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EXPOSITION ELEMENTAIRE
DE LA LOI DE RECIPROCITE DANS LA THEORIE
DES NOMBRES

1. Soit a déterminer le reste de la division de a™ par le

2
a=1,2,3,...p—1, p—2, p—3, ... on peut y arriver
directement!; la théorie qui va étre exposée permet d’y ar-
river généralement et de la maniére la plus simple.

2. Sir,r',r", ... désignent les restes de la division par b
des nombres a, a’,a", ... les deux produits rv'v" ... et aa’a”
divisés par b donnent le méme reste. |

3. On a:

(1) (@ + ¢ = o (mod c|

nombre premier p, m étant égal a 2 Pour les cas de

car (a + c)* — a* est divisible par (@ 4+ ¢) —a =c.

(2) (c — ar® = ~+ a* (mod ¢)

selon que % est pair ou impair.
4. b désignant un nombre impair premier avec a, et Euw
désignant la partie entiére du nombre non entier w; posons

fla, i)_E +F +E_._+ +Eﬁa, (p__’_1>

on aura :

(3) fi1, by =0
(%) f(a+b,b):<1+E%>+<2+h >_|_ -l—(ﬁ—l—Eﬁa)
=2 = - F fla, b) . (Tchébichef)

! Voir Ens. math., 1907, p. 28. On a encore un cas de ce genre, quand p est de la forme
k-*—l comme 3, 5, 17. 31, 37, 101, 127, 197, 257, ... ce cas est du reste aisé a traiter.

L’Enseignement mathém., 12¢ année; 1910. - 32




458 A. AUBRY

. . b .
5. Soit a < b les E~ premiers termes de f(a, b) sont tous

. ‘ P 2b'\ eme r .
nuls; les suivants, jusqu’au <E——> , sont tous égaux a 1;
a

3b\ eme , .

les suivants, jusqu’au <E > , tous égaux a 2; etc. (Gauss.)
a : -

En effet, on a:

kb

O<——h—<1 d’o FE b h <l <1+El{b>‘

donc les nombres 1, 2, 3, ... se trouvent respectivement
L b\ eme 2bH\ éme 3H\ eme . @
entre les <hg> , (E -a—)> , (E ;’) , ... termes de la série

a 2a 3a . . . L.
s g0 o oo el ceux qui les suivent immédiatement.

Les (El> premiers multiples de — sont ainsi < 1, et leur

partie entiére est 0. Les <E—&— — EZ) suivants ont des valeurs

comprises enire 1 et 2; leur partie entiére est donc 1. Les
By . .

(E——) — E— ) sulvants ont une valeur comprise entre 2 et 3;

leur partie entiére est donc 2. Et ainsi de suite.
b — 1

6. On a, en posanta:——, B =

(5) fla, b) + fib, a) = af . (Gauss)

D’apres 5, f(a, b) a pour valeur

o() +1(e% 1Y) 4 <E§_F2;>+3<E%-E3b>+...

a a

a— 3 a—10b — 3b ab
P ) ).

a

Le dernier groupe, au lieu d’aller du <E %)eme terme de

; a 4+ 1b\eme A - éme ) . )
fla , b) au (E 5 ;) , s’arréte au [, d’apres l'expres-
sion méme de f(a, b): or ce dernier terme fait partie du

groupe en question, car

—1b b—-i_E —|—_1é’
2 a
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et, en effet,

_1b _b—1 _b4+1 . b—a _a-+1b

B <Ny <5 FEg—=Em

a

(«) se réduit donc bien a (5).
7. TukorkME. p désignant un nombre premier égal a
2m. 4+ 1, el a, un nombre non divisible par p, on aura :

(6) Cd = (— 1)f(a’ P 1 ~ (Gauss)

Démonstration de Tchébichef. Posons

52

2n d
4rn:p—|-<1n-——p——2pEp><——1> .

2n - . . \
Selon que h? est pair ou impair, 7, prend 'une ou l'autre
des valeurs

DR =

toutes deux entiéres et comprises entre 0 etgz. De plus, on

peut écrire

On tire de la

. m
(7) TaToqT3q o Tmg =@ m ! (—

1)f(2a, p) i

On ne peut supposer r, =r,,, caril s’ensuivrait a(k = [) = 0,
ce qui est impossible, puisque % et { sont <% et que a est
premier avec p. Par conséquent, les facteurs du premier

membre de (7), qui sont d’ailleurs compris entre 0 et‘;—) , ne

! Pour abréger, on sous-entend I'indication (mod p), quand le module est le nombre premier
indéterminé p.

2 En effet, on a
2
0<_——E—'_‘<1 d’ou o<n-—£E2”<§,,
et -

2n 2n
01— FE <1, dou 0<§(1+E—2£-—-—n<—
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sont aulres que les nombres 1,2, 3, ... m, dans un certain
ordre, et (7) peut se simplifier ainsi:

(8) [ = am(_ 1)f(2(l, p) o am — (____ 1)f(2(‘, p) ’

ou encore, d'aprés (1), (8) et (4),

m pi—1
(9) amn = 2m<a —'2_ P) = 2’” (__ 1)f(a ~+ p; p) — 2m<_ 1) 8

+ f(a, p)

Pour a =1, on a, a cause de (3)

pP—1 pi—1
(10) 1=2"(—1) ° dou 2"=(—1 ,

et de la, la relation (6).
A titre d’application, soit a trouver le reste de la division
de 5% par 17; on a

5 10 40 .
Eﬁ—i—Eﬁ—k e Eﬁ_7 , nombre impair;

on a donc 5® = — 1(mod 17).
Cor. 1. On a donc toujours cette remarquable relation

(11) =41

[l

Désignons par le symbole de Legendre, e) , qui s’énonce ca-

ractére quadratique de a relativement a p, le reste de la
division de &™ par p; (11) s’écrira ainsi

()-=t

selon que le nombre f(a, p) est pair ou impair. Dans le pre-
mier cas, @ est un résidu de p, et dans le second, c’en est un
non-résidu.

Il. TutoreEME DE FErMaT. De (11) on tire, en élevant au
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carré, la relation suivante

T p—1
(12) & =10

III. La formule (10) montre que (;) a pour valeur 1 quand

p est de l'une des formes 8 &= 1, et — 1, quand il est de l'une
des formes 8 = 3.
IV. D'aprés (1), sia=b,on a: .

®=0)

V. D'aprés (11), si (i’) —1,ona (g) — <§> .
VI. D’aprés 2, on a:

()= O)-

I Les deux démonstrations suivantes figurent-elles parmi celles assez nombreuses qu’on a
données de ce célébre théoréme. A vrai dire, elles ne sont que des variantes de démonstra-
tions connues ?

1o a et b désignant deux entiers < p, formons le cycle de congruences ab = ¢, ac = d,
ad=e, .. ak=1!, al="5, qui se trouve en contenir un nombre n £ p — 1. Soit & un
nombre non compris dans la suite 4, ¢, d, ... k, {; on aura ces 7/ congruences abt/ =/, ac =d/,

caf'=g', ag' =¥, et les n’ nombres ¥, ¢/, ... g’ seront différents des n premiers, autre-
ment ils reproduiraient le premier cycle. ‘

Soit 4” un nombre non compris dans les n 4 n/ premiers, on aura ces n” nouvelles con-
gruences ab” = ¢, ... ad" =", ac” =¥

Continuant ainsi, on épuisera toute la série des p — 1 premiers entiers; et multipliant ces
congruences, on aura

! —
an-]—n —}—...Eap 151

; —1 - p—2 —3 — e —
20 Aucun des p produits ap R o b, o b3, ... asp? 3, ab? 2, bp ! n'est =0; il y
en a done au moins deux congrus entre eux. Soit

1 =k _ h—1+h p—k—h

s d’ou a =b

on voit qu’on peut toujours écrire

1, etdela az=5d (x,y et z<p)

Il

x—1 1—a
en posant a by+

= z. Il est donc permis de poser
az;, =1, az, =2, az,=3,.. azp___15p—1 ,

les nombres z,, z,, ... étant tous différents, ce qui donne, en multipliant,

M o—ni=p_1:

R —
e
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VII. Puisﬁue <g) = -+ 1, on peut écrire:
G)=G)G)="

Donc

o (=)

VIII. On a:

(16) p—1"==+1, ou (fi_;_“__'l>:if1,

selon que m est pair ou impair (2), c’est-a-dire selon que
p=4+1.
IX. On a-

0 ()= E0)-G)er

Ainsi

1 pP—1 (p—1) (p—3)
1___._..> — <1______.> (-) — (— 1) (— L 3
(18 = = 1 1 =

8. THEOREME. Désignant par p et  deux nombres premiers

. . . .ooop—1 g —1 .
impairs, et par m et n, les entiers —— et 5=, On a:
19 <f]_> (£> = (— )™ Legendre
(19) p)\g) == (Legendre)

C’est la conséquence de (5) et de (6), puisqu’on a:

: <1> = (——‘1)f(g’p) et <-B> = (— 1)f(P’ 9, (Gauss)
P 9 »

Ainsi le caractére de p par rapport a q est le méme que
celut de p par rapport a q, a moins que p et q ne soient tous
deux de la forme & — 1.

La formule (19) peut aussi s’écrire

(20) (1) iy e (%) (— 1)" p=41+1).
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“Cor. 1. On sait (voir Ens. math., 1907, p, 444, 7 et 228, VI)
- que si @" = 1, p divise 2 —ay*. Donc sip el q sont de la
forme & + 1 et que p divise x* + qy?, q divisera x* 4 py* En

effet, on a B

<:—q> =1, dou <:—B> =1, " (Legendre)
p q

I1. Sip estdelaforme4s—1 etq, de la forme & + 1; st en
outre p ne divise pas x* + qy* q divisera x® 4 pyZ. En effet,

on a.

<—_:_R> — —1, dou <—_——2> =1 . (Legendre)
4

II1. 1° Soit ¢ = 3; on aura, suivant que p =4 =+ 1, ce qui

dqnne (— 1)"1 — 41,
=)
p — \ 3

En outre, selon que p=—3 == 1, il viendra

=)= -=

On a ainsi 4 examiner les quatre combinaisons 12 4= 1 et
12 + 5. On trouve immédiatement

carr (=)=t =it ()=-(0)-
s (=)= rmims. (o (f)=r

Ainsi p =12 £ 1 est diviseur, et p =12 =+ 5 non diviseur
de 2% — 3y*%. On peut ajouter que p =12 4+ 1 et 12— 5 sont
diviseurs et p=12 45 et 12 — 1, non diviseurs de x%+4 3y2.

)
de 'une des formes 2041 ou 20+ 9; ou de 'une des sui-
vantes 20 =3, 20+ 7. De la ce théoréme: les nombres pre-
miers 20 == 1 ou 20 = 9 sont diviseurs, et les nombres pre-
miers 20 +=3 ou 20 &= 7, non diviseurs de % — by?; les

2° Soit ¢ =5; on aura (%)::(f): + 1, selon que p sera
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nombres premiers 20 4+ 1, 3, 7, 9 sont diviseurs et les
nombres 20— 9, —7, — 3, — 1, non diviseurs de x* 4 5y°.

. , 15
3° Soit encore le nombre composé 15, on aura (;}-)

— (;) <—j’3> . Combinant les deux formes 12+ 1 et 20+ 1, on

trouve les formes 60 + 1, 7, 11, 17, 43, 49, 53, 59, pour les
diviseurs de x* — 15y2.

' ; 20 5 22 ,

4° Soit enfin ¢ =—=20. On a: (;) = <;> <~l;> ; on est ramené

au cas de b, et en effet les diviseurs de 2% = 20y? doivent

étre cherchés dans ceux de x2 - 5(2y)?.
IV. 1° p étant & 4 1, tout diviseur impair a de u? 4 pv? ou

de x* 4 p fournit la relation <§> —= =41, selon que a =4 + 1.

En effet a est le produit d'une certaine quantité de facteurs
premiers « de forme 4 + 1 par un nombre pair ou impair de
facteurs 3 de forme 4—1. On a donc

()=t ()=t @)=t ()=

et de la

<f> =1 et <I—3> = —1, d’ou <f> =+1. (Legendre)
P P P

Alnsi r étant un résidu et p un non résidu de p, on prendra
comme diviseurs de x? 4 p, les nombres 4 + 1 qui sont en
méme temps =r, et les nombres 4§ — 1 qui sont en méme
temps = p,

Soit p — 13; les résidus étant 1, 3, 4, 9, 10, 12, et les non
résidus, 2, 5, 6, 7, 8, 11; on prendra d’une part 1,9, 17, 25,
29, 49, et d’autre part 7, 11, 15, 17, 19, 31, 47, ainsi que les
mémes nombres augmentés de 4. 13, puisque si n est de la
forme 4 +1, il en sera de méme de 4 + n. Par conséquent,
les diviseurs de u? 4+ 13¢% sont de 'une des formes suivantes

52 4 1, 7, 9, 14, 15, 17, 19, 25, 29, 31, 47, 49 .

2° p étant un nombre premier 4— 1, tout diviseur impair
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a , .
de u? 4 pv? donne <[;>: 1. Démonstration et usages ana-

logues (Legendre).

V. Tout nombre premier q compris dans les formes li-
néaires des diviseurs de x* + py? est nécessairement diviseur
de ceite forme, p étant 4 + 1. En effet on a:

<_q_>_—:+1 , selon que ¢ =4 +1
d’ou

<£> —+1. (Legendre)
q

Si p—=4—1, on a une conclusion analogue, mais il y a
deux cas & examiner®.

VI. L’exemple suivant, de Legendre, fera comprendre la
marche a suivre pour déterminer le caractére d’'un nombre
quelconque, si grand soit-il.

On a successivement:

601\  /1018\ _ 7103\ _ /601\ /86 /2 \/43\ /43
(i) = (oor) = an) = (1) = (53) = () () = (i)
(103 _ AN a8\ 9N 1\ _
()= -(0)= - ()=~ ()=~
Ainsi 1013 ne divise aucun nombre de la forme .r2 4 6012,

VII. Le nombre 3 est non résidu de p=2"4 1. En effet,
P+ 1=202""" + 1) est multiple de 3, d’ott p =3 — 1 et par

suite
3 1
(7)> _ (g) — (_3_> — 1. (Tchébichef)

VI p=2""__1— 24" — 1) 4+ 1 est de la forme 3 +1;

par suite
(5)=-()=- )=+

done 3 est non résidu de p (Ed. Lucas).

1 i s : \
Voir LEJEUNE-DIRICHLET, Werke, I, p. 202 et 226, plusieurs extensions de ces théorémes.
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IX. 3 est non résidu de p=—2"+ 1 (Ed. Lucas). En effet

o B=E=6-"

(Voir C. R., t. 87, un théoréme analogue du P. Pépin.)

9. Soit p=2a®+ b? un nombre premier 4y + 1 =2m 4 1,
a impair et b pair; a est résidu de p, et chacun des deux
nombres a = b lest ou ne l'est pas selon qu’il est 8 +=1 ou
8 + 3.

1° Soit « un facteur premier de a; p est résidu de «; on a
donc:

<E>:—:1, d’ou (—o-t>:1 et (E(—l):’l ou (2):1.
« 7 P P

2° Ona: 2p=(a+ b)®+ (a — b)®.. Soit g un facteur pre-

mier du nombre impair @ 4= 6. On peut écrire:

()= e =)« (=) =()=

selon que g est 8 =1 ou 8 &= 3. De la aisément
(a==b2—1
<“i_">:(_ b
P

Cor. On a: (a + 0)> = 2ab, d’'ou, en élevant a la puissance
p et posant f= —11, b = qf,

M:E ab
m 8 w+ Y

“rt = (Y =

21 = (a + b

et par suite
ab

9" = f_‘j,
comme Gauss l'avait autrement démontré. Ainsi 2 est résidu
biquadratique si 6 =238b": alors p = a® + 640'%, car dans ce
b . s
cas, %—): babd' et f* = 1 (Lejeune-Dirichlet). Reuschle a

donné de méme le caractére octiqgue de 2; et le lieut.-col.

1 Ce qui est toujours possible si p = 4 + 1. (Voir Ens. math., 1907, p. 29.)

ot e R AT TR ORI NE MP
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Cunningham; son caractére sextodécimique (voir le t. XXVII
des Proceed. of the London math. Soc., p. 85).

10. Soit p —a®+ 2b%, un nombre premier 8 + 1, b est ré-
sidu de p. Soient 2, B, B, ... les facteurs premiers de 0.
On a:

<—§> =1, dou <§> =1, et- comme <%> =1 , <;—;> =1.

Cor. Soient g les facteurs premiers 8 =1 du nombre im-
pair a, et h ses facteurs premiers 8 4= 3. De la relation

2p == 2a? + (20)2, on tire
2P\ — (*P\ — 1 .
(7)=(F) =1
2

et, comme (0) =1, <—2/;> — — 1, 1l vient

G-+ ==t @ Q-

Donc (g) — =+ 1, et par suite a est ou n’est pas réesidu selon

|

que les facteurs h sont en nombre pair ou impazir, c’est-a-dire
selon que a =8 =1 ou 8 &= 3.
Elevons & la puissance paire u, les deux membres de la

congruence a?= 2b% et remarquons que b” =1, on trouve
1 n . . , . ..
2" = a . Ainsi 2 et — 2 sont ou ne sont pas résidus biqua-

dratiques selon que a = =1, c’est-a-dire selon que a—38
4+ 1 ou 8 &= 3 (Gauss). '

Lejeune-Dirichlet, l'auteur de cette démonstration, en
donne plusieurs variantes et extensions, entre aulres ce
théoreme : q désignant un nombre premier & — 1, et p, un
nombre premier 4+ 1, st p=a?+4 qb?, q est résidu biqua-
dratique ou ne l'est pas selon que a est résidu ou non résidu
de q.

11. Gauss, qui a introduit les imaginaires dans la théorie
des nombres, leur a appliqué plusieurs des théorémes con-
nus relatifs aux nombres réels. On donnera seulement ici

T TR bR
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I'extension de la loi de réciprocité, avec la démonstration
de Lejeune-Dirichlet. ‘

On dit qu'un nombre complexe a + bi est premier quand
il n'a d’autres diviseurs que lui-méme et I'une des quatre
unités += 1, 4= ¢. De la les remarques suivantes dues a Gauss.

1° Tout nombre premier réel p—=4 — 1 est premier com-
plexe, car sil'on avait p — (a + bi)(c + di), on pourrait aussi
écrire p —= (@ — bi)(c — di), d'ou on tirerait, en multipliant,
pi=(a®+ 6% (c®* 4+ d*, ce qui est impossible, p ne pouvant
diviser une somme de deux carrés.

2° Le nombre réel 2 et les nombres premiers réels p=—==4
+ 1 sont composés au point de vue complexe, car on a:
2=(14+17)(1 — i), et d’autre part, on peut écrire:

p=a’+ b = (a 4 bi){a — b} .

3° Pour que a -+ bi soit premier, il faut et il suffit que
sa norme a%+ b? le soit, au point de vue réel. Supposons
que a + bi=(c + di)(e + fi); on aura de méme a — bi
— (¢ —di)(e — fi), d’our

a® + b? = (c? + d¥)(e? + [ -

Réciproquement, si a® 4 6% est un nombre composé, il en
est de méme de a + bi. Soit p = g%+ A% un des diviseurs
premiers de a® -+ 6% on aura:

a?=—b® et g*=—h*, douenmultipliant, (ag-+ bh)(ag—bh)=0 .

Or
plat 4+ b?) = (ag & bh)* + (ah TF bg)? .

De ces deux congruences, on conclut que l'un des deux
nombres ag &= bh est de la forme kp; et par suite, 'un des
deux autres ah == bg, de la forme [p. De la, en éliminant a
et 0, la relation

a -+ bi= (k4 li)(g + hi) .

12. 1° Disons par extension que a + bi est résidu ou non
résidu de p =4 — 1 selon qu’on peut ou qu’on ne peut écrire :
(x +yi)2 =a + bi; a4 bi est résidu ou non en méme temps
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que a® 4 b?%. Soit (xr + yi®=a + bi; on aura de méme
(x — yi)? = a — bi, et par suite,

(x2 +:y.2)2 = az + b2 .

D’un autre c6té, on peut toujours écrire’: g* + 1% + 1 = 0;
g? + h? est donc un non résidu puisque — 1 est non résidu
de p=4—1; etil en est de méme de g 4 /uZ, car autrement,
d’apres le premier cas, g + A? serait résidu.

Si a + bt est également un non résidu, le produit

(@ + bi)(g + hi) = (ag — bh) 4 (ak 4 bg)i
est résidu, ainsi que
(ag — bh)* + (ak + bg)? = (a® + U*) (F* + g7) ;

par conséquent, a? + b? est non résidu.
Ainsi 1 4+ 7 et 1 — 7 sont résidus ou non résidus en méme
temps que 2, c’est-a-dire selon que p =8 — 1 ou 8 4 3.
2° On peut toujours écrire x = (a 4+ bi) (mod A + Bi), les
nombres A et B étant premiers entre eux; car cette relation
revient a
x—a—bi=(y 4 zi)(A + Bz .

Or on peut poser By 4 Az = — b; y et z étant ainsi déter-
minés, on aura, pour la valeur de x, I'entier ¢ 4 Ay — Br.

3° On démonlrera, de la méme maniere que pour les
nombres réels, que le produit de deux résidus est un ré-
sidu, etce. ‘

4° Soit p = A* 4 4B® un nombre premier 4 + 1; on dira
que a 4 bz est ou n’est pas résidu de A 4 2Bz selon qu’on
peut ou qu'on ne peut trouver deux nombres y et z tels
que (y 4 z1)* = (@ + bz)(mod A + 2Bi).

Posons d’aprés 2° x =y + zi(mod A 4 2B7). La question
revient & découvrir les conditions de possibilité de la rela-
tion

() x? —a— bt = (A 4 2Byt + ui)

1 Voir Ens. math., 1907, p. 31 et 454.
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ou celle des suivantes

(B) x*=a 4+ At —2Bu, — b= Au + 2Bt ,
d’ou
(7) "Ax? — Aa — 2Bb = pt ,

ce qui montre que Aa + 2Bb est résidu de p, car A l'est lui-
méme (9).

Réciproquement si cette condition a lieu, @ 4 bi est résidu
de A + 2Bi. En effet il y a un résidu » = x? qui, multiplié
par le résidu Aa 4 2Bb, donne le résidu A; de la la rela-
tion (y) qu'on peut écrire

Ala + At — a?) + 2B(2Bt + b) =0 :

2B¢ 4+ b est donc de la forme — Au, ce qui donne (8) et de
la (a). |

Aiusi, p désignant un nombre premier A® -+ 4B? de forme
4+ 1, a4 bi est résidu ou non résidu de A 4 2Bi1 selon que
Aa + 2Bb l’est ou ne l’est pas de p. Autrement dit, on a:

a—+ bi\ _ [Aa 4 2Bb . -
(d) (m) == (———————P———> : (Le']eune—Dlrlc.hlet}

144\ _ /A4 2B\
<A+QBi>'_< P >
donc, & cause de 9, on peut dire que 1 ¢ est résidu on non
résidu de A 4 2B1 selon que A + 2B est 8 =1 ou 8 + 3.

5° Soit ¢ un nombre premier 4 —1 et p= A% 4 4B% un
nombre premier 4 4+ 1; on a, d’aprés 1° et 4°,

7)=6)=0)-
) =(7)= () G) = ()

A+ 2B\ p
( q >_(A+2Bi>'

Ainsi on a:

d’ou
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6° Soient p = A%+ 4B?, p = A'? 4 4B’?, deux nombres
premiers 44 1; on a: ' '
A+ 2Bi\ _ /AA’ & 4BB’ <A’ T 2]-3’1'>;__ (AA’ 4 4BB’>
(W)“( % ) A+42Bi) P
(AA’ 4 4BB’)? + (2AB” — 2BA’)? = pp’ .

. l . . . /
Si g est un des facteurs premiers du nombre impair AA
+ 4BB’, on a, d’apres ce qui précede:

’ o o ’ 4 ’ ! BB’
<£> — <£_> , d’ou <9> — <%> et <AA i 3B8 > = <AA +,4 > )
g 8 P P P P

d'ou cette généralisation, due a Gauss,

A+ 2Bi\ /A + 2B
A"+ 2B%) T \A +2Bi /"’
13. Il ne parait pas nécessaire de reproduire ici les ren-
seignements historiques donnés précédemment (E. M., 1909,

pp- 347, 432, 434, 440, 446) sur la loi de réciprocité. 1l suffira,

pour la présente note, — qui n'a d’autre ambition que celle
de fournir I'idée et la matiere d’un chapitre & un traité élé-
mentaire des nombres, — de la compléter par l'exposé de

trois des plus simples démonstrations qu’'on a données de
ce si remarquable théoréme : elles s’appuient toutes les trois
sur ce lemme de Gauss, démontré, £. M., 1907, p. 37:

p désignant un nombre premier, et a un entier inférieur

a p, appelons ¢(a, p) le nombre des restes supérieurs a 1—;— 0b-

tenus en divisant par p les m premiers multiples de a; on a :
o = [— 1)?((1"”) ou bien <g> = (— 1)?(a’p) .

1° Démonstration d’Eisenstein. Soient a et b deux entiers
impairs premiers enire eux; construisons un parallélo-
gramme sur ces deux nombres, menons la diagonale et tra-
cons le réseau correspondant aux divisions des cotés. Le

nombre des intersections de la 4*° ordonnée entre la base

. ha : . .
et la dlagonale est ET . Il ne se trouve aucune intersection
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sur la diagonale; on a donc:

E]%(—l -+ E(-b—:-l;/i—)a —a— 1, nombre pair,
et par suite
E% est de méme parité que E(—b—ri)—g)—(f
2a 2a
E—b— e e e E?f
L 3a ‘ (b — 2)a
T e E_—l)
Jha ba
(b —1)a (b= 1)a o,
ET . . " ¥ . . » h—QIT— (b — 4 + '1)

d’ou on déduit, en se rappelant la notation du n° 4, que
f(a, b) est de méme parité que f(2a, b). Or si on construit

B

A

/// E

< 5

yd |

P N @

// 5

= E

pa |

M Al

0 v
R e

le parallélogramme—;— , -g , on voit que f(a, b) et f(b, a) repré-

sentent respectivement les nombres des intersections com-
prises dans les triangles ONM, ONP. On conclut de la que

fla, b) + f(b, a) = af ,
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et que par suite f(2a, b) + f(20, a) est de méme parité que
‘of3, ce qui, rapproché de (8), fournit la démonstration de (20).

20 Démonstration de Voigt. Divisons par b les 3 premiers
multiples de a, et posons

ga < kb < (g 4+Na, ha<(k+1)b<(h+1)a;

celles de ces divisions donnant le quotient % correspoﬁdent
aux multiples (g 4+ e, (g4 2)a, ... (h—1)a, ha; et parmi

ces h — g divisions, celles qui fournissent des restes plus-

l . - ’
grands queé sont déterminés par la relation

b
(g -+ x)a"‘—'kb>'2‘ )
d’ou )

2k 1
(@) hE gt a>— 0,

elles sont donc au nombre de

: , 97 2 1 , _ —
Eli_i_lb———E/]—*—/lb:E + /)—‘B—E<1——-a s 1/)>.

a 2a a 2 2a

Mais le plus petit multiple de « qui, divisé par b, donne
. b - .
un quotient £ = «, et un reste > 5 » est supérieur, d’aprés
(@), &
2k + 1 ab b —1
(B) —3 [9:—-_—2—> 5 a = Ba ;

et le plus grand multiple de @ qui, divisé par b, donne

. l ;
un quotient k— oc——i_ avec un reste. > é , est, egalement

d’aprés («), au plus égal &

k41 k41 —1 b—1
/za::(E{——jl:——b>a<< _: b>a:(k+1)b:a2 b<)2 a=fa ,

si on suppose b > a.
D’aprés le lemme fondamental (£. M., 1907, p. 287), les
restes sont tous différents, et par suite on aura le nombre

’ . \ b . .
9(@, b) des restes supérieurs a ; en faisant successivement

k—0,1,2,3,... «— 1 dans (§) et additionnant.

L’Enseighement mathém., 12¢ année; 1910. 33
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Il vient ainsi, en groupant convenablement les résultats
pla, b) + of
b 1 b 1
—[E--E(-z—a>]+[E~h =l

i i)_E(-__“f1/;>]
2a
2b

= E— -}—EG——)—}-E—-—}-E-‘; 2_">

1 a—1
_J e . 2
Ly F<2 o b> (mod 2|

” [
(

4+ ...+ S

Or la valeur de E 2 = E(— — —) est 0 ou — 1 selon que le

reste de la d1v1310n de ¢ par a est 2% . En effet, soit ¢

c \
= aoa 4+ r, on aura E - = a, d’ou

h + E 1__>_h(a+__-a—-)_}'«:(——i)

Le dernier membre de (y) représente donc, au signe pres

le nombre ¢(b. @) des restes > provenant de la division

par a des « premiers multiples de b; d'ou

pla, b) + ¢(b, a) = aff . (mod 2)

(d)
Le reste de la division

3° Démonstration de Kronecker.
b . .
de ha par b est > 5 si on peut trouver un entier % tel qu'on

ait :
(w) ka<bk<ha.+g,
d’ou
A l
(ha — bk) (ha — bk + _Zi) < 0
(B)
on (ka—b/c)(ha+a+1 f,_"_")<0
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Tout autre entier mis & la place de & changerait le sens
de I'une des inégalilés («) et rendrait ainsi posilif le premier
membre de (3). D’aulre part, comme 2 =< (3, on a:

a—|—1 a—1

1’/‘“<b 1a+g<§2ﬁ—l—%‘d’oﬁ k< et k= 5 = -

. ; b .
Par conséquent, selon que ha fournit un reste S5, omna,a

cause de (f), en y remplacant successivement & par 1, 2,
3, ... a, et multipliant,

( (ha — b) (ha — 2b) .. (ha — ab (/za + ab — ab)

)
" Z (ha 4+ 2 — “") (ka + b — “”) >0 .

De la sorte, en changeant dans (7), hen 1,2,3,...08, et
multipliant, on pourra dire que le produit

(@ — b)...(a —ab)<a +a])_ﬁ{’> ( —{—l)—ﬁ£)>

X .

o (o a2 (1)

l .
est >O selon que le nombre o(a, 0) des restes > _é est pair ou

impair.
Changeons a en betben a; le nouveau plodmt sera > 0

selon que le nombre ¢ (b, a) des restes > =, obtenus en d1-

visant par @ les o premiers multiples de 0. sera pair ou im-
pair. Or la substitution indiquée ne modifie pas les facteurs
trindmes; les «f facteurs bindmes. seuis changent simple-
ment de signes: on a donc:

ola, b) = ¢(b, a)(— 1)aﬁ :

A. Ausry (Dijon).
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