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118 C JAC COT TET
à R. Donc, un état de c étant choisi aussi grand que l'on
veut, on peut aller assez loin dans la suite particulière
d'équations considérées pour que ces équations n'aient pas
de racines dont le module soit compris entre R et v. A ces
équations s'applique le raisonnement habituel prouvant que
h ==: p.

L. Leau (Paris).

UNE DÉMONSTRATION

DU THÉORÈME DE DESCARTES

La règle des signes, dite de Descartes, attribuée aussi à

Harriot, peut être énoncée : Le nombre p des racines positives,

non nulles, d'un polynôme entier en x, à coefficients
réels, est au plus égal au nombre v des variations de signe
que présente la suite des coefficients ; la différence v — p est

toujours un nombre pair.
Voici une démonstration basée sur les propriétés qui

résultent de la continuité de la fonction entière.
Nous démontrons tout d'abord la seconde partie, v — p

est un nombre pair.
Il existe un nombre A tel que, pour tous les x supérieurs

à A, le polynôme a le signe de son premier coefficient et un
nombre positifs tel que, pour tous les x positifs, inférieurs
à s, le polynôme a le signe du dernier coefficient. Les
racines positives du polynôme sont comprises entre s et A. En
examinant les signes du polynôme pour x —~ s et x A, on
obtient la proposition suivante : Le nombre p des x^acines

positives d'un polynôme entier en x à coefficients réels est

pair ou impair, suivant que les coefficients extrêmes sont de
même signe ou de signes différents.

Dans le premier cas, lorsque les coefficients extrêmes ont
le même signe, le nombre v des variations de signe est pair,
dans le second il est impair. Les deux nombres v et p étant
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ensemble pairs ou impairs, leur différence v — p est
toujours un nombre pair.

Pour démontrer la première partie du théorème, p £= c,

considérons le polynôme f(pc) et sa dérivée f (x) :

/ (•*')— *0*" ~b aiJp®
1

-f- ci%xn -f- c(Jt |x -f- (ta

f^ naQxn-~x+{n—--\)a1xn~'1[ii-)r—il\a1txn~~i + + V_i •

Ces deux polynômes ont leurs coefficients de même rang
aussi de même signe, sauf le dernier, qui, en général, n'a

pas de correspondant dans f1 {x). La suite des coefficients de
la dérivée présente donc un nombre de variations de signe
égal ou inférieur d'une unité au nombre des variations du
polynôme donné. Si l'on désigne par p' et c', généralement
par p[k) et v{k\ les nombres p et v concernant les dérivées f {x),
respectivement nous avons

(1) /£<•,

et, en vertu du théorème de Rolle,

(2) y - i.
Supposons que, contrairement au théorème de Descartes,

on ait p > v. La différence c — p étant un nombre pair, p ne
peut être égal à v + 1, on doit avoir

(3) p >± 2

Il résulte des inégalités (1), (2) et (3)

f Jè v' + R f > v' •

Le théorème de Descartes serait ainsi en défaut pour la
dérivée première.

Mais le raisonnement précédent s'appliquerait à cette
dérivée première et l'on trouverait p" > v" ; le théorème serait
aussi en défaut pour la dérivée seconde. Et ainsi de suite. Le
théorème'serait donc en défaut pour la dérivée d'ordre (n — 1),
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p(n~A) > e(H_l) ; et, comme la différence — v{n~~l) est un
nombre pair, on aurait

p[n-\) x + 2

Cette dérivée est un polynôme du 1er degré qui aurait au
moins deux racines positives L'hypothèse p > v est donc
fausse et le théorème de Descartes démontré.

C. Jaccottet (Lausanne).

SUR UNE INTÉGRALE AUX DIFFERENCES

M. Markoff1 détermine la valeur de l'intégrale aux
différences finies

(0...C0)

2^* M
(n

dans le cas où $(r) est une fonction rationnelle et entière
der; il l'obtient par l'application répétée, et quelque peu
laborieuse, du procédé d'intégration finie par parties. Nous
nous proposons d'indiquer ici une méthode plus rapide,
$(r) étant d'ailleurs supposé quelconque.

Posons
1 -f- x -f- - -f- ocn —

On a évidemment

(0,1,...») /H
r(r — 1) (/ — p + l)JCr — xp - p (0 1, 2 .4

dTP
(r) a%

et, si l'on multiplie les deux membres de l'identité par
(0)

P

(0, 1, 71)p,P 11

('•)
P- dxP

1 Difpercnzenrechnung, Leipzig, 1896.
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