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190 J. HOSE

si l'on tient compte du fait que la majorité de ses élèves se composait
de futurs ingénieurs, sollicités surtout vers la mécanique

appliquée et n'accordant au cours de mécanique rationnelle que
l'intérêt du à son importance relative à l'examen. Quant aux
futurs docteurs en sciences mathématiques, peu ont osé se hasarder
à entreprendre des études spéciales sur la mécanique. Non pas
par défiance à l'égard du professeur ou moins encore par antipathie,

mais par suite de l'organisation particulière des études du
doctorat. Car Ma s sa u jouissait à juste titre d'une popularité de
bon aloi dans les milieux universitaires ; toutes les sympathies
allaient instinctivement à cette figure franche, ouverte et
empreinte de la bonhomie la plus sincère. C'était le père des
étudiants ; au milieu de leurs réunions fraternelles, il se sentait
redevenir jeune et il redevenait, pour un instant, le joyeux compagnon

de jadis ; en un mot, il était pour ses élèves bien moins un
maître qu'un ami.

D'autre part, à Gand, les cours du doctorat ès sciences
mathématiques ne sont suivis que par de très rares élèves, la carrière
offrant peu de ressources. De sorte que très peu ont eu l'occasion
d'écouter ses leçons sur la partie la plus intéressante de son
ouvrage, qui, malgré l'originalité des questions traitées, n'a pas
eu la publicité qu'il méritait. Et cependant, quelle mine inépuisable

de matériaux variés ; quelles méthodes simplès et élégantes
L'esprit est émerveillé devant ces généralisations hardies et ces

concepts d'une profondeur remarquable.

11

Le lecteur me permettra de feuilleter avec lui les deux tomes de
la Mécanique rationnelle de mon vénéré maître; il se proposait
d'y ajouter une troisième partie sur les compléments et la mécanique

céleste.
L'ouvrage débute par une introduction de quatre-vingts pages,

dans laquelle l'auteur expose les principes de la géométrie vectorielle

dont il fera usage dans son cours de mécanique. Ce dernier
comprend trois parties : statique, cinématique, dynamique, et se
termine par un appendice sur lequel j'aurai l'occasion de revenir
plus loin.

Chose digne de remarque : la mécanique est exposée en faisant
usage d'une façon systématique des notations vectorielles ; l'exposition

y gagne en clarté et en concision. Il se sert presque
exclusivement des trois symboles a, ab, Mab. Le premier a AB est
le vecteur joignant les deux points A et B et de longueur a, dans
lequel on distingue une grandeur, une direction et un sens. Le
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second ab est le produit géométrique de deux vecteurs a et b; il
est égalau produit algébrique de leurs grandeurs par le cosinus

de leur angle. Quant à iNflab ou le moment géométrique des vecteurs

a et b, c'est un vecteur dont la grandeur est proportionnelle à la

surface du parallélogramme construit sur a et sur b comme côtés

et dont la direction est perpendiculaire au plan de ce parallélogramme.

Pour achever de le définir, on suppose le contour de ce

parallélogramme parcouru clans le sens OACBO (OA a, OB b) ;

le sens du moment géométrique sera pris tel qu'un observateur
placé le long de ce vecteur, les pieds à l'origine 0 et la tête à

l'extrémité verrait le mobile se mouvoir dans le sens du mouvement
des aiguilles d'une montre.

Le produit géométrique a été défini par Resal (Traité de

cinématique pure, Paris, Malley-Bachelier, 1862) ; la notion clu

moment géométrique est due à Mass au (Cours de mécanique de
l'Université de Gand, 1879, Gand, Lobel ; Paris, Gauthier-Villars). Ala
vérité, avant ces auteurs, et à peu près à l'époque où Grassmann
publiait ses recherches, de Saint-Venant (C. R., 1844, 2me semestre,

p. 620) avait défini, sous le nom de produit géométrique d'une
aire et de produit géométrique de deux vecteurs, des combinaisons

analogues à celles qui ont été étudiées par Resal et Ma s sa u ;

mais si l'on se reporte à la note citée, on reconnaîtra sans peine
que les équations aréaires et celles qu'on peut en déduire n'ont
pas la précision qu'ofirent les équations qui résultent cle l'emploi
du produit et du moment géométriques. Pour leur donner cette
précision, il faudrait substituer aux aires planes les vecteurs qui
les représentent ; c'est précisément en cela que consiste le progrès
réalisé par Massau.

Ces définitions étant admises, un point M quelconque est
déterminé par rapport à un point 0 pris comme origine quand on
connaît le vecteur OM. Alors e OM est la coordonnée vectorielle
de M.

On conçoit que lorsque M décrit une courbe (C) ou une surface
(S), e varie ; dans le premier cas, e dépend d'une seule variable
indépendante / et on a e f(t); dans le second, au contraire, e

dépend de deux variables indépendantes / et t' qui peuvent être
les coordonnées de Gauss, et e f(t, tf),

On conçoit que toute la théorie des courbes et des surfaces peut
se faire parla géométrie vectorielle ; c'est la méthode suivie par
M. Demoulin dans la théorie des complexes, congruences et
surfaces réglées (Bruxelles, Castaigne, 1894) et dans son cours de
géométrie infinitésimale de l'Université cle Gand. On éprouve un
véritable plaisir à manier les équations vectorielles qui, chaque fois,
remplacent trois équations analytiques de projection sur trois axes
rectangulaires.
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Ces fonctions géométriques sont soumises aux mêmes règles
que les fonctions ordinaires de l'analyse infinitésimale et l'auteur
a soin chaque fois d'interpréter les résultats géométriquement.

Mais où l'originalité de son esprit s'affirme avec le plus de
netteté, c'est quand il introduit la notion de limite relative : un
infiniment petit d'ordre k étant mis sous la forme Mdtk (dt convergeant

vers zéro], si on remplace le vecteur M par sa limite m, on
obtient un autre infiniment petit mdtk qui est la limite relative du
premier.

Cette définition s'applique évidemment aux infiniment petits
analytiques ; elle s'applique aussi aux quantités finies : leurs limites

relatives se confondent avec leurs limites absolues. Ces limites
relatives jouissent de plusieurs propriétés intéressantes; ainsi la
limite relative d'une figure est la limite absolue d'une figure
semblable à la figure infiniment petite; les limites relatives des

longueurs, des aires et des volumes infiniment petits sont les longueurs,
les aires, les volumes pris dans la limite relative de la figure. Toute
figure infiniment petite a pour limite absolue un point qui est le
pôle de convergence ; si on prend ce pôle comme origine, tout
point de la figure donnée a une coordonnée vectorielle de la forme
Mdtk\ aux limites relatives, ce point est remplacé par un autre
dont la coordonnée est mdik.

Les relations entre deux figures infiniment petites sont régies
par la théorie des lignes de rappel. Deux figures infiniment petites
ont respectivement pour pôles de convergence les points P et Q ;

deux points A et B de ces figures sont réunis par une ligne de
rappel Aß ; ces points sont soumis par là à une condition ; il s'agit
de savoir ce que devient cette condition aux limites relatives. La
droite AB est une ligne qui a pour limite absolue PQ; on suppose
que la droite AB coupe sa limite en un point O ; la limite O' du
point d'intersection O est ce que Massau appelle le foyer de la ligne
de rappel.

Ces notions fondamentales ont. permis à l'auteur de construire
une méthode de calcul qui se suffit à elle-même et de développer
son cours de mécanique suivant la voie qu'il s'était tracée, c'est-à-
dire en se servant exclusivement des notations vectorielles. Ceux
qui veulent se convaincre de la beauté des procédés employés
n'ont qu'à lire ces pages, où l'auteur a traité d'une façon magistrale

les principales théories de la statique. lia adopté la division
suivante dans l'étude de cette branche : Statique du point. —
Statique des systèmes solides invariables. — Statique des systèmes
quelconques. — Principe des vitesses virtuelles. — Applications.
Les deux derniers chapitres sont particulièrement intéressants; à

signaler, parmi les applications, la détermination des centres de
gravité.



JUNIUS MAS SAU 193

La cinématique a fourni à Massau l'occasion cl exposer avec

simplicité et élégance ses théories fondamentales et de montrer
ainsi la portée de la méthode vectorielle. A mentionner tout
particulièrement le mouvement du point aréolaire, le mouvement
élémentaire d'une figure glissant clans son plan, le mouvement d'une
surface mobile invariable sur une surface fixe, le mouvement fini
d'un système invariable, le mouvement d'un système invariable
autour d'un point fixe. Dans l'étude du mouvement parallèle à un
plan fixe, l'auteur, par l'emploi de méthodes très simples, arrive
à des résultats très remarquables au point de vue géométrique.
Le paragraphe traitant du mouvement relatif lui donne l'occasion,
d'établir la formule très curieuse suivante :

M c M ah — a je) — b{ac)

qu'il applique aux différentielles et aux dérivées de fonctions
géométriques.

Cela nous amène à consacrer quelques lignes à l'étude d'une
question où la personnalité et l'originalité clu penseur se sont
affirmées avec le plus de netteté; il s'agit cle la fonction linéaire
la plus générale. On écrira E =(p(e), et on dira que E est une
fonction linéaire cle e, si l'on a

lli — OxX* —f- Cl.y y H-.

.r, y, z étant les projections cle e sur trois axes rectangulaires.
La fonction linéaire inverse est e ~ y-1(E). La fonction cp' est

conjuguée de (j) si ecf (E) Lg>f (e), quelles que soient e et E. Ces
relations définissent des transformations géométriques qui ont été
étudiées par l'auteur avec le plus grand soin. 11 appelle fonction
autoconjuguée une fonction linéaire identique à la conjuguée;
dans ce cas, la transformation est particulièrement intéressante;
ainsi la sphère

^•2 + r + s2 1

se transforme en un ellipsoïde

Ai As h3 étant des éléments propres à cette transformation.
M. Was te eis a appliqué cette méthode à l'étude de certains
volumes dans les quadriques et en a déduit une généralisation
du théorème de Lexell (M., 1907, p. 33).

Après avoir étudié ensuite la fonction linéaire égale et contraire
à sa conjuguée, montré comment on peut décomposer la fonction

L'Enseignement mathém., 12e année; 1910. 44
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linéaire la plus générale, Massan applique les résultats précédents
à l'étude des déplacements finis autour d'un point, à la dilatation
linéaire et à la dilatation cubique. Il y démontre le théorème
suivant si intéressant et si inattendu : le mouvement élémentaire
autour d'un point M pendant un intervalle de temps dt se décompose-
en une déformation pure et une rotation instantanée (tourbillon).

Enfin, pour terminer cette longue série de questions, viennent
les applications aux problèmes des tangentes, de l'enveloppe d'une
courbe invariable, des rayons de courbure, des roulettes; la règle
de Savary ; la théorie des axes dépendants et indépendants; une
esquisse de la théorie des complexes, congruences et surfaces
réglées et leur génération statique; les tétraèdres de Möbius.

La dynamique de Massau retiendra particulièrement notre attention

par plusieurs questions où l'auteur s'écarte plus ou moins des
théories exposées dans les traités. Tout d'abord il y a lieu de citer
les nombreuses applications de la fonction vectorielle dans la
théorie des moments d'inertie, la rotation des solides et la théorie
des tourbillons en hydrodynamique. La démonstration des équations

de Lagrange et d'Hamilton a été considérablement simplifiée.
Tandis que beaucoup d'auteurs admettent comme évident l'existence

d'un mouvement plan ou rectiligne, le mathématicien belge
a soin d'établir deux théorèmes pour démontrer qu'il en est réellement

ainsi.
La projection d'un point qui décrit une spirale logarithmique

lui donne la solution générale du mouvement d'un point sollicité
par une force centrale proportionnelle à la distance au centre
d'action dans un milieu qui résiste comme la vitesse.

Lorqu'il y a une fonction de forces, la durée des petites
oscillations d'un point sur une courbe est donnée par une formule
simple où figurent le rayon de courbure cle la courbe et celui
d'une section normale de la surface de niveau qui passe par la
position d'équilibre.

De plus, plusieurs changements ont été apportés à la théorie
des tautochrones et des brachystochrones. Dans l'étude de
l'influence de la rotation de la terre sur le mouvement des projectiles,

l'auteur discute complètement la direction de la déviation
comparée à celle du plan de tir.

Dès 1874, Massau a préconisé la méthode de l'observatoire
auxiliaire dans l'étude des mouvements en général et particulièrement
dans l'étude des mouvements relatifs. Il applique cette méthode
aux mouvements relatifs des projectiles et du pendule à la
surface de la terre. Pour ce qui concerne le mouvement des projectiles

dans l'hypothèse de l'attraction terrestre constante, il
retrouve, presque sans calcul, l'interprétation géométrique donnée
par Bour et critiquée à tort par Resal et Gilbert.

On sait que les équations de translation des systèmes matériels
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conduisent au théorème du mouvement du centre de gravité. Il
établit un théorème analogue en interprétant les équations de

moment : c'est le théorème du centre de gravité des points aréo-
laires.

Massau fait suivre la théorie des moments d'inertie de la
composition des quantités de mouvement et des forces d'inertie. Il a

été ainsi ramené à composer un système de forces parallèles
proportionnelles aux masses et aux distances de ces masses à un

plan ; le centre de ces forces est le pôle du plan par rapport à

l'image d'inertie.
Le mouvement du gyroscope de Foucault a été étudié

approximativement par Quet dans l'hypothèse de la pesanteur constante.
Bour a trouvé une solution exacte dans le cas de l'attraction
terrestre constante. Les calculs de Quet et de Bour sont excessivement

longs. En appliquant la méthode de l'observatoire
auxiliaire, le mathématicien gantois retrouve la solution de Bour sans
calcul.

Dans l'hydrostatique et l'hydrodynamique, qui terminent son
cours de mécanique, l'auteur établit l'équation clu mouvement varié

des fluides, en partant d'une hypothèse plus vraisemblable
que l'hypothèse du parallélisme des tranches.

Le dernier chapitre a pour objet la théorie des tourbillons.
Massau s'inspire quelque peu de l'Ouvrage de M. H. Poincaré sur
le même sujet. Mais sa méthode vectorielle lui permet d'exposer
les principaux résultats avec plus de simplicité. C'est un fait
connu que le théorème de Helmholtz sur la persistance des
tourbillons conduit à une méthode pour étudier le mouvement des
liquides. Massau montre que le théorème de Helmholtz est insuffisant

pour étudier le mouvement des gaz et qu'il est nécessaire
d'y joindre un nouveau théorème, qu'il appelle le théorème de
l'accélération de la dilatation cubique. Pour faire voir que la
distribution des vitesses obtenues par la comparaison électro-magnétique

est la seule solution possible, quand le fluide est en repos à l'infini,

l'auteur démontre le théorème.suivant : « Si les dérivées
premières diune fonction qui satisfait à l'équation de Laplace ne
deviennent pas infinies? elles sont constantes ». Au lieu de déduire
cette proposition des théorèmes d'analyse qui sont la conséquence
du principe de Dirichlet, Massau en donne une démonstration
directe. 11 applique ensuite la méthode des transformations au
mouvement d'un fluide et il cherche une transformation de
l'espace et des vitesses laissant subsister les débits et les flux cle
tourbillon. Appliquée au mouvement plan, cette transformation conduit

à une généralisation de la méthode de la représentation
conforme.

Les quelques lignes qui précèdent ne peuvent, donner qu'une
très vague idée du cours de mécanique de Massau ; il faut lire ces
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pages, écrites clans un langage clair et concis, pour se rendre
compte cle la supériorité de sa méthode et des richesses inépuisables

contenues dans cet ouvrage. Mais ce qui intéresse les
mathématiciens à un degré plus élevé, c'est la multiplicité des questions

traitées dans VAppendice du tome I. L'auteur y montre, par
une série d'exemples particulièrement bien choisis, les divers
problèmes géométriques qui peuvent se résoudre en faisant usage des
limites relatives.

Après avoir établi les différences essentielles entre la méthode
infinitésimale et la méthode des limites en analyse, l'auteur se
demande « s'il n'est pas possible de combiner les deux méthodes
pour en former une seule qui soit rigoureuse comme la méthode
des limites et qui puisse s'appliquer aux questions géométriques
aussi facilement que la méthode des infiniment petits». La
méthode des limites relatives lui paraît réunir ces conditions. Ainsi
.qu'il le fait encore remarquer « la méthode infinitésimale est plus
qu'une justification de la pratique des infiniment petits. L'i'ntui-
tion infinitésimale suffit clans les questions faciles; mais il en est
d'autres où l'on risquerait de s'égarer en s'abandonliant à l'intuition

infinitésimale, tandis cpie la méthode des limites relatives
conduit toujours au but».

Il s'occupe d'abord du problème des tangentes, et il étudie
particulièrement les tangentes aux cissoïclales, aux courbes algébriques,

à la strophoïde, à la tri sec trice cle Mac-Laurin, aux surfaces
et aux courbes parallèles, aux courbes diamétrales et à la courbe
isoptique. Il donne ensuite ce qu'il appelle la règle suprême des
normales aux courbes et aux surfaces.

Le probéme des rayons de courbure fait l'objet d'un paragraphe
spécial. Il y détermine les rayons de courbure des courbes
algébriques, des courbes F(r, P) 0 (/• est le rayon vecteur, P distance
du pôle à la tangente), des podaires et des antipodaires, des
roulettes généralisées; il retrouve plusieurs formules établies
précédemment par Delaunay, Mannheim et Habich. Dans d'autres
problèmes, il traite des rayons de courbure en un point multiple d'une
courbe algébrique, des courbes diamétrales, des courbes conchoï-
clales. 11 fait les mêmes recherches relativement aux rayons de
courbure des surfaces et particulièrement des surfaces polaires,
réciproques, des surfaces inverses, cles surfaces podaires et
antipodaires.

Malheureusement, ces procédés sont peu connus et on ne les
trouve pas dans les traités relatifs aux courbes. 11 serait à souhaiter

que les prochaines éditions des ouvrages suivants : G. Loria,.
Spezielle algebraische und transzendente ebene Kurven; F.-G.
Teixbira, Traité des courbes speciales remarquables ; H. Wieleit-
xer, Spezielle ebene Kurven fassent mention des travaux de Massau

et exposent les principes fondamentaux cle sa méthode.
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Dans le second chapitre de l'Appendice, l'auteur s'occupe des

compléments de géométrie symbolique à trois dimensions. 11 y traite
successivement des produits et des moments de vecteurs et en

particulier de ce qu'il appelle la formule d'expulsion, de la
composition des points, des droites et des aires, de la généralisation

des théorèmes des moments, des équations de composition
et de leurs applications, des produits régressifs, du produit sta-
tionnaire des segments et de certains déterminants relatifs aux
distances de 5 points.

Dans un troisième chapitre, il étudie la méthode des quaternions

et il prouve que certains symboles dérivés des quaternions
sont identiques aux notations vectorielles usitées par lui. Et il
ajoute cette observation critique : « La méthode des quaternions
ne s'est pas répandue; il est aisé d'en trouver la raison. Les
quaternions peuvent être utilisés en géométrie, en analyse, en
mécanique; pour en tirer le plus grand parti, il faudrait les enseigner
dès le début des études mathématiques; qui oserait tenter une
pareille expérience On pourrait, il est vrai, sacrifier les applications

géométriques et exposer les quaternions comme introduction
à la mécanique; mais, même à ce moment, la théorie des

quaternions paraîtrait bien abstraite, et c'est sans doute pour ce
motifqu'il n'existe pas encore de traité de mécanique ainsi conçu. »

Les mêmes critiques ne s'appliquent pas aux symboles 2a ^ [cici) ;

aussi ils se sont vulgarisés ; nous avons l'espoir que le symbole
A/aa' aura le même succès, et alors, on aura tous les avantages des

quaternions, sans avoir rencontré leurs difficultés ».
11 donne ensuite une nouvelle théorie clés quaternions, explique

les dénominations de verseur et cle tenseur et esquisse, d'après
Tait, une théorie des quaternions par les verseurs, tout en la
critiquant.

Le chapitre suivant, du plus haut intérêt, traite de la géométrie
symbolique à 4 dimensions.

Massau transporte ses définitions clans ce domaine et, avec une
clarté cligne d'éloges, il expose les principes de cette partie cle la
géométrie. 11 établit une série cle formules généralisant celles qu'il
a rencontrées clans la géométrie à trois dimensions et il applique
ses résultats à la géométrie à n dimensions. Je ne connais pas
d'exposé plus limpide touchant cette géométrie, à laquelle il
applique même la généralisation de sa fonction linéaire. Il définit
les coordonnées homogènes et les hypercoordonnées ; il s'occupe
des transformations géométriques, de l'involution des masses, des
segments et des aires, clu système focal de réciprocité. Autant
d'idées originales, malheureusement trop peu connues

Enfin, cette étude se termine par l'examen de la méthode de
H. Grassmann. Tout en reconnaissant à ce dernier les mérites
rappelés par M. Jahnke dans son mémoire cité plus haut, Massau
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ne partage cependant pas complètement les idées du professeur
de Stettin. Dans la critique de l'édition de.1844, le mathématicien
belge écrit : « On y lit de longues considérations philosophiques,
mais on y cherche en vain une définition bien précise des
grandeurs extensives; on y trouve seulement que le vecteur d'un
système à ni dimensions peut changer de m manières différentes et
indépendantes, qu'il a un commencement ß et une fin y et que, de
là, résulte évidemment

IM [M + 1«yJ

a étant un autre élément ».
Massau trouve également que les explications de Grassmann

relatives à l'harmonie et à la disharmonie des vecteurs sont peu
satisfaisantes. « 11 est difficile de comprendre, d'après cela, une
équation de classe k dans un espace à m dimensions ».

Plus loin, à propos de la seconde partie de Die lineale Aus-
dehnungslehre, Massau ajoute encore : « Il semble que c'est par
définition cpie Grassmann admet que l'on engendre des équations
géométriques en multipliant les équations entre les points. Il
pose aß — — ßa. Ces équations sont aussi vagues que les équations
entre les produits de vecteurs. On n'est pas certain qu'en appliquant

les règles admises, on n'arrivera pas à des résultats
contradictoires ».

A propos de Die Ausdehnangslehre de 1862, Massau fait remarquer

que, malgré la réclamation de Grassmann relativement à la.
priorité des clefs de Cauchy, il y a, dans la note de ce dernier,
une idée qui n'existait pas chez le maître de Stettin. Comme on
le sait, les clefs de Cauchy (C. R1853) permettent d'exprimer les
déterminants par des produits de quantités complexes. Selon lui,
l'idée nouvelle de Cauchy est la base de l'exposition faite par
Grassmann en 1862. « En résumé, dit-il, on peut dire que la
méthode de Grassmann est la géométrie des points ; les vecteurs
n'apparaissent que comme des cas particuliers; ce sont des points
à l'infini. C'est le contraire de la marche que nous avons suivie;
nous avons établi la théorie des vecteurs ; nous en avons déduit
après les compositions ».

Pour terminer, mon vénéré maître s'occupe du Caleolo geome-
trico seeondo VAusdehnungslehre de Grassmann, par G. Peano.
Et il conclut : « Autant les livres de Grassmann sont obscurs et
d'une lecture pénible, autant l'exposition de M. Peano est claire et
intéressante. Cependant, nous persistons à croire que la géométrie

des points ne peut avoir la simplicité de la géométrie vectorielle;

mais c'est, croyons-nous, parce que la méthode de Grass-
mann est imperfectible, malgré le beau livre de M. Peano ».
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Ce rapide exposé ne permet pas de se représenter la valeur de

l'œuvre de mon regretté professeur. Pour être complet, j'aurais du

analyser succintement les diverses questions qu'il a effleurées
dans ses Compléments de mécanique et dans la Mécanique céleste.

Malheureusement, il n'a pu laisser sur ce sujet des leçons écrites
et il n'a donné ce cours qu'à des intervalles très irréguliers, par
pénurie d'élèves se destinant au doctorat spécial en mécanique.
J'ai eu l'occasion de suivre ces leçons; qu'il me suffise d'affirmer
que, là encore, son exposition n'a rien perdu cle son originalité ni
de sa simplicité. En mécanique céleste, il transporte ses notations
vectorielles habituelles et la même simplification se produit dans

l'exposé sans rien lui faire perdre de sa clarté ni de sa rigueur.
Mes connaissances sont insuffisantes pour pouvoir apprécier

l'Intégration graphique de Massau, laquelle fait plutôt partie du
domaine des sciences appliquées. M. d'Ocagne, à plusieurs
reprises, a rendu hommage à l'élégance et à la profondeur des
procédés de Massau. J'en appelle également à l'autorité de mes
anciens condisciples, aujourd'hui ingénieurs distingués, qui ne
tarissent pas d'éloges sur la beauté des théories du maître.

Au moment où il y a une tendance à uniformiser les notations
vectorielles, malgré la divergence d'opinions à ce sujet, qu'il me
soit permis de recommander à l'attention des mathématiciens qui
s'occupent de cette question, les notations simples de Massau. En
étudiant son cours complet de mécanique, on se rend compte du
cachet tout spécial de sa méthode. Cela m'étonne même que, dans le
tableau des deux mathématiciens italiens (E. M., 1909, p. 41), il ne
soit pas fait mention des notations de Resal, de Saint-Venant et
de Massau. Selon moi, cela tient à ce que nos auteurs contemporains

s'inspirent trop des idées grassmanniennes et hamil-
toniennes. Je suis quelque peu effrayé, en parcourant ce tableau,
par la diversité et la multiplicité des notations préconisées. Je

me demande ce que doit être un cours de mécanique rédigé avec
de tels symboles et j'ai quelque peine à me décider à lire un
ouvrage de ce genre, habitué comme je le suis aux notations si
simples de mon ancien professeur. Que le lecteur ne s'offusque
pas de cette prétention de ma part; qu'il n'y voie qu'un hommage
rendu à la mémoire de Massau et qu'une revendication en faveur
de son œuvre quelque peu délaissée.

Peut-être le simple titre de Cours de Mécanique a-t-il écarté les
géomètres; mais il est comme ces fruits dont l'écorce rugueuse
cache une chair savoureuse ou un liquide parfumé. Aux géomètres

particulièrement, je me permets de recommander la lecture
de ce traité de mécanique, qui est autant, si ce n'est plus, un livre
de géométrie. Ils y feront une ample moisson de découvertes et y
trouveront une quantité de matériaux pour leurs recherches
ultérieures.
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Du reste, je me propose, si mes loisirs me le permettent,
d'emprunter quelque jour encore l'hospitalité bienveillante de cette
revue pour faire connaître à ses lecteurs quelques-unes des
méthodes du mathématicien belge et en particulier le procédé si
inattendu des limites relatives.

J'ai la ferme conviction que son œuvre sera étudiée de plus en
plus par ses contemporains et que les générations futures le
désigneront comme un novateur et un protagoniste de la méthode
vectorielle.

J. Rose (Chimay, Belgique).

POUR UNE THÉORIE DE LA MESURE

(2me article.) 1

La question des principes de la Géométrie (métrique) a été

pleinement résolue par S. Lie, qui a déterminé les conditions

auxquelles doit satisfaire un groupe continu de
transformations pour définir une métrique euclidienne ou non-
euclidienne. La condition essentielle est d'admettre un
invariant binaire J (.Xi yx, sc2 y2, £2,)

Mais un tel groupe de transformations étant entièrement
défini par son invariant, il y aurait évidemment économie
logique à prendre pour objet des axiomes les fonctions
numériques de deux points elles-mêmes. De plus, l'analogie
serait ainsi complète avec l'idée de mesure telle qu'elle a

été établie pour les continus à une dimension1, enfin Ton
éliminerait ainsi des principes de la géométrie la notion de

groupe de transformations, bien complexe comme notion
fondamentale, malgré le rôle prépondérant qu'elle joue en
réalité au point de vue physique.

La propriété essentielle des fonctions de distance (j'adopterais

aussi volontiers le terme de fonctions métriques) est

1 Voir le 1er article de VEnseignement mathématique du* 15 mars 1910; t. XII, p. 89-97.


	II

