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512 MELANGES ET CORRESPONDANCE

les cinq suivantes,
Py - (1‘13‘2 T XN T Py (.7’1‘7"3 - L) = .

et regarder les u, les x et les y comme des paramétres; on
a un systéeme de relations qui représente une ou plusieurs
variétés algébriques et, d’apres les recherches de L. Kro-
necker, chacune de celles-ci peut étre représentée par des
équations, en nombre égal ou inférieur a six, ne contenant
que les six variables homogenes p .

M. Stuyvaert (Gand).
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Sur une question élémentaire de maximum.

1. — Pour déterminer élémentairement le maximum de cer-
taines fonctions, on fait usage du théoreme :

A. Le produit de n nombres positifs, dont la somme est constante,
est maxinmium LORSQUE les nombres sont égaux entre eux.

Avec la démonstration ordinaire ou entend prouver que: si le
produit est maximum, les nombres ne peuvent pas étre non égaux.
Le mot LorsQuE du théoréme A exprime donc que: si le produit
est maximum, les facteurs sont égaux. Mais alors le théoréme A~
est faux. Que l'on consideére, par exemple, les produits

(6 — sin x) (2 + sinx) , (3 — a2 4 6x)(22 4+ 2* — 6x)
4 2)(2 + 2) (3 — 2)

a facteurs positifs (dans les intervalles0a 7, 3 — 2¢3 a3 +2V 3,
— 14 1,5) et de somme constante, qui passent par un maximum
pour

%y

x:g—, x=3 x — 5

sans que les facteurs soient égaux.

Le théoreme A doit étre énoncé exactement sous la forme sui-
vante : S/ n nombres positifs variables ont somme (s) constante, et
st en un point de leur champ de variation ils prennent nne méme
valeur (s:n), alors en ce point leur produit est maximum, comme
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cela résulte de la relation, bien connue,

n
U, + uy + .o,
Ugly | U, = .

n n

mais il n’est point permis de dire : si le produit est maximum, les
facteurs sont egau.x. »

Pour deux facteurs on a: S¢ deux nombres positifs variables ont
somme constante, alors leur produit est MAXIMUM Ol MINIMUM, selon
gue la valeur absolue de leur différence est MINIMUM Ot MAXIMUM,
¢’est une conséquence de 'identité

huyu, = (g + wg? — (ug — Bg

— Soit f( r) une fonction de x et a, b, ¢, m, n, p des cons-
tantes Voici un procédé élémentaire dont on falt usage (au moins
pour f(x) fonction linéaire de z) pour déterminer la valeur de x
qui rend maximum le produit

y= (a 4+ mf) (b 4+ nf)(c + pf)

~ Soient a, 8 des constantes positives telles que
(1) m—}—na—i—pﬁ:();

on dit alors, en appliquant le theoreme A, que ofy est maximum
(et y aussi) lorsque

(2) a + mf = a(b +”f):(3(0+pf) ;

d’apres (1) et (2), et pour b + nf, ¢ + pf non nuls, on obtient
I’'équation ’

3) m(b+nf) (e + pfl+ nle + pf) (a4 mf) + pla+ mf) (b + nf) =

qui détermine 'z qui rend maximum y.

Si f(x) est uneé fonction linéaire de ., le procédé que nous
venons d’indiquer, bien qu’établi sur le théoréeme faux A, donne
, . dy - ey . d
un résultat exact, car E%c est, quel que soit f'{z), le produit de jg
pour le premier membre de 1'égalité (3). Mais en général le pro-
cédé est faux, comme le montre, par exemple, le produit .

y = sin x(r + sin x)(r — sin x)
. . . . r
qui devient maximum pour sin & — 3 V3 (apphcatlon du procédé

précédent) si » << V3, et pour sin 2 = 1 sir > \/5
Lies questions élémentaires de maximum et minimum doivent
donc étre analysées encore dans leurs fondements.

C. Burati-Fortr (Turin)..
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