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SUR L'USAGE DES MATRICES
DANS L'ETUDE DES CONGRUENCES DE DROITES

Nous voudrions appeler l'attention sur certaines matrices
fonctionnelles introduites par M. L. Gopeauvx dans divers
articles dont on trouvera plus loin les titres et dont 'un a
paru dans I'Enseignement mathématiqgue. Les matrices en
question, et d’autres analogues, égalées a zéro, représentent
des congruences de droites; nous tdcherons de creuser un
peu leur étude. En méme temps les réflexions qu’elles sug-
gérent s’étendent a des sujets plus vastes, ce qui explique le
titre du présent travail. Toutefois nous ne pouvons guere que
signaler les questions apparentées; ce.que nous en dirons
ne sera donc ni bien profond, ni méme bien neuf. Si, malgré

_cela, les pages qui vont suivre présentent quelque intérét,

c'est, au moins en partie, un intérét pédagogique; voila
pourquol nous avons tenu a soumettre nos observations aux
lecteurs de I'Enseignement mathématique.

1. — Soient

Ay

e = by, + byay + byxg 4+ b2, =0

Il

a, x; + ayxy + azxy + a,x, =0,

b

les équations d’une droite en coordonnées homogénes. Si
les coeflicients @, et b, sont fonctions d’un paramétre, donc
liés & ce parametre par six équations homogénes a la fois
en a, et b,, ou liés & n paramétres par n 4 5 relations pa-
reilles, la droite engendre en général une surface réglée
dont ’équation résulte de I’élimination des coefficients et des
parameétres. Si les coefficients soni liés a n parameétres par
n + 4 équations, la droite engendre une congruence dont on
peut obtenir une représentation en ¢éliminant les coefficients

L’Enseignement mathém., 12¢ année ; 1910. . 34
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et n — 1 paramétres; la résultante contient encore un para-
meétre et représente oo! surfaces réglées engendrées par les
droites de la congruence. Enfin si les coeflicients dépendent
de trois parameétres, la droite engendre un complexe.

Pour représenter la droite, on peut d’ailleurs choisir deux
autres plans tels que da, + pb, =0, Va, + p'by = 0 et dis-
poser des rapports i:u. A’ : ', supposés distincts, de ma-
niere que ces plans passent, par exemple, chacun par un
point fixe ; cette simplification met en évidence le fait que la
droite dépend de quatre constantes; elle permet donc de ré-
duire, de deux unités, le nombre des relations dont il est
parlé ci-dessus; ce nombre se réduit davantage si quelques-
uns des coeflicients jouent le role de parametres. Dans le cas
général méme, ces relations en nombre réduit suflisent
quand leur structure est telle que, si elles sont satisfaites
par des coefficients a, et b,, elles le sont par a, 4 ub, et
Va,+ u'b,, quels que soient les rapports distincts 1 :p, 21y
nous verrons plus loin des exemples de telles relations.

2. — Revenons au cas général, mais ne considérons que
les congruences de droites et limitons-nous encore au cas
ou les coeflicients sont liés aux n paramétres par 4 + n équa-
tions entiéres et homogenes en a, et 6, .

L’ordre de la congruence s’obtient en regardant les x,
comme donnés et en résolvant le systeme des équations
ay, =0, b, =0, accompagnées des 4 4+ n conditions, par
rapport aux six rapports muluels des coeflicients @, et b,, et
aux n parametres. Par exemple, si les coeflicients sont fonc-
tions linéaires de deux parametres ¢, ¢, les équations de la
droite (ab) prennent la forme

!/ ” " ! " "
a, 4 ta, + t'a, =0 . b, +th, + t'b, =0 ;

la congruence, manifestement de premier ordre, est l'en-

semble des bisécantes de la cubique gauche,

TR e




CONGRUENCES DE DROITES 491

E. KumMer! a donné la classification des congruences de
premier ordre. On pourrait essayer de traiter celte question
en analysant la représentation indiquée ci-dessus. Gette mé-
thode serait probablement pénible, bien qu’il y ait moyen
peut-étre d’utiliser la remarque suivante. Les équations
a, =0, b, =0 dont les coeflicients sont, par exemple, des
fonclions entiéres de deux parametres, peuvent étre rem-
placées par I'évanouissement de la matrice || @, 0 || ; celle-
ci, & son tour, se remplace par

ou par

et I'on dispose de «, 5. y de maniere & diminuer, par sous-
traction de lignes ou de colonnes, les exposants affectant les
parametres; en conlinuant ainsi, de proche en proche, on
peut arriver a4 une matrice de [ lignes et / + 1 colonnes dont
les éléments d’une ligne ou de deux colonnes contiennent
les x au premier degré et dont les autres éléments sonl in-
dépendants des x, tandis que tous les coeflicients sont fone-
tions linéaires des deux parameétres ou indépendants de ces
parametres. '

La classe de la congruence s’obtient en considérant I’équa-
tion d’'un plan wu, avec les équations de la congruence; en

exprimant les conditions pour que ces relations soient satis-

faites par deux points x; enfin en résolvant, par rapport
at et !, les deux égalités exprimant ces conditions. Par
exemple la congruence des bisécantes.d’une cubique gauche,
signalée ci-dessus, a un rayon dans le plan «, quand on a

| a; + ta; + ta; by +tb; + ¢'b]  w|=0 (i=1,2,3,4)

et celte matrice s’annule en général pour {rois systéemes de
valeurs de t et ¢’ 2.

En se laissant guider par la discussion des congruences

1 4cadém. Berlin, 1866.
? On vérifie que cette classe se réduit a la 2me ou la 1re si la matrice précédente s’annule
identiquement pour un ou deux systémes de valeurs ¢, ¢, par exemple pour t =¢ =0, ou

pour ¢ = ' = 0 en méme temps que pour t = 0, # = o ; dans ces cas la cubique gauche dégé-
nere e¢n une droite et une conique ou en trois droites.
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linéaires de cubiques gauches?, discussion qui offre des ana-
logies avec celle que nous esquissons ici, on rencontre en-
core le type suivant

a, 4+ ta;c b, + tb'x Cp + tc;c
Tt T B H BTy -ty

qui représente une congruence linéaire de droites s’appuyant,
d'une part sur la cubique gauche

x x
14 ’ '

bx bx a B — 0
I4 ” 14

Cp Cx = B

Evidemment cette congruence est de troisieme classe, et
I'on obtient de méme une congruence de premier ordre et de
classe n en considérant une courbe gauche de degré n ren-
contrant n — 1 fois une droite et en menant les rayons qui
s’appuient sur cette courbe et sur cette droite.

Enfin le systéme trés simple 2, = a,, t'b, = b, repré-
sente les droites s’appuyant sur les deux directrices recti-
lignes (aa’), (bd"). "

3. — Parmi les maniéres de représenter une droite par
une matrice, remarquons la suivante

X; X3 X; X,
Xy Xy dq -.74 =0 ;
Yo 2 Ys X
cette notation fort usitée exprime que le point variable X est

aligné sur les points x et y. Si les coordonnées de ces
deux derniers points dépendent d’un, deux ou trois para-

1 Voir M. STUYVAERT, Cing études de Géométrie analytique, Gand, van Geethem, 1908, p. 103.
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meétres, on a respectivement une surface réglée, une con-
gruence, un complexe. Notamment si les quantités x et y
sont fonctions linéaires d’'un paramétre, on a une quadrique.
Si elles sont fonctions linéaires de deux parametres ¢, t', on
a une congruence du troisiéme ordre; cette congruence est
de premiére classe, car les points x et ¥ sont dans un plan
défini par trois points a, b, ¢ quand ils annulent la matrice
| @, b, c,x,y, | dont deux colonnes contiennent ¢, ¢ au pre-
mier degré, et cette matrice s’évanouit, en général, pour un
seul systéme de valeurs de ¢ et /. |

En passant signalons le cas ou «x et y se meuvent chacun
dans un plan : prenons ces plans pour faces du tétraédre de
référence et écrivons par exemple

X X N Ny
X1 a3 as 0 ||=0 .
0 7, 2 7

Supposons ensuite le systéme plan y,,7, rapporté au plan
X, X, %, par une transformation rationnelle,
R A e R e

en faisant la substitution, on obtient une matrice ou les rap-
ports mutuels de x,, x,, a4, jouent le role de paramétres.\
Elle représente une congruence; par des procédés d’énumé-
ration connus, on constate que cette congruence est d’ordre
n* + n + 1 et de classe n. Si la transformation est biration-
nelle, ses points fondamentaux aménent un abaissement de
I'ordre de n® —1 unités. On voit donc que la représentation

par matrices convient pour les cornigruences que T.-A. Hirst
appelle crémoniennes?..

4. — La représentation du n° précédent suggéere l'idée
que voici. De méme que les coeflicients de I’équation d'une
surface peuvent étre pris pour coordonnées de cette surface,

! Voir T.-A. Hirst, Proceedings of London mathem. soctety, t. XIV, XVI, XVII; et Rendiconti
d. circolo mat. Palermo, t.1; G. Borpiaa, Mém. in-4o de I’Acall. roy. de Belgique, 1909,
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de mméme la matrice || x, y, || peut jouer le vole du systéeme
des coordonnées de la droite xy. Le développement de cette
idée se poursuit de 'une des facons suivantes dont la pre-
miere n'est qu'un cas particulier de l'autre.

Ou bien I'on prend pour coordonnées de la droite les six
déterminants extraits de la matrice || x, y, || ; c'est alors le
systéeme couramment usité des coordonnées pluckériennes
homogeénes. Mais celte représentation coincide avec la repré-
sentation dualistique, d’ou résulte que tout complexe a son
ordre égal a sa classe; donc aussi deux équations en coor-
données pluckériennes représentent en général une con-
gruence dont 'ordre est égal a la classe.

Ou bien l'on considére une droite comme définie par deux
groupes de coordonnées cogrédientes et 'on représente les
syslemes de droites par des relations contenant ces deux
groupes de coordonnées; seulement la structure de ces rela-
tions doit étre telle que, si elles sont vérifiées par deux
points x et y, elles le soient aussi par tout couple de points
distincets Ax + wpy, Vx + p'y . Nous allons donner des
exemples de relations pareilles .

Les plus simples de ces exemples manquent d’intérét :
les notations

bx b a b c

représentent trop évidemment, la premiere le complexe spé-
cial des rayons s’appuyant sur la droite (ab), la seconde la
congruence des rayons issus du point (abc). Si les formes
sont ternaires, la premiére notalion représente, dans le plan,
le faisceau de rayons issus du point (@) ; la seconde ne repré-
sente généralement rien que le systeme illusoire x = y, car
si elle représentait une droite, celle-ci devrait contenir les
trois sommets du triangle (abc).
Voici un autre exemple : le déterminant

(i=1,2,3,4)

1 Voir J. NeEuBERG, MAaTHESIS, 1902, p. 224, Th. Revg, Journ. f. die reine u. angew. Math.,
t. 108, ainsi que les auteurs que nous citerons plus bas.
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s’annule, dans l'espace, pour un complexe quadratique; car,
pour y donné, on obtient une quadrique ayant y pour point
double, donc un cone. Dans le domaine ternaire, a tout point
y répond un couple de droites se croisant en ce point y;
donc 1'équation représente, dans le plan, les tangentes a
une conique.

Nous avons déja rencontré, dans des travaux antérieurs’,
des exemples de représentations pareilles. Le n® suivant sera
consacré a un exemple général, d'une certaine portée, qui a
déja fait 'objet de plusieurs articles de L. Gopeaux? et dont
nous avons parlé dans le préambule du présent travail.

5. — Utilisons, pour une forme d’ordre n a un nombre quel-
conque de variables x,, x,, ... et pourles formes polaires suc-
cessives d'un élément y,, 7,, ... les notations symboliques ha-

—1 n—2 2 n

bituelles ¢”, " a , a , ... a , et formons un tableau
z? “w Yy Te Ty v’

dont la premiere ligne comprend ces n 4 1 formes, tandis
que les lignes suivantes sont composées de la méme ma-

niére, chacune au moyen d'une forme &, ¢, ... analogue
a a_ . Nous obtenons, suivant le nombre des lignes, une

matrice carrée ou rectangulaire qui reste inaltérée quand on
remplace . ou y par Axr 4+ py, comme on le vérifie par sous-
traction de colonnes; cette matrice s’annule donc pour un
systéeme de droites, quel que soit le nombre de dimensions
de I'espace.

Soit d’abord le nombre m de lignes égal ou inférieur au
nombre n 4+ 1 de colonnes: cherchons l'intersection d’une

droite xy avec les hypersurfaces «, 0", ... ; nous aurons
évidemment
n.n-~1 n—1 ﬂ(?l -— 1) n—2 2 n—2 2 n o n
2 a" — a a — 2 « a ! —
z T 1 pa, 4, + 13 oty a4yt tpa, =0

et m — 1 relations semblables: chacune de ces équalions en
A p représente un groupe de n points sur la droite xy et,

! Bulletin Acad. roy. Belgique, mai 1907, pp. 475, 485, 532.
% Bulletin Acad. roy. Belgique, janvier 1907, Nouvelles' Annales de mathém., 1907 ; Mém. de la
Soc. des Sciences du Hainaut, 1908 ; Enseignement mathématique, mars 1909.
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pour que ces m groupes fassent partie d’'une méme involu-

m—2

tion I'' 7", il faut qu'il existe une méme relation linéaire entre

n

les coeflicients de ces m équations ou que la matrice définie
ci-dessus,

n n—1 n—2 2 n

a a

x x Yy x Yy Yy
—1 —2 .2

A A T S S

@€ X Y x Yy Yy

s'annule. Ainsi 'évanouissement de cette matrice repré-
sente 'ensemble des droites qui coupent les m hypersur-

. . . —9 "
faces suivant des groupes d’une involution 17" . Mais,

n
lorsque cette matrice est nulle, une des hypersurfaces du
systeme linéaire va) + ¢'6] + ... est coupée en n 4 1 points
par la droite xy; donc on a aussi I'ensemble des droites qui
se trouvent tout entiéres sur une des hypersurfaces de ce
systeme linéaire.

Ces interprétations ne sont pas applicables sans modifica-
tion quand le nombre m de lignes dépasse le nombre n 4 1
de colonnes, car alors les éléments des diverses colonnes
de la matrice nulle ont co—(*+1) relations linéaires, donc les
droites xy sont alors celles qui se trouvent tout entieres

sur o™=+ hypersurfaces du systéme Zva . De plus, chaque

déterminant a n 4+ 1 lignes extrait de la matrice montre que
les groupes de n points de rencontre d’une droite xry avec
n + 1 quelconques des m hypersurfaces sont des groupes

. . —1 :
d’une involution 1”7, donc tous ces m groupes font partie

d’une telle involution.

6. — Eclaircissons ce qui précede par quelques exemples.
Dans le plan, les formules

représentent (abstraction faile de la solution x=1y) les
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droites qui rencontrent deux coniques aux mémes points
(deux couples d’une- involution 1), c’est-a-dire les six droites
faisant partie de coniques dégénérées du faisceau @ + AL

Lorsque les formes sont quaternaires, la matrice s’annule
pour la congruence des droites qui coupent deux quadriques
aux mémes points, donc des bisécantes de leur courbe d’in-
tersection. On connait 'ordre et la classe de celte con-
gruence, mais voici, pour le calcul de ces nombres, une mé-
thode qui se préte a la généralisation *.

Si y est donné, la matrice, a une seule série de variables
VU1 , X, Xy, X, s'annule pour une courbe du second degré;
mais comme, d'aprés sa structure, elle s’annule pour un sys-
teme de droites, elle représente deux droites par y et la con-
gruence est du second ordre. Si x et y décrivent deux droites
sans point commun, les  sont fonctions linéaires d’'un para-
meétre p et les y d’un paramétre v, et, pour aucun systeme
de valeurs de u, v, les points x et ¥ ne coincident; on peut
supposer aussi que les points répondant a des valeurs infi-
nies de p et v ne sont pas sur un rayon de la congruence
étudiée ; alors, abolissant la premiére ou la derniére colonne
de Ja matrice, on a, en coordonnées cartésiennes u, v dans
un plan, deux quartiques ayant chacune un point simple a
I'infini sur un axe et un point triple a l'infini sur 'autre axe;
ces points absorbent six intersections étrangéres a la ques-
tion, et 'on doit encore défalquer les points (u, v) qui an-
nulent a la fois a,a, et b,0,, c'est-a-dire, dans le plan

des (u, v), les deux intersections a distance finie de deux

hyperboles a asymptotes paralléles. La congruence a donc
huit rayons qui s’appuient a la fois sur les deux supports
considérés; lorsque ceux-ci tendent vers deux droites d’un
méme plan, deux de ces rayons passent par les points com-
muns aux deux droites et les six autres sont dans le plan de
ces droites. La congruence est donc de sixiéme classe.

Si 'on suppose x, = 0, on voit que la matrice de formes
ternaires représente six droites dans un plan.

1 Cette méthode a été employée par L. GopEAUX pour n quelconque (Enseign. math., mars
1909), mais l'application est déparée par une faute d’impression.
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1. — Ici se présente une circonstance curieuse.

Lorsque I'on a une matrice rectangulaire de formes & une
seule série de variables, on peut la compléter par une ou
plusieurs lignes ou colonnes d’éléments nuls ou constanls
ou de formes de degré quelconque; pourvu que les déter-
minants exlraits de la nouvelle matrice soient des fonctions
homogeénes, celle-ci s’annule pour une figure inscrite ou cir-
conscrite a la figure primitive. Mais, si nous reprenons le
tableau de formes quaternaires

en le faisant plfébéder d’une ligne de formes, on n’obtient
un complexe circonscrit a la congruence représentée que si
le déterminant ainsi formé a la structure exigée pour la
représentation d’un systeme de droite, c’'est-a-dire s’il s’an-
nule pour tout couple de points distincts dx + py, X'x + p'y
chaque fois qu'il s’annule pour x et y. Or cela n'a lieu que
dans des cas particuliers, notamment quand la ligne ajoutée
est analogue aux lignes existantes, par exemple

Mais alors ce déterminant représente un complexe cu-
bique, lieu des droites coupant les quadriques d’un réseau
en des couples de points en involution et aussi lieu des
générations rectilignes de ces quadriques?®. Dans le plan, ce
déterminant s’annule pour les tangenites & une courbe de.
troisieme classe 3,

’ . . . 2 5 ’
1 Avec cette simplification, si c’en est une, que les notations ¢, - peuvent étre effeclives

et non symboliques.
2 Voir J.-C. KLUYVER, Nieuw Archief voor Wiskunde, 1892; D. MoNTEsANO, Mem. d. R. Acc .
Bologna, 1892. Si la base du réseau est une cubique gauche, on a les droites qui s’appuient, au

moins en un point, sur cette courbe.
; 2 2 2 ]
8 Voir SALMON-VAUCHEBRET, Sections coniques, 1884, p. 160. Comme a_, b , ¢ sont, en gé-
néral, les premiéres polaires de trois points relatives 4 une méme cubique, on retrouve la

steinérienne de cette cubique.
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Dans I'espace a trois dimensions, la matrice

2 2 2 2
a, bx Co da:
a,a b [)y Cy €y dx dy
2 2 2 2
a, bg/ ¢, dy

s'annule pour la congruence commune a deux complexes
cubiques obtenus en supprimant par exemple la troisiéme
ou la quatriéme colonne, d’ou il faut défalquer la congruence,
d’ordre 2 et classe 6, annulant la matrice des deux premiéres
Lolonnes reste donc une congruence C., d’ordre 7 et classe 3,
lieu des droites coupant quatre quadriques indépendantes,
ou les quadriques d'un systéme linéaire triplement infini en
des couples de points en involution; ou lieu des droites par
ou passent des faisceaux! de quadriques de ce systéme. Si
les quadriques considérées sont les premiéres polaires d'une
surface cubique, on a une congruence G, de droites liées a
cette surface et jouissant encore de cette propriété que les
plans polaires des points de chacune de ces droites forment
faisceau; les 27 droites de la surface cubique font partie de
cette congruence. R

Dans 'espace, une matrice analogue a celle qu'on vient
d’'écrire, mais a cinq ou six colonnes, représente une surface
réglée ou un nombre fini de rayons.

Dans le plan, la matrice, & quatre colonnes, écrite en der-
nier lieu, représente les trois droites qui, dans un systéme
linéaire de o* coniques, appartiennent chacune a une in-
finité de courbes dégénérées, ou qui coupent les courbes de
ce systéeme en des points en involution 2.

! La base de chaque faisceau se compléte par une cubique gauche.

2 On rencontre ces trois droites dans le probléme suivant. Sur une cubique plane générale,
les coniques par 4 points fixes de la courbe découpent une série de COuples de points dont les
cordes concourent sur la cubique et forment un faisceau projectif a celui des coniques; les
-conigues passant par ces couples de pomts et par 4 autres points fixes de la cubique, forment
un faisceau projectif au premier; mais deux faisceaux projectifs de coniques engendrent, en
gencral une courbe du 4me ordre. La question s¢ pose: quand deux faisceaux projectifs de
coniques donnent-ils une cubique et une droite? 11 faut que, sur une certaine droite, les deux
taisceaux decoupent la méme involution et, comme chaque faisceau est défini par 2 coniques,

on est ramené a chercher les droites qui coupent 4 coniques en des couples de points en
involution.

e —
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8. — Prenons maintenant, dans l'espace a trois dimen-
sions, la matrice a n lignes et n 4 1 colonnes,

n n—1 n—-2 2 n
a a a a a e a
x x Yy x Y Y

elle s’annule pour une congruence de droites. L’ordre s’ob-
tient en regardant y comme point fixe; alors la matrice
représente, en coordonnées x, une courbe gauche dont le
degré se détermine par des procédés connus’® et qui se dé-
compose en lignes droites; le nombre de celles-ci est Zp p, ,
ou p,, p, recoivent des valeurs, différentes entre elles, de
1 an, donc

n—1 n—1

Epipk’: ”EP + (”—1)217 + ...+ 2
, . 1

_nfln—1)  (n—17?(n—2) 22.1 1 .
=" - b = (1P 1)

1 . o1 .1
———§[n2+ (n—1p% + ... 417 :gnz(n + 1) — ﬁn(n + 1)(2n 4+ 1)

:ﬂ(n—— ynin + 1) (3n + 2) .

On trouve, comme dans l'exemple de n =2 traité plus
haut, le total de 'ordre et de la classe en faisant paPCOle‘ir
a x et y deux droites, d’abord sans point commun; x et y
sont alors exprimés linéairement en p et v, les éléments de
la matrice sont tous d’ordre n en u et v, et représentent,

: . : ! 1
dans un plan (1, vy) un nombre de points égal & n®. sn(n + 1);

mais chaque point a I'infini? des axes p, v est compté indu-
ment un certain nombre de fois; comme les colonnes de la
matrice contiennent p. aux degrés n, n — 1, ..., 1,0, le cal-
cul nécessaire pour trouver la multiplicité du point a P'infini
de I'un des axes est le méme que celui qui a [ait découvrir

1 M. STUYVAERT, Cing études de Géométrie analytique, Gand, Van Geethem, 1908, p. 10.

2 Dans ses articles et ses communications manuscrites, L. GoprAux évite les points a Iinfini
en rendant homogénes les paramétres u, y; ainsi on voit jpeut-&tre mieux les systéemes de
valeurs a défalquer.
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'ordre de la congruence; de méme pour I'axe des pu, donc

’ 1
lordre 4 la classe = n®. n—(lz—-;_—z — 2 >< l'ordre ,

d’ou la classe est égale a

4

%ng(n + 1) —%(n— Lin(n + 1) (31 + 2) :%n(n + 1) (24 n+2) .

Si la matrice a n -+ 1 lignes et colonnes, elle représente
un complexe d’ordre et de classe

1
Qn(n + 1) .

Si la matrice a n + 2 lignes et n + 1 colonnes, elle repré-
sente une congruence, intersection de deux complexes pa-
reils, d’ou il faut défalquer une congruence annulant une
matrice & n lignes, de sorte que la nouvelle congruence est
d’ordre
1, , 1 1
" (n 4+ 1) — ﬂ(n — Nn(n 4+ 1) (3n + 2) = 2—/;n(n + 1)(n+2)(3n 4 'l)

et de classe

(n—1Ynn+ 1)n+ 2) .

O =

%ng(n + 1 —%n(n TUE 2 =

Si la matrice a n 4 1 colonnes et n — 1 ou n + 3 lignes,
elle représente une surface réglée; 'ordre de cette surface
s’obtient par un calcul assez pénible, que nous réserverons
pour un travail ultérieur. Si elle a n—2 ou n 4 4 lignes,
elle représente un nombre fini de rayons.

Dans le plan, la matrice a n 4+ 1 colonnes et n lignes
représente un nombre de droites égal a

1
gn(n 4+ 1)(n* +n 4 2) ,
la matrice a n 4 1 colonnes et n 4 2 lignes en représente

(n—1Nnr+1)(n+ 2) .

Ot =

e e
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9. — Appliquons encore ceci a Pexemple n =3.

Les droites situées sur les surfaces cubiques d’un faisceau
forment une surface réglée, lieu des trisécantes de la
courbe ou du systéeme de courbes formant la base du fais-
ceaul.

Les droites situées sur les surfaces cubiques d’un réseau
forment une congruence d'ordre 11 et de classe 21. Les
droites situées sur les surfaces cubiques d’un systeme li-
néaire triplement infini forment un complexe du sixieme
ordre 2.

Si un systéme doublement ou triplement infini de surfaces
cubiques passe par une méme courbe gauche, les bisé-
cantes ou les unisécantes de cette courbe font respective-
ment partie de la congruence ou du complexe dont il vient
d’étre question, mais ces derniers peuvent contenir d’autres
droites. Par exemple, l'intersection de deux surfaces cu-
biques peut se décomposer en une conique et une courbe
du septieme ordre c; ®; cette derniére appartient a o? sur-
faces cubiques se coupant deux a deux suivant des coniques
dont les plans passent par un point fixe P de ¢,; la con-
gruence des droites de ces surfaces cubiques .est d’ordre 11
et de classe 21 et se compose de la congruence (d’ordre 10
et de classe 21) des bisécantes de ¢, et de la congruence
(d'ordre 1 et classe 0) des droites issues de P.

"Les droites situées chacune sur ! surfaces cubiques d’un
systeme quadruplement infini, ou, ce qui revient au méme,
les droites coupant les surfaces de ce systéme en des ternes
de points d'une involution I engendrent une congruence
d’ordre 25 et de classe 15.

Dans le plan, il y a 21 droites faisant partie de cubiques

1 J.-C. KLUuYVER (Kenmerkende getallen der algebraische ruimtekromme, Comptes rendus de
PAcad. des Sciences d’Amsterdam, 1889) et J. pe VRius (ibid., 1904, p. 264 ; 1905, p. 29) ont établi
que cette surface est d’ordre 42. o

2 Si le systéme de surfaces cubiques considéré est celui des premiéres polaires d’une sur-
face du 4me degré, on a un complexe sextique lié a cette surface biquadratique; chaque rayon
de ce complexe est décrit par un point dont le plan polaire enveloppe un cone de troisieme
classe.

3 Courbe indiquée par G.-H. HaLpuenN dans sa classification des courbes gauches algé-
briques (Journ. de UEcole polytechn., 1882, p, 164). étudiée par D. MoNTEsANO (Atti Accad.
Torino, 1892); voir aussi M. StuyvaerT, Cing études de Géométrie analytique, Gand, Van Gee-~
them, 1908, p. 44. '
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dégénérées d'un réseaun. Les droiles faisant partie de cu-
biques dégénérées d’'un systéeme linéaire triplement infini

enveloppent une courbe de sixiéme classe; c’est aussi l'en-

veloppe des droites qui coupent les cm;rbes du systéme en
des ternes de points d'une involution 1,; dans le cas ou le
systeme est celui des premiéres polaires d'une biquadra-
tique, c'est 'enveloppe des droites telles que les droites po-
laires de tous leurs points forment faisceau. Enfin, il v a
15 droites qui coupent les cubiques d’un systéme linéaire

. oo . . 2
quadruplement intini en des ternes d’une involution I; ou
qui appartiennent chacune a »! cubiques dégénérées.

10. — Si l'on opeére en coordonnées-plans wu; et si u,
= u, 2, + Uyxy + usx; + w2, — 0 est I'équation d’un point,
les quantités x,, x,, x;, x;, sont les coeflicients de celie
équation; de méme v,, y,, V5, y, sont les coefficients de
I’équation d'un autre point. Toute matrice ou tout détermi-
nant ayant la structure étudiée dans les pages précédentes
représente les droites satisfaisant aux équations

les coeflicients de ces équations étant liés par les relations
exprimées par I'évanouissement de la matrice (ou du déter-
minant). ‘

Corrélativement, toute matrice a deux séries de variables
quaternaires u; et ¢; et telle que, s'évanouissant pour deux
séries u et ¢, elle s’annule aussi pour Au + pv et V'u + p'o,
représente un systéme de droites, intersections des couples
de plans

ux:(). v, =0 ,

qui obéissent a la loi exprimée par I'évanouissement de la

matrice, et I'on est ramené a l'observation qui termine le
n° 1.

En soi la remarque actuelle n'a pas grande importance,
puisque c’est une simple application du principe de dualité ;
mais elle se préte a des extensions intéressantes. Car, si
Cly, Uy, .o Uy €L 0, 0y, .0, sont les coeflicients homogenes




504 M. STUYVAERT

des-équations de deux surfaces algébriques, des relations
entre u; et v; telles que, vérifiées pour u et ¢, elles le soient
pour Au + po et A'u + p'v, représentent des ensembles de
courbes gauches, bases de faisceaux de surfaces.

Par exemple, si x, y, z sont des coordonnées cartésiennes
rectangulaires, les relations

‘ug(x? 32 4 2 4w + wsy + waz 4 us =0,
ep(a? 4 v 4 ) 4 v 4 vy + oz s =0,

= 0

6, B.B, B,

représentent un ensemble quadruplement infini de cercles,
puisque le cercle dans I'espace dépend de six constantes et
que la matrice ci-dessus lui impose deux conditions.

11. — Si les coeflicients des équations u, =0, v, =0 de
deux plans sont liés par une seule équation algébrique en-
tiere, ' |

f(ulv Uy, Us, Ug, V1, V2, V5, va) = 0 \

telle que, vérifiée par u et ¢, elle le soit par Au + pv et
Nu+p'o ' — Vu=0), on a la représentation d’'un com-
plexe, comme nous ’avons fait observer plus haut.

La forme f est fonction des coefficients des quatre formes
linéaires binaires

u; X 4 viY (it =1, 2, 3, 4)

et s’annule, par hypothése, en méme temps que la méme
fonction des coefficients de ces quatre formes transformées
par la substitution linéaire

X A: )‘XI + )\,Yl % Y —— ‘lLXI + fL,Yj_ .

Or on sait qu’une telle fonction est un invariant, et tout
invariant d’'un systéme de formes binaires linéaires est une
somme de produits de déterminants formés par les coefli-
cients de ces formes prises deux a deux; donc f est une
fonction des coordonnées uw, v, — u, ¢, de la droite wy.

i e T
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- Ainsi quand il n’y a qu’une seule fonclion f, donnée peut-
étre sous forme de déterminant, on peut toujours I'exprimer
en fonction des coordonnées de la droite; on - sait comment
A. Clebsch a réalisé celte transformation, et I'on a une tra-
duction analytique du fait, géométriquement évident, qu'un
complexe a son ordre égal a sa classe. Au contraire, une
malrice rectangulaire (non carrée) n'est pas une quantité; il
ne peut étre question de la voir se transformer en elle-méme
multipliée par une puissance du déterminant de la substitu-
tion linéaire. L'intérél de la matrice examinée dans les pages
précédentes est précisément que les déterminants extraits
de cetle matrice ne possedent pas la propriété d’invariance.
Ils peuvent la posséder dans des cas parliculiers, notamment
quand tous les éléments de la malrice sont exprimés en coor-
données pluckériennes.

Par exemple, si une matrice a / lignes de formes en coor-
données p, comple £, {41, L+ 2 ou {4 3 colonnes, elle
représente, en. général, respectivement un complexe, une
congruence, une surface réglée, un nombre fini de rayons.
Si les éléments d'une ligne ou de deux colonnes sont li-
néaires en p,, , tandis que Jes autres éléments sont des cons-
lantes, la matrice a [ lignes et [ 4 1 colonnes représente
une congraence linéo-linéaire. Comme autre exemple, citons
la matrice a six éléments linéaires en p_, utilisée par E. Kum-
mer pour la congruence de troisieme ordre et classe et de
genre deux; nous avons consacré, a cette congruence, une
élude loute récente!. Mais toutes ces variélés ne sont que de
simples cas particuliers en comparaison des matrices a deux
séries de variables signalées dans le présent travail. Ces
derniéres ont, comme mode de représentalion, une portée
bien supérieure, de la méme facon que les variétés annulant
des matrices admetlent a leur tour, comme cas treés particu-
liers, les inlersections complétes de variétés vérifiant des
équations algébriques.

12. — Il ne resle qu'un pas a faire pour obtenir de nou-
velles matrices analogues a celles qui ont fait le sujet des

! M. STuYVA&ERT, Sur la congruence de droites de troisiéme ordre et classe de genre deux.
(Rend. d. Circolo mat., Palermo, t. XXX, pp. 239-264). '

L’Enseignement mathém., 12¢ anndée; 1910. 35
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pages précédentes. Nous venons de voir en effet que la no-
tion d'invariant, si on la définit par la propriété de se con-
server dans la substitution linéaire, ne s'étend pas aux ma-
trices. Mais les invariants ont encore d’autres caractéres;
par exemple un invariant égalé a zéro exprime une propriété
que ne trouble pas la subslitution linéaire, c’est-a-dire le
déplacement des repéres; et ceci peut se généraliser.

Imaginons donc qu’une droite d’un espace quelconque,
déterminée par deux de ses points .x et y, jouisse de cer-
taines propriétés indépendantes du choix de ces points. Si
celte circonslance s'exprime par un systeme d’équations dont
chacune, prise isolément, équivaut a une propriété pareille,
toutes ces relations se traduisent directement en coordon-
nées de droites, comme nous ’avons rappelé plus haut, et
ne donnent rien de neuf. Au contraire, les propriétés s’ex-
primant par |'évanouissement de malrices rectangulaires,
alors que les déterminants extraits de ces matrices ne s’an-
nulent pas pour des propriétés pareilles, peuvent conduire
a des résultats inédits. \

Précisons ceci sur un exemple. Considérons la forme bi-
naire &, et le second groupe polaire d’'un point variable
(X,, X,) relatif a celte forme, |

(1) X:aja; - 2X1X2a1a2asx + X:a:a; =0 .

Pour que tous ces ternes de points x forment une involu-
tion I, de troisieme ordre et de rang un, il faut que I'équa-
tion d’un terne arbilraire soit une combinaison linéaire des

équations de deux ternes fixes, donc qu’il existe une rela-
3 2 3 .
x " x?
et cette condition suflit, puisque 'on peut alors remplacer

I'une de ces trois formes par une combinaison linéaire des
deux autres. Ainsi donc, quand on a

tion linéaire identique enlre les formes a,ja,;, aau
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les seconds systémes polaires de tous les points du support
par rapport au groupe de cing points &}, sont les ternes d'une
involution I, et cette propriété est indépendante des repeéres'.

Supposons a présent que «. soit une forme quaternaire,
que a® = 0 représente donc la surface générale du cin-
quiéme ordre. La droite xy la rencontre en cinq points cor-
respondant aux racines de I'équation en £,

5 4 2 2 3 angd d 2 .4 4 55
a, + 5/cayax + 104 gy iy 4+ 104 Gy Uy -+ 54 @y Ay -+ A a, = 0.

Les conditions pour que ce groupe de cing poinls jouisse .

de la propriété signalée ci-dessus sonl indépendantes des
points x et y choisis sur la droite, et les relations qui ex-
priment ces conditions

5 4 3 2 2 3
Ay gl Uy, Ayl
4 3 2 2 S 4
(3) Ar@, apa, dy0, @ a, | = 0,
3 2 2 3 4 b
Apt, apa, ad a

représentent une congruence de droites.

13. — Il convient de généraliser 'exemple précédent. La
matrice (2), suivant qu'on l'envisage dans le sens des lignes
ou des colonnes, exprime, quand elle s’annule, que, pour la
forme binaire @’ , les ternes polaires des points du support
forment un systéme linéaire simplement infini; ou que les
équations des couples polaires des mémes points, au lieu de
pouvoir s’écrire au moyen de trois d'entre elles, sont des
combinaisons linéaires de deux d’enire elles seulement,

donc que ces couples forment un systeme linéaire snnple—.

ment infini ou une involution I 2.
Si la matrice (2) a tous ses premiers mineurs nuls, on

1 5il fallait éviter quelque ambiguité dans le développement d’un calcul, on remplacerait,
dans deux lignes de la matrice (2), les symboles @ par les symboles équivalents 5, c.
2 Dans ce cas, 3 points d’'un'méme terne ont toujours méme couple polaire et vice-versa. On

. s 5 A 7 ’ ’ LY » - .
sait aussi que @, peut étre ramené, en général, & une somme de 3 puissances cinqui¢mes,

done, par substitution linéaire, a la forme aoc + () x, + )\ &) + ﬁac ou ) ) , &, B sont




508 M. STUYVAERT

constate que l'on a aussi

5 4 3 8 g 3 4
i (ll alas alag Cll(l2 a1a2
‘ =0 ;
4 3 2 . 2 3 - 4 5
a-a a. a a. a a a a, ‘

i 2 1 2 1 2 1 2

ceci exprime que les qualernes polaires de tous les points

du support coincident entre eux, de méme que tous les
points polaires, ou encore que «’ représente cing points
confondus.

Si l'on part de la forme binaire @’ , on doit considérer la
condition pour que les cotiples polaires forment une involu-
tion, condition équivalente a I'égalité connue

4 3 2 2
(l1 aiaﬂ a1a2

as 2 2 3| 0
1a2 aLaz a1az -
2 2 3 4

aiaz 611612 a2

laquelle exprime aussi' que les quatre points a’ sont har-
. - . : ‘E
moniques; ou les conditions

4 3 2 2 3
s aa, aa, aa,

=0
3 2 2 3 4
aa, aa, aa, a,

qui se réalisent quand les quatre points @} sont confondus.

Lorsque Pon part de la forme 4’ ou a’ on rencontre une
seule malrice ou un déterminant qui s’annule quand les
points @’ ou &, sont confondus. ‘

différents de 0. Mais alors la matrice (2) devient, en soustrayant la 2¢ colonne, multipliée par
des constantes convenables, des 3 autres colonnes, ‘

.4

« 1kzoo
~8.2

0 Al) 0 0];
1 2
2.3

0 }1A20ﬁ

' ' 8.2
or un déterminant extrait de cette matrice se réduit a aﬁ).l )«2 et ne peut s’annuler tant que la
5 i : 5 5 P . . s Gt
forme a comprend 3 puissances cinquiemes distinctes. Par contre, si elle se rameéne a 2 puis-

5 5 . .
sances cinquiémes, ou é\,axl + @xz, tous les éléments de la 2¢ ligne sont nuls dans la ma-
5 § " by .
trice (2). Donc I’évanouissement de cette matrice exprime que a,, = 0 seramene a une equa-
tion bindme.
1 Voir SALMON-BAZIN, Algebre supérieure, p. 173.
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’ N ‘ L4 2 1
Plus généralement, si axp+

est une forme d’ordre impair,
la matrice | S

2p+1 2p p p+1
(l1 a1 a2 a a2
2p 2p—1 2 p—1 p+2
ai a2 1 2 al a:?.
pHL _p p pt ' 2p+1
(ll CZ2 al a2 . e . a2

s’annule quand les groupes polaires d'ordre p forment un

\ « s . T V. ‘ . « = ,p—1,
systéme linéaire p — 1 fois infini, donc une involution 1,53
en méme temps les groupes polaires d'ordre p 4 1 forment

. . P— N .
une involution Ip . De méme. en prolongeant vers la droite

par une nouvelle colonne formée suivant la méme loi et en
supprimant la derniére ligne, on a une matrice qui s’annule

quand les groupes polaires d’ordre p —1 ou p 4+ 2 forment des

p-—2
systemes p — 2 fois infinis, donc des mvolutlons@lﬁ_g oul,

On continue, de proche en proche, jusqu’a la matmce a

2 lignes et 2p 4+ 1 colonnes qui s’annule quand les 2p +1

2p+4-1

pomts a sont confondus.

On a des énoncés analogues pour la forme d’ ordre pair
qui donne un déterminant ou une matrice dans laquelle la
diftérence entre le nombre de lignes et de colonnes est pair.

Les propriétés exprimées par 'évanouissement de toutes
ces matrices sont invariantes?.

14. — Nous allons chercher 'ordre et la classe de la con-
gruence de droites a laquelle donne naissance la matrice a
p + 1 lignesetp —|— 2 ('olonnes de formes guaternaires en x

et v,

2p-1-1 P) 1
. r+ 2> 5 af ap+
x x Yy Xy
2 2p—1 2 -1 p4-2
a?ta ala a?” af +
x Yy x y x y
1
ap+ & o ap+1 a2p+1
x y xy y

1 On peut imaginer d’autres propriétés invariantes annulant des matrices, notamment sj
I’'on part de formes algébriques simultanées. Nous y reviendrons dans un travail ultérieur.

e At

e e e
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L’ordre u s'obtient en supposant les x constants et les y
variables, et en appliquant la formule générale! relative a
une malrice dont I'élément situé dans la ™ ligne et la k™e
colonne est de degré n; + ¢,

p = Zniny, + n* 4+ ZnZq 4 2¢:3qs .

Ici les quantités n sont égales a 0, 1, 2, ... p, et les quan-
tités ¢ a0,1,2, ... p+ 1, donc on a successivement

2q.q, = nn 4+ (p + (L + 2 + .. + p) = Snn, + %p(p + 12,
p=2inn, + ;P(P + 17 + %p(p + 12 + 1) + %p(p + 1% p +2);
mais on a vu plus haut (n° 8) |

znn, = 5171(10 —Lplp +1)8p + 2} ;
d’ott, aprés guelques calculs,
B = %pfp + 1%(p + 2) .

Pour avoir la somme y + v de l'ordre et de la classe, on
fait parcourir aux poinls x et y deux ponctuelles en ligne
droite, définies chacune par un paramétre A ou ), d’apres la
méthode du n° 8. Tous les éléments de la matrice a p 4+ 1
lignes et » + 2 colonnes sont d’ordre 2p 4+ 1 en 2 et A', et
la matrice s’annule pour

1
5P+ 1) (p + 2(2p + 17

systemes de valeurs, mais il faut défalquer les points a l'in-
fini des axes des 1 et des 1, et la multiplicité de chacun de
ces points a 'infini donne lieu a un calcul identique a celui
qui a fourni 'ordre g, donc '

-«

1 .
sy =5p+ 0P+ 20 + 17— 2,

1
v=5lp+1p+ 22 +17 =3,

- 1 Voir M. STUYVAERT, Cing études de Géométrie analytique, Gand, Van Geethem, 1908, p. 10.
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d’ou, en introduisant la valeur de u, aprés quelques calculs,
1 )
= 5(p + Hip+2)p*+p+1)

Pour p =1, c'est-a-dire pour la surface du troisiéme
ordre, on trouve v.==6, y=29; ces nombres sont l'ordre et
la classe de la congruence des droites qui touchent la sur-
face en trois points confondus, ou des tangentes inflexion-
nelies des sections planes.

Pour p =2, c'est-a-dire pour la surface du cinquieme
ordre, on a =236, v=42. Dans ce cas on a encore une
autre matrice a deux lignes el cinq colonnes qui s’annulent
pour un nombre fini de rayons.

Pour les surfaces d'ordre 2p, on a un (‘omplexe d’ordre
204+ (2p —2) + ... +2=p(p + 1) annulant un déterminant
et, dans le cas particulier de p =2, le complexe sextique
connu des rayons qui rencontrent la surface en quatre points
harmoniques. Il faut ensuite, mais cecl esl réservé pour un
travail ultérieur, étudier la surface réglée annulant une ma-
trice qui compte deux colonnes de plus que de lignes.

15. — On ne doit pas s’exagérer la portée des observations
qui précedent. Une matrice invariante, a4 deux séries de va-
riables x el y. s’annule pour un systéme de droites alors
que les déterminants exlraits de cetle matrice ne repré-
sentent pas des complexes: il faul en conclure seulement
qu’il est plus aisé d’étudier ce systémé de droites avec deux
séries de variables, mais non pas qu'il est impossible de
passer a une représenlation en coordonnées pluckériennes.
En d’aulres termes, ces congruences, ces surfaces réglées
n’échappent pas a la méthode générale consistant a regarder
les quantités p, ou x,y, —x,y, comme des coordonnées
homogénes d’un point d’une hyperquadrique dans l'espace
a cinq dimensions, et a étudier les variétés algébriques si-
tuées sur celle hyperquadrique. Car |'évanouissement d'une
matrice en . et y signifie que les ¢lémenls de ses n colonnes
vérilient une méme relation lnéaire dont les-eoefficients sont
par exemple py, uy, ... ; a4 ces n équations on peut joindre
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les cinq suivantes,
Py - (1‘13‘2 T XN T Py (.7’1‘7"3 - L) = .

et regarder les u, les x et les y comme des paramétres; on
a un systéeme de relations qui représente une ou plusieurs
variétés algébriques et, d’apres les recherches de L. Kro-
necker, chacune de celles-ci peut étre représentée par des
équations, en nombre égal ou inférieur a six, ne contenant
que les six variables homogenes p .

M. Stuyvaert (Gand).

MELANGES ET CORRESPONDANCE

Sur une question élémentaire de maximum.

1. — Pour déterminer élémentairement le maximum de cer-
taines fonctions, on fait usage du théoreme :

A. Le produit de n nombres positifs, dont la somme est constante,
est maxinmium LORSQUE les nombres sont égaux entre eux.

Avec la démonstration ordinaire ou entend prouver que: si le
produit est maximum, les nombres ne peuvent pas étre non égaux.
Le mot LorsQuE du théoréme A exprime donc que: si le produit
est maximum, les facteurs sont égaux. Mais alors le théoréme A~
est faux. Que l'on consideére, par exemple, les produits

(6 — sin x) (2 + sinx) , (3 — a2 4 6x)(22 4+ 2* — 6x)
4 2)(2 + 2) (3 — 2)

a facteurs positifs (dans les intervalles0a 7, 3 — 2¢3 a3 +2V 3,
— 14 1,5) et de somme constante, qui passent par un maximum
pour

%y

x:g—, x=3 x — 5

sans que les facteurs soient égaux.

Le théoreme A doit étre énoncé exactement sous la forme sui-
vante : S/ n nombres positifs variables ont somme (s) constante, et
st en un point de leur champ de variation ils prennent nne méme
valeur (s:n), alors en ce point leur produit est maximum, comme
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