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208 G. COMBEBIAC

On voit que ce n’est pas sans quelques difficaltés que l'on
pourra parvenir a établir une Géométrie rationnelle sur la
seule notion de distance; mais quelle clarté pour ses fon-
dements en comparaison de l'édifice lourdement arlificiel
que constitue le systeme des axiomes de caractére purement
logique? ‘

En terminant, je signale que l'axiome A), appliqué au
plan, permet d'établir avec la plus grande simplicilé lanotion
d’égalité des angles ainsi que les cas d’égalité des triangles,
a condition toulefois que l'on ait pu, au préalable, établir
que la fonction de distance détermine une métrique sur les
lignes droitest. On voit que l'on est toujours ramené a édi-
fier une théorie des lignes droites en fonction de la notion
de distance. '

G. ComBEeBIAC (Montauban).

Appendice : Sur le Nombre irrationnel.

Dans mon premier article au sujet de la mesure, publié dans le
numéro de mars de I’ Enseignement mathématique, y'ai émis 'opi-
nion que l'on pourrait se passer de la notion de nombre irration-
nel dans toutes les applications des Mathématiques. Je dois recon-
naitre que ’expression a dépassé ma pensée.

Ce qui parait incontestable, ¢’est que cette notion ne saurait
étre rattachée, pas plus historiquement que logiquement, a celle
de mesure, car ce qui est naturel, c’est précisément d’admettre
que toutes les grandeurs de méme espéce sont commensurables
deux a deux, conception qui suffit parfaitement tant que l'on se
borne a mettre en ceuvre leur mesure. Si le nombre irrationnel
s’est imposé avant qu’il en et été donné une définition correcte,
c’est évidemment en Géométrie avec certains rapports dans la
détermination desquels interviennent d’autres notions que celle
de mesure, notamment la notion de fonction.

[La nécessité (ou, ce qui revient au méme, la convenance) de
I’emploi du nombre irrationnel dans le domaine physique, parait
plutot devoir étre recherchée dans I'idée de continuité, non pas
des ensembles, mais des fonctions. [’intuition expérimentale

1 L fonction J détermine évidemment une métrique sur chacune des pseudo-spheres et
sur chacun des pseudo-cercles; il suffit, pour le voir, d'appliquer U'axiome A} a cing points,
savoir: pour la pseudo-sphére, le centre et quatre points quelconques de la surface ; pour
le pseudo-cercle, les centres de denx pscudo-sphéres countenant la courbe et trois poinls
queleconques de celle-ci.
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exige, en effet, qu'une fonction continue définie physiquement
prenne, dans un intervalle quelconque, toutes les valeurs com-
prises entre ses valeurs extrémes, propriété qui appartient bien
aux fonctions appelées continues par les mathématiciens. Rien
n’empéche d’ailleurs, comme on sait, d’étendre cette derniere
notion aux champs purement rationnels (la définition peut en
effet se résumer dans la formule :

lim f(z) = f(a) ;

X—=a

mais alors la propriété énoncée ne subsiste pas; c’est ainsi que la
fonction 2? ne prend plus la valeur rationnelle 2. On est conduit
a compléter le champ rationnel par tous ses points-limites, ce que
n’exigeait a aucun degré I'idée seule de la mesure.

Il semble donc bien, en définitive, que ce soit dans l'idée de
fonction continue, et non dans celle de mesure que I'on doit cher-
cher la raison d’étre du nombre irrationnel dans les applications
des Mathématiques.

G. Comsesrac (Montauban).

SUR LES DEVELOPPEES D’UNE COURBE GAUCHE!

Les propriétés connues des développées d'une méme
courbe gauche permetlent de soupconner que la recherche
de toutes ces développées se rameéne a 1'élude d’une méme
équation différentielle dont il suffit de connaitre une inté-
grale parliculiere, pour en trouver I'intégrale générale.

LEffectivement, le probléme se traduit par une équation de
Ricatti ; mais un examen quelque peu atlentif de cette équa-
tion permet d’en exprimer l'intégrale générale au moyen
d’une quadrature.

Soient x, ¥, z, les coordonnées rectangulaires d'un-point
M, mobile sur une courbe -donnée-S, ¢ l'angle que fait, avec

! La méme queslion a été traitée, sous une forme toute différente, par M. Braxcui, dans le
premier chapitre de son trailé de Géométrie infinitésimale : le lecteur voudra bien, je Iespére,
reconnaitre que chacune des deux méthodes a son intérét propre.

[’Enseignement mathém., 12¢ année ; 1910
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