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N étant une grandeur finie arbitrairement grande. I1 est né-
cessaire de supposer ici que, pour lim p = , AP ®(0) s'ap-

¥ \ gt
k . . . —_ 0\t
proche de zéro au moins aussi rapidement que < - )

Ugo Brocar (Buenos-Aires).
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1. — Les déterminants du type
. I n-t I . A
(I) | ok Y| = 0 (i, k=0, ... n

ot a,, a, sont des formes linéaires quaternaires, peuvent
s’écrire en fonction des coordonnées pluckériennes de la
droite. On peut donc dire que (I) représente un complexe de
nin + '.l)

2

trés par M. NEUBERG! et par nous?. |
De méme. ’évanouissement d’'une matrice
)

droites d’ordre De tels complexes ont été rencon-

(1) g‘la”"' g

0 %y Yins

i::O (=0, ..,n,k=0,....0n+4+ 1),

représente une congruence réglée dont nous allons déter-
miner 'ordre et la classe au moyen des méthodes de MM.
GraMBELLI® et STuYVagERT®. '

2. — Pour trouver 'ordre u, supposons les y fixes dans
la matrice (11). Cette matrice doit représenter un nombre fini
de droites lorsqu’on considere les z comme les coordonnées
courantes. '

Supposons que le plan z.==0 n’est pas un plan singulier

L Mathesis, 1902, 1ls.

% Bul. de UAcad. de Belgique, 1907, — N. A. M. 1907, VlIa. — Memoires de la Soc. des Sc. du
Hainaut, 1908, 1Xe .

2 Mém. Ist. Lomb., 1904. — Xlg .

L Mém. Soc. Sc. Liege, 1908. — VIIg.
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de la congruence. Si nous faisons z, = 0 dans (II), le nom-
‘bre de solutions (2, z,, zs) sera I'ordre de la congruence.

On a
_n*n 4+ 1) ,

S v,
{J: )

v’ étant le nombre de solutions de la matrice

(K

aik'y”ik: ):0 . (t=0,....,n, b =20,...,n—1)

De méme, si p” est le nombre de solutions de la matrice

(I11) ” a;;j;aik; “ — 0 G=0,....on—2, k=0,...,n—1),

on a

’

fl.:

nin—1)(n* —n + 2 "
—n— F‘ s

4
De la

n
9

5 (2n? — n 4+ 1) 4+ p".

l[- —_—
L’analogie en z de (II) et (I1I) permet de conclure a la for-
mule ’

g = -;— E (n — 20 |12(n — 202 — (n — 2i) 4+ 1],
=0
la sommation s’étendant jusqu’au premier terme nul ou né-
gatif.
3. — Pour trouver la classe v, cherchons d’abord P'ordre-
classe } ==y + v.
Supposons que les droites

=y =10, Zg — 24 — 0

soient indépendantes de la congruence (II).
Introduisons ces hypothéses dans la matrice (I1), et posons,
¢ et 7 étant deux facteurs de proportionnalité

a:}”a —_ Pi " 1'21 i Pg %
O'y‘:()s ; TZg:Pg .
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Le nombre de solutions (p:, p2, ps) de la matrice (II) sera
égal au nombre de droites de la congruence s’appuyant sur
les droites

3'1:3"2::0, zp— 5, =0,

sauf 2n de ces solutions.
Tous les termes de la matrice (II) sont de degré n en p,
donc la matrice s’annule pour des valeurs des p en nombre

E T Ul Ul i
| . |

=0

Mais la premiére colonne de la matrice s’annule n fois
pour p, = ps =0; il en est de méme de la derniére pour
102 pn—— ps - O » )

(Ces solutions sont impropres, donc

. < n— % n — 0+ 1)2
) — /_I l :

=\

— 2n .

Enfin

_ gy 0 n— i+ 1)
vug( ) :

.

LI, ) ) ‘ . '
-~ coge 2 (n— 20 [2(n — 20 — (n — 2i) 4+ 1] — 2n-.
=0
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