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MÉLANGES ET CORRESPONDANCE

Sur le principe d'induction complète.

Au moment où j'ai écrit la Note insérée dans le numéro de
novembre 1909 de XEnseignement, j'ignorais que la question avait
déjà été résolue par M. Zermelo de la façon la plus heureuse dans
les Acta mathematica (Tome XXXII, fasc. 2, p. 185).

M. Zermelo ne prend pas, il est vrai, le principe de l'induction
complète comme élément de définition pour le type ordinal m ;

mais il rapporte ce principe à une propriété exactement équivalente

des ensembles ordonnés de ce type, savoir celle de constituer

des « chaînes simples », c'est-à-dire de ne pouvoir être divisés
en parties « séparées », deux parties étant dites séparées lors-
qu'aucun des éléments de l'une n'a son image (l'élément qui le
suit immédiatement) dans l'autre et réciproquement.

Cette notion d'enchaînement et celle d'induction complète se

rapportent uniquement aux ensembles ordonnés ayant un premier
élément et dans lesquels à tout élément en correspond un autre
qui le suit immédiatement. Si un tel ensemble M est divisé en
parties séparées, chacune de celles-ci contient les images de tous
ses éléments, puisque ces images ne peuvent, d'après la définition
même des parties séparées, appartenir à d'autres parties. Celle de
ces parties M0 qui contient l'élément initial devrait donc, si M
satisfaisait au principe d'induction complète, être identique à M,
qui ne pourrait donc pas être divisé en parties séparées.

M. Zermelo donne de la réciproque la démonstration suivante :

Les parties Mj de M qui contiennent l'élément initial e et l'image
de chacun de leurs éléments ont une partie commune M0 qui
possède les propriétés suivantes : 1° M0 figure parmi les ensembles ;

car il contient e et les images de tous ses éléments, puisque tout
élément a de M0 appartient à tous les M, et, par suite, il en est de
même de son image qui appartient donc bien à la partie
commune Mn ; 2° à l'exception de e, tout élément de M0 est l'image
d'un élément de cet ensemble; sans cela, en supprimant un
élément en M0 on obtiendrait un ensemble ce qui est contraire à
la définition de M0.

Si M0 ne se confond pas avec M, soit R M — M0 l'ensemble
complémentaire. Il résulte des propriétés de M0 qu'aucun élément
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de M0- ne pent être l'image d'un élément de R et réciproquement,
c'est-à-dire que les parties M0 et R sont séparées. Par conséquent,
lorsque M ne peut être divisé en parties séparées, M0 se confond
avec M et il en est par suite de même de tout ensemble M1 c'est-
à-dire que le principe d'induction complète est satisfait.

On peut encore donner une autre forme au principe d'induction
complète. Si l'on appelle « segment » d'un ensemble ordonné un
sous-ensemble contenant tous les éléments qui précèdent ses
éléments, on reconnaît facilement que, pour un ensemble ordonné
M ayant un premier élément et dans lequel tout élément a un
suivant immédiat, un segment est un sous-ensemble qui contient
l'élément initial et les suivants de tous ses éléments à l'exception
du dernier s'il en existe un. Dès lors il est clair que l'induction
complète équivaut à la propriété suivante : tout segment de M qui
n est pas identique à Vensemble total a un dernier élément.

Il reste à démontrer que l'ensemble des nombres entiers finis
ordonné suivant les grandeurs est du type ordinal m. C'est ce que
fait M. Zermelo en définissant ces nombres comme puissances ou
nombres cardinaux des ensembles finis, ceux-ci étant eux-mêmes
définis par la propriété de pouvoir être « doublement bien ordonnés

» ; un ensemble ordonné est dit doublement bien ordonné si
tout sous-ensemble a à la fois un premier et un dernier élément.
Les types de ces ensembles sont évidemment les segments du
type ox

La question du principe de l'induction complète se trouve bien
ainsi définitivement résolue, et cela dans la voie qu'indiquait déjà
le bon sens.

G. Combebiac (Limoges).


	Sur le principe d'induction complète.

