière suivante :

1 Cf. R. Baire, Leçons sur les Théories générales de l'Analyse, p. 33 à 39 ; Oauthier-Villars,
Paris, 1907.

3 Ii suffit, pour cela, de convenir que tout segment est un ensemble dense et dènombrable;
cette convention remplacerait simplement celle qui affirme l'existence des éléments limites
et qui est spéciale aux continus.
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La grandeur d'un segment formé par l'ensemble de deux

segments dont l'un a pour élément initial le dernier élément
de l'autre ne dépend évidemment que des grandeurs a et b

des segments composants ; on l'appellera somme de ces
grandeurs et on la désignera par a + b. L'opération binaire ainsi
définie pour les grandeurs peut être appelée « opération
d'addition ».

De deux segments ayant le même élément initial et ayant
des grandeurs différentes a et b si le premier contient le
second, on écrira a > b, la relation étant évidemment
indépendante de l'élément initial choisi. On définit ainsi une
relation d'ordre pour les grandeurs des segments.

En s'appuyant sur les propriétés (a) et (b) caractéristiques
des relations d'égalité métric|ues, on démontre facilement que
les opérations d'addition possèdent les propriétés suivantes :

/ (1) a *4" b — x a toujours une solution en x
(2) a+ b > a,
(3) si b y> a a -j- x — b a toujours une solution en x

\ D) (a H- b) -j- a — a -(- (b c)

On reconnaîtra sans difficulté que, si l'on a défini, pour les

segments avant une même origine, une opération binaire
possédant les propriétés (I), elle permettra de définir une
relation d'égalité métrique et, par suite, une métrique.

La propriété essentielle des opérations d'addition est Vas-
sociativité exprimée par la formule (4). Quant à la commuta-
tivité, qui n'est pas indispensable, l'on reconnaît facilement
qu'elle équivaut à la propriété supplémentaire des relations
d'égalité qui permettrait de substituer à la condition (b) la

proposition suivante : deux segments composés de parties
respectivement égales sont égaux ; cette propriété est évidente,
notamment, lorsqu'il est possible de diviser deux segments
quelconques en parties toutes égales entr'elles.

A toute métrique est associé un groupe de tranformations
que l'on peut définir de la manière suivante : m0 et mi étant
deux éléments fixes, à tout élément m de l'ensemble situé à

droite de m0 on peut faire correspondre un autre élément m'
tel que l'on ait :

(7??i 77?/) (/??0 77?)
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On détermine ainsi une application (au moins partielle) de

l'ensemble sur lui-même, c'est-à-dire une transformation.
Si l'élément est considéré comme un paramètre variable,
on obtient ainsi une série de transformations, et il est facile
de reconnaître que la proposition (b) exprime précisément la
condition pour que ces transformations forment un groupe,
c'est-à-dire pour que la transformation obtenue par l'application

successive de deux d'entre elles appartiennent aussi à

la série. Il est évident en outre que ces transformations
conservent la métrique, c'est-à-dire que les segments transformés

de deux segments égaux sont encore égaux.
En désignant par a la grandeur du segment (m0, //?/), qui

joue le rôle de paramètre, l'équation du groupe peut s'écrire :

(m0, né) — a -\- (mQ, m)

et, si b est le paramètre d'une transformation du groupe
faisant correspondre à l'élément m' un élément m", on aura :

(w?0, m") — b -J- (m0, né) — b a (m0 » m) •

Le paramètre de la transformation résultante est donc
b + a.

A la métrique est associé un autre groupe de transformations,

qui peut être défini par l'égalité :

(m ni') — a

où a est un segment qui détermine la transformation dans le

groupe. En appliquant ensuite la transformation

(né, m") — b

on obtient évidemment la transformation

(m m") — a -j- b

qui appartient bien à la série, ce qui prouve que celle-ci
constitue bien un groupe.

Lorsque l'opération d'addition afférente à la métrique est

commutative, les deux groupes se confondent; c'est le cas

pour les continus, pour lesquels l'équation du groupe prend
la forme :

f(x') — f(x) a
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On verrait enfin que I on peut aussi définir la métrique en
fonction de Fun des groupes de transformations qui lui sont
associés.

Une métrique peut donc êlre définie de trois manières
différentes, savoir : au moyen d'une relation d'égalité applicable

aux segments et pouvant être déterminée, dans le cas
des continus, par une fonction numérique de deux éléments,
au moyen d'une opération d'addition définie pour les
segments, enfin au moyen d'un groupe de transformations se

rapportant aux éléments mêmes de l'ensemble ordonné
primitif. Ces trois points de vue se complètent l'un l'autre et
les trois modes de définition peuvent trouver des applications

dans le domaine physique.
On examinera dans un prochain article de quelle manière

doit être généralisée la notion de mesure pour pouvoir
s'appliquer aux continus à plusieurs dimensions.

G. Combebiac (Montauban).

SUR LE MOMENT MAGNETIQUE
A PROPOS DES DEUX SIGNIFICATIONS DU TERME DE MOMENT DANS

LA MÉCANIQUE

ET SUR LES CENTRES DE GRAVITÉ MAGNÉTIQUES

L — Centre de gravité et équilibre d'un corps pesant tournant

autour d'un point fixe. — Rappelons que dans la théorie
des forces parallèles, on appelle moment d'une force par
rapport à un plan le produit de la force par la distance de son
point d'application au plan, et qu'on démontre que le
moment de la résultante est égal à la somme des moments des
composantes. Etant donnée une force de direction constante
et proportionnelle à l'élément de masse, telle que la pesanteur,

et un système d'axes rectangulaires dont l'origine est
choisie arbitrairement, on détermine la position du centre
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