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EXPOSITION ÉLÉMENTAIRE

DE LA LOI DE RÉCIPROCITÉ DANS LA THÉORIE

DES NOMBRES

1. Soit à déterminer le reste de la division de a"1 par le
p 1

nombre premier p, m étant égal à — Pour les cas de

a 1, 2, 3, p — 1, p — 2, p — 3, on peut y arriver
directement1; la théorie qui va être exposée permet d'y
arriver généralement et de la manière la plus simple.

2. Si r, r', r", désignent les restes de la division par b
des nombres a, a', a", les deux produits vd r" et aa'a"
divisés par b donnent le même reste.

3. On a :

(1) (a + c)k EE cik (mod c)

car (a -f- c)k — ak est divisible par (a + c) — a c.
De même

(2) (c — a\k — + cik (mod c)

selon que k est pair ou impair.
4. b désignant un nombre impair premier avec a, et Em

désignant la partie entière du nombre non entier m ; posons

««•*• i eî+4° + et + - + EÇ. (P=T)
on aura :

(3) fi1 b)0

(4) f(a + b b)+ Ei) + + + ^ + EÇ)
b2 — 1

— —g h f(a b) (Tchébichef)

1 Voir math., 1907, p. 28. On a encore un cas de ce genre, quand p est de la forme
ak ± 1, comme 3, 5, 17. 31, 37, 101, 127, 197, 257, ce cas est du reste aisé à traiter.

L'Enseignement mathém., 12e année; 1910.
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5. Soit a < b ; les premiers termes de f(a, b) sont tous

> 2b\©me •
s

nuls; les suivants, jusqu au [E—J sont tous égaux a 1;

les suivants, jusqu'au
m

tous égaux à 2; etc. (Gauss.)

En effet, on a :

/->
ti-t) kb a kb ^ ^ a kb

0 < E—<1 d'où -E — < k < J- 1 4- E —
a a h a b \ a

donc les nombres 1, 2, 3, se trouvent respectivement

entre les ^E^ e, |e^ e, termes de la série

F ' T ' T 1 et ceux (1'es suivent immédiatement.

Les ^E^-j premiers multiples de j sont ainsi < 1, et leur

partie entière est 0. Les (E — — E-) suivants ont des valeurs

comprises entre 1 et 2 ; leur partie entière est donc 1. Les

i(e^ — e") suivants ont une valeur comprise entre 2 et 3 ;

leur partie entière est donc 2. Et ainsi de suite.

6. On a, en posant a
a

2
1, ß

h

2

1

(5) f(a b) -f- f(b a) — a/3 (Gauss)

D'après 5, fia h) a pour valeur

O/'E—+ — — E —^ + 2^E — — E—V+S/'E — — E—+\ a J \ a a \ a a J \ a a J

Le dernier groupe, au lieu d'aller du ^E ^ terme de

n 7 \ (r-\ & ~f~ t ^ \ ème
À -oème i1 > iif(a,b)aiiih—|—-I s arrête au ß d apres 1 expression

même de f\a, b) : or ce dernier terme fait partie du

groupe en question, car

a — 1 b b — a -f- \b
E^~ä<—t-E_2~« •
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et, en effet,

a — 1 b ^ a — 1 b b — i b 1 b — a, a + 1 b
E—+E-l^- E~~â

(a) se réduit donc bien à (5).

1. Théorème, p désignant un nombre premier égal à

2m + 1, et a, un nombre non divisible par p, on aura :

(6) : am (— 1p]> 1 (Gauss)

Démonstration de Tchébichef. Posons
E —

P

^r,j —p + (4?î p 2pE ~ 1

i 'In

des valeurs

Selon que est pair ou impair, rn prend Tune ou l'autre

"—f Ey - + {(• + «?

toutes deux entières et comprises entre 0 et|-2. De plus, on

peut écrire
e2Ü

rn»(—

On tire de là

On ne peut supposer rka rla, car il s'ensuivrait a(k ± l) 0,

ce qui est impossible, puisque k et l sont < et que a est

premier avec p. Par conséquent, les facteurs du premier
membre de (7), qui sont d'ailleurs compris entre 0 et| ne

1 Pour abréger, on sous-entend l'indication (mod p), quand le module est le nombre premier
indéterminé p.

2 En effet, on a

0 < — — E — < 1 d'où 00P P % P 2
et

,<1-|+ï7<1' d'o£' °<|(1 + E7i)-" <| •
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soiït autres que les nombres 1, 2, 3, ms dans un certain
ordre, et (7) peut se simplifier ainsi :

(8) l 1 ou am (- l/(2a'p)

ou encore, d'après (1), (8) et (4),

m
(9) gm ___ omfa P

j 2rn (— i/[a + P: p) 2m(— 1)

Pour a — 1, on a, à cause de (3)

JP2 — 1 Pz — 1

(10) 1 E= 2 (— 1)
8

d'où 2m (— 1)
8

et de là, la relation (6).
A titre d'application, soit à trouver le reste de la division

de 58 par 17 ; on a

5 10 40
Et h E — -f- 4- E— — 7, nombre impair;

17 17 17 r

on a donc 58 — l(mod 17).
Cor. I. On a donc toujours cette remarquable relation

(11) am ± 1

Désignons par le symbole de Legendre, (^J qui s'énonce

caractère quadratique de a relativement à le reste de la

division de am parp ; (11) s'écrira ainsi

îW+1

selon que le nombre f\a, p) est pair ou impair. Dans le
premier cas, a est un résidu de /?, et dans le second, c'en est un
non-résidu.

II. Théorème de Fermât. De (11) on tire, en élevant au
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carré, la relation suivante

(12) a~X 1 1

III. La formule (10) montre que a pour valeur 1 quand

p est de Vune des formes 8 ± 1, et — 1, quand il est de l'une
des formes 8 Hz 3.

IV. D'après (1), si a 6, on a :

(13) î)=G

Y. D'après (11), si (~j 1, on a ^
ab

VI. D'après 2, on a :

abc ..\ fa\ (b
(14)

JPJ XPJ \P.

1 Les deux démonstrations suivantes figurent-elles parmi celles assez nombreuses qu'on a
données de ce célèbre théorème. A vrai dire, elles ne sont que des variantes de démonstrations

connues
1° a et b désignant deux entiers <^p, formons le cycle de congruences ab c, ac~d,

ad e. ak~l, al~b, qui se trouve en contenir un nombre n ^ p — 1. Soit b' un
nombre non compris dans la suite b, c, d, k, l; on aura ces 11' congruences ab' — c', ac' d',

af'=g', ag' b', et les n' nombres b', c... g' seront différents des n premiers, autrement

ils reproduiraient le premier cycle.
Soit b" un nombre non compris dans les n -f- n! premiers, on aura ces n" nouvelles

congruences ab" c", ad" e", ae" EE b".
Continuant ainsi, on épuisera toute la série des p — 1 premiers entiers ; et multipliant ces

congruences, on aura
ii4- n' 4- p — 1

a r ^ ay 1

2° Aucun des p produits aP \ aP 2
è, aP 3

£3, a2&^~3, abP~^, b^~~^ n'est 0; il y
en a donc au moins deux congrus entre eux. Soit

k—1 p—k h—1 -\-h7p—k—h h h,
a b a br d'où a b ;

on voit qu'on peut toujours écrire

a b $ 1 et de là az b (x,y et z<^p)

x—1 7 y+l—xen posant a b — z. Il est donc permis de poser

az±~ 1 az2~ 2 az^ 3 azp_x =p — 1

les nombres z%t z2, étant tous différents, ce qui donne, en multipliant,

aP~~X{p — 1) l~(p — 1)
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VII. Puisque (^j ± 1, on peut écrire :

Donc

(^0 (?)(?)•
VIII. On a :

(16) (p —1)'" ± 1 ou (p-p~j ± 1
>

selon que m est pair ou impair (2), c'est-à-dire selon que
p 4 ± 1.

IX. On a-:

(17) (P^) flLzT) (- 1)-

Ainsi
l2~l fr—1) (j>-3)

(fTi) (£7Li)G) |-,|"(-11 * =|-" *
'

8. Théorème. Désignant par p et q deux nombres premiers

impairs, et par m dn, les entiers p ~ 1
et ^

2

1

on a :

(19) (l) (£) (- l)m,i (Legendre)

C'est la conséquence de (5) et de (6), puisqu'on a :

î) (-1 fiq'P) et (- 1)^ (Gauss)

Ainsi le caractère de p par rapport à q est le même que
celui de p par rapport à q, à moins que p et q ne soient tous
deux de la forme 4 — 1.

La formulé (19) peut aussi s'écrire

(20) ±(£)(~uM
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Cor. I. On sait (voir Ens. math., 1907, p, 444, 7 et 228, VI)

que si am 1, pdivise x2— ay2.Donc si p q sont la

forme 4+1 etque p divisex2 + qy2, q divisera x2 + py2. En

effet, on a

(—ÙE= I d'où ^E) 1
• (Legendre)

Il. Sip est de la forme 4 — 1 et q, de la forme 4 + 1 ; si en

outre p ne divise pas x2 + qy2, q divisera x2 + py2. En effet,

on a : E^— — 1 d'où ^—2^=1'. (Legendre)

III. 1° Soit q3 ; on aura, suivant que 4 1, ce qui

donne (— 1)'" rb 1,

En outre, selon que /> 3 ± 1, il viendra

On a ainsi à examiner les quatre combinaisons 12 zh 1 et
12 zh 5. On trouve immédiatement

,=«*,. (i)=(fj=.. (!)=-(!)-
^=12+5 •(f)=(4)=~1 '='2-5 • G)=-(I)=-1

Ainsi p 12 zh 1 est diviseur, et /; 12 zh 5 non diviseur
de x2 — 3y2. On peut ajouter que p 12 + 1 et 12 — 5 sont
diviseurs et p 12 + 5 et 12 — 1, non diviseurs de x2 + 3y2.

2° Soit q 5; on aura (ç-\ zh 1, selon que p sera

de l'une des formes 20 ± 1 ou 20 zh 9; ou de l'une des
suivantes 20 ±3, 20 dz 7. De là ce théorème : les nombres
premiers 20 zh 1 ou 20 zh 9 sont diviseurs, et les nombres
premiers 20 =t 3 ou 20 ± 7 non diviseurs de x2 — 5y2 ; les
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nombres premiers 20 + 1, 3, 7, 9 sont diviseurs et les
nombres 20 — 9, —7, —3, —1, non diviseurs de x2 + 5y2.

3° Soit encore le nombre composé 15, on aura

Combinant les deux formes 12 ± 1 et 20 ± 1, on

trouve les formes 60 + C 7, 11, 17, 43, 49, 53, 59, pour les
diviseurs de x2 — 15y2.

4° Soit enfin q 20. On a : 0^ ; on est ramené

au cas de 5, et en effet les diviseurs de x2±20y2 doivent
être cherchés dans ceux de x2 ± 5(2y)2.

IV. 1° p étant 4 + 1, tout diviseur impair a de u2 + pv2 ou

de x2 + p fournit la relation Hz 1, selon que a =4 ± 1.

En effet a est le produit d'une certaine quantité de facteurs
premiers a de forme 4+1 par un nombre pair ou impair de
facteurs ß de forme 4 — 1. On a donc

(V)="" (?)='• ©='-(?)=-•
et de là

0) 1 et 0) ~1 ' doù 0) ~ 1 ' (Legendre)

Ainsi r étant un résidu et p un non résidu de />, on prendra
comme diviseurs de x2 + p, les nombres 4+1 qui sont en
même temps /\ et les nombres 4 — 1 qui sont en même
temps p,

Soit ^> 13; les résidus étant 1, 3, 4, 9, 10, 12, et les non
résidus, 2, 5, 6, 7, 8, 11 ; on prendra d'une part 1, 9, 17, 25,
29, 49, et d'autre part 7, 11, 15, 17, 19, 31, 47, ainsi que les
mêmes nombres augmentés de 4. 13, puisque si n est de la
forme 4 dL 1, il en sera de même de 4 + n. Par conséquent,
les diviseurs de u2 + 13c2 sont de l'une des formes suivantes

52 + 1, 7, 9, 11, 15, 17, 19, 25, 29, 31, 47, 49

2° p étant un nombre premier 4—1, tout diviseur impair
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de u2 + pv2 donne +=1 Démonstration et usages ana-

logues (Legendre).
V. Tout nombre premier q compris dans les formes

linéaires des diviseurs de x2 + py2 e$t nécessairement diviseur
de cette forme, p étant 4 + 1. En effet on a :

1 selon que g — 4 + 1

d'où

(£ J =: + 1 (Legendre)w
Si p 4—1, on a une conclusion analogue, mais il y a

deux cas à examiner1.
VI. L'exemple suivant, de Legendre, fera comprendre la

marche à suivre pour déterminer le caractère d'un nombre
quelconque, si grand soit-il.

On a successivement :

/ 601 \ _ /1013\ _ /103\ _ /601 \ _ /86_\ _ /J_\ / 43 \ _ / 43 \
\1013 \6ÔÏ — V1Ö3 ~ \ÏÔ3 — \ÏÔ3 ^103/ ~ ^103/

Ainsi 1013 ne divise aucun nombre de la forme x2 + 601y2.
YII. Le nombre 3 est non résidu de p 2*n + 1. En effet,

p + 1 2(22>l~1 + 1) est multiple de 3, d'où p 3 — 1 et- par
suite

S) (f) (~r) _ 1 • (Tchébichef)

VIII. p — 24?i+1— 1 2(4"— 1) + 1 est de la forme 3 + 1 ;

par suite

donc 3 est non résidu de p (Ed. Lucas).

1 Voir Lejeune-Diriciilet, Werke, I, p. 202 et 226, plusieurs extensions de ces théorèmes,
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IX. 3 est non résidu de p 2lL + 1 (Ed. Lucas). En effet
on a :

(Voir C. /?., t. 87, un théorème analogue du P. Pépin.)
9. Soit p a2 + h2 un nombre premier kg + 1 2m + 1

a impair et b pair; a est résidu de p, et chacun des deux
nombres a ± b l'est ou ne Vest pas selon qu'il est 8 ± 1 ou

8± 3.
1° Soit oc un facteur premier de a ; p est résidu de oc ; on a

donc :

(?)=' G)=i '• (7)=' °» ©=i-
2° On a : 2p= (a + b)2 4- (a — b)2. Soit g un facteur

premier du nombre impair a ± b. On peut écrire :

(?)=* (?)=© - ®=©=©=*•
selon que g est 8 ± 1 ou 8 ± 3. De là aisément

(azt b)2—1

Cor. On a : (a -f- b)2 d'où, en élevant à la puissance
g et posant f —1 b b a/1,

2<y (a + 6)" iP)
8

et par suite
ab

V. V2' /

comme Gauss l'avait autrement démontré. Ainsi 2 est résidu
biquadratique si b — 8bf : alors p a2 + 64è'2, car dans ce

cas, ~ 4ab' et /4 1 (Lejeune-Dirichlet). Reuschle a

donné de même le caractère octique de 2; et le lieut.-col.

1 Ce qui est toujours possible si p 4 + 1. (Voir Ens. math., 1907, p. 29.)
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Cunningham, son caractère sextodécimique (voir le t. XXVII
des Proceed, of the London math. Soc., p. 85).

10. Soit p a2 + 2b2, un nombre premier 8 + 1, b est

résidu de p. Soient 2, fi,ß',...les facteurs premiers de b.

On a :

î)=l, (i""" \PJ'•7 \pJ \p.
E\ 1 d'où (j+1, et comme *) l (^)=1

Cor. Soient g les facteurs premiers 8 ± 1 du nombre
impair a, et h ses facteurs premiers 8 ± 3 De la relation
2p — 2a2 + {2b)2, on tire

¥)=(¥)="

et, comme + 1, +- — 1, il vient

©=• ©=-*
Donc ^0 'Hh 1, et par suite a est ou n'est pas résidu selon

que les facteurs h sont en nombre pair ou impair, c'est-à-dire
selon que a 8 ± 1 ou 8 =L 3.

Elevons à la puissance paire p, les deux membres de la

congruence a2 2b2 et remarquons que bm 1, on trouve
2^ a"1. Ainsi 2 et — 2 sont ou ne sont pas résidus biqua-
dratiques selon que amE + l, c'est-à-dire selon que a 8

z±z i ou 8 dz 3 (Gauss).
Lejeune-Dirichlet, Fauteur de cette démonstration, en

donne plusieurs variantes et extensions, entre autres ce
théorème: q désignant un nombre premier 4—1, et p, un
nombre premier 4 + 1, si p a2 + qb2, q est résidu biqua-
dratique ou ne Vest pas selon que a est résidu ou non résidu
de q.

11. Gauss, qui a introduit les imaginaires dans la théorie
des nombres, leur a appliqué plusieurs des théorèmes connus

relatifs aux nombres réels. On donnera seulement ici
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l'extension de la loi de réciprocité, avec la démonstration
de Lejeune-Dirichlet.

On dit qu'un nombre complexe a + bi est premier quand
il n'a d'autres diviseurs que lui-même et l'une des quatre
unités zh 1, =b i. De là les remarques suivantes dues à Gauss.

1° Tout nombre premier réel p 4 — 1 est premier
complexe, car si l'on avait p [a + bi)(c + di), on pourrait aussi
écrire p (a— bi) (c— di), d'où on tirerait, en multipliant,
p* — (a2 + b2) (c2 -f d2), ce qui est impossible,/? ne pouvant
diviser une somme de deux carrés.

2° Le nombre réel 2 et les nombres premiers réels p 4

4- 1 sont composés au point cle vue complexe, car on a :

2 (i + i)ifi — i), et d'autre part, on peut écrire :

p — a2 -|- h2 z=: (a —J- bi) (a — bi)

3° Pour que a + bi soit premier, il faut et il suffit que
sa norme a2 -f- b2 le soit, au point cle vue réel. Supposons
que a + bi (c + di)(e -f fi) ; on aura de même a — bi

(c — di) (e — fi), d'où

rt2 + b2 =: (c2 + d2) (e2 4- f2)

Piéciproquement, si a2 + b2 est un nombre composé, il en
est de même de a -f- bi. Soit p g2h2 un des diviseurs
premiers de a2 4- b2, on aura :

a2 E= — b2 et g2 EE — h2 d'où en multipliant, (ag 4- bh) (ag — bh) 0

Or
p[a2 4- b2) =r (ag ± bh)2 -f- (ah + bg)2

De ces^ deux congruences, on conclut que l'un des deux
nombres ag do bh est de la forme kp ; et par suite, l'un des

deux autres ah =*= bg, de la forme Ip. De là, en éliminant a
et b, la relation

a 4- bi — (k 4- H) ig + bi)

12. 1° Disons par extension que a 4- bi est résidu ou non
résidu de p 4 — 1 selon qu'on peut ou qu'on ne peut écrire :

(x 4- yi)2 a + bi ; a 4- bi est résidu ou non en même temps
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que a2 + b2. Soit (x + yi)2 a-\-bi\ on aura de même

(x — yîf a — bi, et par suite,

(,x2 + y2)2 EE a2 -f- b2

D'un autre côté, on peut toujours écrire1 : g2 + h2 -(- 1 0 ;

g2 + h2 est donc un non résidu puisque —1 est non résidu
de p 4 — 1 ; et il en est de même de g + hi, car autrement,
d'après le premier cas, g2 + h2 serait résidu.

Si ci + bi est également un non résidu, le produit

(a + bi) (g + hi) (ag —. M) + (ah + bg)i

est résidu, ainsi que

(ag - bhf + (ah + bgf (a2 + />2) (F + ^2) ;

par conséquent, a2 + b2 est non résidu.
Ainsi 1 + i et 1 — i sont résidus ou non résidus en même

temps que 2, c'est-à-dire selon que p 8 — 1 ou 8 + 3.
2° On peut toujours écrire x (a + bi) (mod A + Bi), les

nombres A et B étant premiers entre eux; car cette relation
revient à

x — a — bi =z (y -|- zi) (A -J- Bq

Or on peut poser By + Az — b ; y et z étant ainsi
déterminés, on aura, pour la valeur de .r, l'entier a + Ay — Br

3° On démontrera, de la même manière que pour les
nombres réels, que le produit de deux résidus est un
résidu, etc.

4° Soit p A2 + 4B2 un nombre premier 4 + i ; on dira
que a + bi est ou n'est pas résidu de A + 2Bi selon qu'on
peut ou qu'on ne peut trouver deux nombres y et z tels
que (y + zi)2 (a + bi) (mod A + 2Bi).

Posons d'après 2° x y + zi (mod A + 2B^'). La question
revient à découvrir les conditions de possibilité de la relation

(a) x2 — a — bi — (A + 2Bi) (t -f ui)

1 Voîr Ens. math., 1907, p. 31 et 454.
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ou celle des suivantes

iß) x1 — a At — 2Bu — b — Au -j- 2B£

d'où

(y)
v

Ax2 — A a — 2B b — pt

ce qui montre que Aa + 2Bè est résidu de /?, car A l'est lui-
même (9).

Réciproquement si cette condition a lieu, a + bi est résidu
de A + 2Bi. En effet il y a un résidu r .x2 qui, multiplié
par le résidu Act + 2Bè, donne le résidu A; de là la relation

(y) qu'on peut écrire

A (a + A t — x2) + 2B(2B* + b) 0 :

2Bt + b est donc de la forme — Au, ce qui donne (ß) et de

là (a).

Ainsi, p désignant un nombre premier A2 + 4B2 de forme
4 + 1, a + bi est résidu ou non résidu de A + 2Bi selon que
Aa + 2Bb Vest ou ne Vest pas de p. Autrement dit, on a :

z. / a + bi \ lAa + 2B/A
(*) (A + 2Bt/ p j ' (Lejeime-Dirichlet)

Ainsi on a :

_ (A + 2B\
VA + 2Bi-; - V P

'

donc, à cause de 9, on peut dire que 1 + i est résidu on non
résidu de A + 2Bi selon que A + 2B est 8 dz 1 ou 8 ± 3.

5° Soit q un nombre premier 4 — 1 et p — A2 + 4B2 un
nombre premier 4 + 1 ; on a, d'après 1° et 4°,

m=(?)=©
d'où

(k + 2Bi\ _ / q \
V H / \k + 2Bi/
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6° Soient p A2 + 4B2, p A'2 + 4B'2, deux nombres

premiers 4 + 1 ; on a :

/AA7 + 4BB'\ /A7 + 2B'A (AA' + 4BB^/ A + 2Bi \
VA7 + 2B'2y A + 2Bi

(AA' + 4BB'j2 + (2AB7 — 2BA/)2 pp*

Si g est un des facteurs premiers du nombre impair AA'

+ 4BB', on a, d'après ce qui précède :

e) - (t\ d'„4 (f) (i) „ (At' + lliB"i (" + tEE'

d'où cette généralisation, due à Gauss,

2Bi \ /A' + 2BÙ
A' + 2BV ~~

V A + 2Bi

13. Il ne parait pas nécessaire de reproduire ici les
renseignements historiques donnés précédemment (.E.M., 1909,

pp. 347, 432, 434, 440, 446) sur la loi de réciprocité. Il suffira,
pour la présente note, — qui n'a d'autre ambition que celle
de fournir l'idée et la matière d'un chapitre à un traité
élémentaire des nombres, — de la compléter par l'exposé de

trois des plus simples démonstrations qu'on a données de

ce si remarquable théorème : elles s'appuient toutes les trois
sur ce lemme de Gauss, démontré, E. M1907, p. 37 :

p désignant un nombre premier, et a un entier inférieur
à p, appelons cp(a, p) le nombre des restes supérieurs à ~

obtenus en divisant par p les m premiers multiples de a ; on a :

m — AsV(a>P) !» fa\ /a — (— 1) ou bien (— 1)

1° Démonstration d'Eisenstein. Soient a et b deux entiers
impairs premiers entre eux; construisons un parallélogramme

sur ces deux nombres, menons la diagonale et
traçons le réseau correspondant aux divisions des côtés. Le
nombre des intersections de la &ème ordonnée entre la base

et la diagonale est Ej Il ne se trouve aucune intersection
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sur la diagonale; on a done:

„ßa p(6 — i)a
-bi -7- H- hi 7 a — 1 nombre pairb b

et par suite

^a s ^ (b — 1) a
hi— est de meme parité que h -

E2"
b b

b b

,^4a ^4a

T ET

E
(b — 1) a

2 b

d'où on déduit, en se rappelant la notation du n° 4, que
/(a, b) est de même parité que f(2a, ô). Or si on construit

/
N
X

y/
///

y
M A

b
—>

le parallélogramme ^ on voit que f{a, b) et f{b, a)

représentent respectivement les nombres des intersections
comprises dans les triangles ONM, ONP. On conclut de là que

f(a, b) + f(b, a) aß
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et que par suite f(2a, b) + f(2b, a) est de même parité que
aß, ce qui, rapproché cle (8), fournit la démonstration de (20).

2° Démonstration de Voigt. Divisons par b les ß premiers
multiples de a, et posons

ga <[ kb <£ (g -j- 1 )a ha (k + 1) b <[ (h -)- 1) a ;

celles de ces divisions donnant le quotient k correspondent
aux multiples (g+l)a, (g+ 2) a, ...{h—1)a ha; et parmi
ces h — g divisions, celles qui fournissent des restes plus

grands que ~ sont déterminés par la relation

d'où
(g.+ oc)a — kb > ~

2Â- -f 1
h — g x > 2a

b

elles sont donc au nombre de

Ei±i b - E —J—— b- E i±i 6 - - a - f - 1
b

a 2 a a r \2 2a

Mais le plus petit multiple de a qui, divisé par b, donne

un quotient k a, et un reste > ^ est supérieur, d'après

2k -f- 1 ab b — 1
0(ß) —f—b T>—~a ßa ;

et le plus grand multiple de a qui, divisé par b, donne
b

un quotient k a — 1 avec un reste > -g est, également

d'après (a), au plus égal à

ha (E4±iiV</'i±i/Aa— {k + i)b b a

si on suppose b > a.
D'après le lemme fondamental (.E. M., 1907, p. 287), les

restes sont tous différents, et par suite on aura le nombre

<p(a, b) des restes supérieurs à
g en faisant successivement

k 0, 1, 2, 3, a — 1 dans (ß) et additionnant.

L'Enseignement mathém., 12e année; 1910. 33
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Il vient ainsi, en groupant convenablement les résultats :

b) + a/3

4 + Ki-:) + E" + ,!(i-")
+ ...+E2^U+E{mod 2,

Or la valeur de E - + E(£ — - est 0 ou — 1 selon que le
a \2 a/ 1

reste de la division de <? par a est ^ | En effet, soit c

aoi 4- /', on aura E - a, d'où
«

E; + E(-2-î) E(« + !ï-*-i) E(»--D-

de sorte que, selon que r ~ -h &), il vient

e; + e(5-;) e'+") •

Le dernier membre de (y) représente donc, au signe près,

le nombre cp(b. a) des restes > | provenant de la division

par a des « premiers multiples de b; d'où

(iï) ?(a> b) -(- f (b, a) a/3 (mod 2)

3° Démonstration de Kronecker. Le reste de la division

de ha par b est > | si on peut trouver un entier k tel qu'on

ait :

(a) ha < bk < ha -\- -

d'où
{ha — bk) (ha — bk -J- -^) < 0

a i (i a + 1 — 2A- «/A Aou (Aä — AA) (^Aa H - ^ — "2/ "
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Tout autre entier mis à la place de k changerait le sens
de l'une des inégalités (a) et rendrait ainsi positif le premier
membre de (ß). D'autre part, comme h ^ ß, on a :

b — 1 b ba h a -{- \ f cl —1
M < —g— + 2 "y + 2 • ^ 2

et X — ^
a

Par conséquent, selon que ha fournit un reste ^ ^ on a, à

cause de (/3), en y remplaçant successivement k par t, 2,

3, a, et multipliant,

(y)

^ (ha — b) (ha — 2 b) (ha — ab) (ha -{-ab — —^

| (ha+ U — y) (ha + — )^ 0

De la sorte, en changeant dans (y), h en 1, 2, 3, /3, et

multipliant, on pourra dire que le produit

(a — b) (a — ab) (a + ab — (a + ^ 2"}

X (2a— b) (2a— ab)^2a -f- ab — ^2a -f- t —

XX)
(*)

X

X Ißa — t) (j3a — at) (^ßa + ab —

est^O selon que le nombre cp(<2, ô) des restes > ~ est pair ou

impair.
Changeons a en h et b en a\ le nouveau produit sera ^ 0

selon que le nombre <p(è, a) des restes > ~ obtenus en

divisant par a les a premiers multiples de 6. sera pair ou
impair. Or la substitution indiquée ne modifie pas les facteurs
trinômes; les aß facteurs binômes, seuls changent simplement

de signes : on a donc :

aß
<p (a, b) y(b, a) (— 1)

A. Aubry (Dijon).
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