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120 UGO BROGGI

PV > 0"V et, comme la différence p" " — oY est un

nombre pair, on aurait

- p(n—‘l) N s,(11,-—1) + 9

Cette dérivée est un polynome du 1°f degré qui aurait au
moins deux racines positives! L’hypothése p > ¢ est donc
fausse et le théoréme de Descartes démontré.

C. JaccorTeEr (Lausanne).

SUR UNE INTEGRALE AUX DIFFERENCES

M. Markorr! détermine la valeur de l'intégrale aux diffé-

rences finies
‘ (0 ... w0}

Ex"cp(r)
(r)
dans le cas ou ®(r) est une fonction rationnelle et entiére
de ; il I'obtient ‘par application répétée, et quelque peu
laborieuse, du procédé d’intégration finie par parties. Nous
nous proposons d’indiquer ici une méthode plus rapide,
®(r) étant d’ailleurs supposé quelconque. |
Posons |
14+ax+ ...+ 2"=H, -
On a évidemment

(0,1,...71) ' ) dPHn
21’(1“ — .o (r—p+ ' = xf
{r)

et, si 'on multiplie les deux membres de lidentité par

L AP®(0
= 470 (0)

Le=1(0,1,2, .,
dal

4]
(()’1,...‘, 71)1 p J.P dl H

L Differenzenrechnung, Leipzig, 1896.
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Or on sait, par le calcul des différences finies, que

r r r roa . &
(O>¢(O) - <1>A(I>(0) +’<2>A ¢0) 4+ ... =@(r);

en attribuant & p les valeurs 0, 1, 2, ... et en additionnant
membre 4 membre, on obtient la relation cherchée

Ao..n J12. P
(0 . )I,) (0,1 )xp d }.—In 0
21’ & () = = —= a9 . (1)

() p
Il est aisé d’en déduire une autre, a laquelle M. StupNIcKA®

parvient en opérant sur les symboles opératoires A comme
sur des quantités, et en supposant que

(L + A" . =+ naf + <;>A2/—{—

Il est superflu d’ajouter qu'un tel procédé, bien que pro-
bablement légitime, laisse beaucoup & désirer au point de
vue de la rigueur. |

L’expression

P.
P dH,

2 </> ,
X =

donne pour x — 1

p .
d H, _ ‘5<p> P+l> <1z>)_ |<n+’]>
(J,TP)x P \p +< p e p) VT \p 1)

=1

La relation (1) devient pourtant, dans le cas considéré,

(0.1, ...n)

(0,1...)
o Q1N e
2¢(/;_T§}_‘(P+I>A ®(0) (2]
P

()

ce qui est bien la formule annoncée.
Supposons au contraire x << 1. On a

0

' ! d v, Gf !

lim H = ,  lim t = (im H ) — ik .
n=—ow I'— n—wo (]:L‘p d.‘l"P " (1 — ’I‘)P+1 .

Y Prager Berichte, 1871.
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et il résulte alors de (1), que

(0,1,... ©) ; C{0,1 )
1 p ,
Sj‘lf'1¢('1) = — N < - > Ap‘i’(ﬂ) : (3)
- —r 2\ —= |

(v

(o)
I.'étude de la convergence de la série

®0) + x®(l) + 2" 0r) + ...,

considérée pour la premiere fois par ABEL, se rattache pour
(3) a celle des différences de la fonction ®(r) au point r ==

Si l’onalxl<}

5 » 1l suflit de supposer que toutes les dil-

férences A’ ®(0) soient finies pour que le deuxiéme membre
de (3) converge. Car il est alors possible d’indiquer deux
grandeurs finies M et N, telles que

Ao 1= M
(0.1,..) o : o
[ x N R o
| — x 1 — | — g o—d \ 1 — x
(o) o)
— M ol = N .

(I — x) (1 — 22)

Il suftitméme, pour assurer la convergence de la série con-

sidérée, d'exiger que, pour lim p = , A’®(0) ne devienne

. . ) . I] — X P_l
plus rapidement infinie que { - :
Le contraire a lieu, au moins pour ce qui concerne la con-
. R 1.7 .
vergence absolue de la série, si | x| > 5 Si 'on suppose

que
lim 1 a 001> 9> 0.
ol  est une grandeur finie quelconque, on a alors

0,1, ...) o L 0,1,...)

| N P T
l—-:I'E (’I~,r> I’A(b(o)l”]__'rz<»|’_',I.>>N»

(p) ()
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N étant une grandeur finie arbitrairement grande. I1 est né-
cessaire de supposer ici que, pour lim p = , AP ®(0) s'ap-

¥ \ gt
k . . . —_ 0\t
proche de zéro au moins aussi rapidement que < - )

Ugo Brocar (Buenos-Aires).

SUR UNE CLASSE DE CONGRUENCES DE DROITES

1. — Les déterminants du type
. I n-t I . A
(I) | ok Y| = 0 (i, k=0, ... n

ot a,, a, sont des formes linéaires quaternaires, peuvent
s’écrire en fonction des coordonnées pluckériennes de la
droite. On peut donc dire que (I) représente un complexe de
nin + '.l)

2

trés par M. NEUBERG! et par nous?. |
De méme. ’évanouissement d’'une matrice
)

droites d’ordre De tels complexes ont été rencon-

(1) g‘la”"' g

0 %y Yins

i::O (=0, ..,n,k=0,....0n+4+ 1),

représente une congruence réglée dont nous allons déter-
miner 'ordre et la classe au moyen des méthodes de MM.
GraMBELLI® et STuYVagERT®. '

2. — Pour trouver 'ordre u, supposons les y fixes dans
la matrice (11). Cette matrice doit représenter un nombre fini
de droites lorsqu’on considere les z comme les coordonnées
courantes. '

Supposons que le plan z.==0 n’est pas un plan singulier

L Mathesis, 1902, 1ls.

% Bul. de UAcad. de Belgique, 1907, — N. A. M. 1907, VlIa. — Memoires de la Soc. des Sc. du
Hainaut, 1908, 1Xe .

2 Mém. Ist. Lomb., 1904. — Xlg .

L Mém. Soc. Sc. Liege, 1908. — VIIg.
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