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NOUVELLE DÉMONSTRATION DU THÉORÈME
DE D'ALEMBERT

Je demande la permission de retenir un moment l'attention
des lecteurs de XEnseignement mathématique sur une
démonstration élémentaire nouvelle de ce théorème
fondamental.

Nous supposerons l'ordre que voici : 011 constate qu'une
équation algébrique de degré n peut avoir n racines et
qu'elle n'en saurait avoir davantage, distinctes ou non; on
établit alors, pour de telles équations, les relations qui
existent entre les coefficients et les racines et les propriétés
des équations dérivées relativement aux racines multiples.

Nous présentons ensuite, sous une forme un peu
différente de la forme usuelle, le théorème qui a trait à la continuité

des racines. Je me servirai, en l'appliquant aux racines
nulles, d'un raisonnement que j'ai récemment donné 1

pour
rendre rigoureux l'exposé classique.

Théorème. Les coefficients de Véquation

(1) fißß) — C(qOC11 -j- CL±X —|— - •. —|-On ZSZ 0

tendant simultanément et respectivement, suivant une loi donnée

quelconque, vers ceux de Véquation

|2) y (.r) m ctQx -f- <x±x —{— - —f— a« 0

et a0 n'étant pas nul, si la lve équation a pour chaque ensemble

des valeurs des coefficients n racines, ces racines ont des

limites qui sont racines de la 2IW équation
Il s'agit de prouver l'existence de n nombres ^ £„

auxquels on puisse faire correspondre les racines xt xn de

l'équation (1) en sorte que l'on ait | xh — \i I < n si j cij — OLj
| <

1 Revue de Mathématiques spéciales ; février 1001-).
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Ce premier point acquis, le second découlera de la continuité

du polynôme f(.r)
Posons

jM)
(3) giy) fix + y)A? y"+ •• + wr + fix) i>0y" .+ •• +

C-l J d" C — ^ C'O — V

Dans la suite, x sera remplacé, dans f(x -f- y), successivement

par diverses racines des équations (1) en même temps que
les coefficients a recevront un système de valeurs qui pourra
ne pas concorder avec ces racines, en sorte que Ton ait les

coefficients d'une équation (1) et un nombre m racine d'une
autre. Mais on peut fixer une quantité positive R telle que
les modules de toutes les racines des équations (1) soient
inférieurs à R. 11 en résulte que des polynômes donnés en

Ui et x seront limités supérieurement en module : tels les

polynômes b.
Nous allons à présent classer, dans une certaine mesure,

les racines des équations (1). Etant donnée une quantité
positive X, l'équation (1) a peut-être, pour chaque système des

coefficients, des racines telles que \ff (V) | < X ; leur nombre
finit, les a'i tendant vers les ai, par ne pas descendre au-
dessous d'un certain minimum ih (X) ; si X décroît et tend vers
zéro, l'entier /MX) a lui-même un minimum ni (qui peut être
nul). Dès lors, si l'on désigne n — ih par vi, il existe une
quantité positive lu et une suite des systèmes cii tendant vers
les «/, tels que pour chaque équation (1) correspondante,
vi racines satisfassent à la condition | f' {.m | > gi Pour cette
suite d'équations nous séparons ainsi des fh autres un ensemble

Ei de vi racines.
Considérons ensuite les deux inégalités

I f' f**) I < X ^ | f" (.r) | < \ ;

le nombre des racines de (ij qui les vérifient, les m tendant
vers les ai ne descend pas finalement au-dessous d'un mini-
anuiLi //2 (X) qui est au plus égal à ih(l) et qui a lui-même,
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pour 1 infiniment petit, un minimum n2 au plus égal à nx.
Posant ni — n2 — v2, il existe une quantité positive et une
suite des systèmes at tendant vers les ai, tels que pour
chaque équation (1) correspondante, v2 racines satisfassent à

1
la condition ^

| f" (x) j > u2 mais aussi, 1 étant donné à

volonté inférieur à ^ et les ai assez près de leurs limites, à

l'inégalité | f [oc) | < 1. S'il y a quelque équation commune
à cette suite et à la précédente, aucune racine du nouvel
ensemble E2 ainsi défini n'appartient à Ei. La classification
se poursuivra ainsi au moyen de suites d'équations (1), la

somme des nombres des racines attachées à chaque suitè
étant manifestement égale à n.

Pour plus de simplicité, aux quantités etc., nous
substituerons la plus petite \x

Portons notre attention sur l'ensemble E^ et sur la suite
correspondante S des équations (1) ; appelons

(4) ft\x) — - ah xn~L — 0

(5) f%[x) — la^x11'1 0

deux équations de la suite S, puis xf une racine de (4) appartenant

à E^ ; posons

(6) /"V')
gz (j) — —— f + ••• + f2(x')y + M*')

b'j + + b"n_l7 + b"n 0 \b"o — a"o)

Nous allons voir que, les a£ et les cl^ étant suffisamment
près des l'équation (6) a p racines très petites et préciser
le sens de cette locution.

Soient

On a

(') g*v)- c0).r" + (< - rib'"~l + - + (Ci - «J y +
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Nous mettons ainsi en évidence les quantités au sujet
desquelles on sait que

I b'n.p I > f»' t I bn-p+i1 < * ' " ' 'Vl < k

et les quantités c desquelles on peut affirmer, | x \ étant
inférieur à R, que \ct\< 1si seulement

| CLj Qtj
| <[ II 1 Ctj Uj j < D

l étant un facteur fixe dont il est aisé de préciser une valeur.
Dès lors, posant U — u nous avons

iCp+iK»— Kj<2*-
D'ailleurs (et pour toute la suite), on peut trouver M assez

grand pour que | b\ — c£ \ < M c'est-à-dire

!//'(< M,..., iC^KM •

Je vais montrer que l'on peut trouver un nombre positif r
fixe et un nombre positif u infiniment petit avec 1 tels que
le module d'aucune racine de (6)ne soit compris entre u et/'.

Ecrivons ainsi l'équation (6)

(8) î>n_p+uy~~l + + bny—p— — \bQyn~~p + + bn_p)

Si r est assez petit et si | y | < /', le module du second
membre est supérieur à un nombre positif cl ; \ diminuant,
on pourra laisser r et par suite d constants. Le module du
premier membre serait inférieur à ce même nombre d si l'on
prenait

lCP+1r' [<i. ;Cr^l<f
ou, à plus forte raison, \ y\ supérieur à la plus grande dès
quantités

~d ' - ' V d

Soit k le plus grand des nombres ~ y/-^ * on peut

supposer À inférieur à 1 et à ^ ; dès lors, choisissant pour u,

L'Enseignement mathém., 11« année ; 1909. 8
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kl, nous sommes assurés qu'il n'y aura pas de racines y
telles que u < } y j < /• ^et //. <

Il va être aisé de démontrer à présent, en suivant la voie
habituelle que, 1 étant suffisamment petit, il y a exactement
p racines inférieures à u en module.

I h"
Le produit des racines est en module ~ c'est-à-dire

I
0

quantité infiniment petite avec V, puisque \ci \ <£ 1 et

que | a0 | a une limite positive. Donc, 1 étant suffisamment
petit, les n racines de (6) ne pourront être toutes supérieures
à r ; quelques-unes seront par suite inférieures à u ; il y en
aura exactement p. S'il y en avait moins, p — h, le quotient
//

'

in--p+h eg^ au signe près, le rapport (2t étant la
hn-p 1»-P

somme des produits t à t des racines) serait plus grand en
module qu'une quantité fixe puisque d'une part j y | < 2R et
d'autre part dans un terme de 2n-~P+h tous les | y | sont
supérieurs à l'un d'entre eux au moins dans les autres termes

* » * 25i

< — de là une contradiction, siinférieurs à u ; or n— p-\-h

^
n—p

f*

1 est assez petit. De même s'il y avait p -f- h racines de

module inférieur à u, le rapport au signe près égal à

-,
n—p—h p0arrajt être supérieur en module à n'importe quel
^n—p

nombre donné, car chaque terme de contient au moins
un y tel que | y | < u et | 2n-p-h | est, comme | 2n-P+h | dans

l'hypothèse précédente, plus grand qu'un certain nombre

positif. D'ailleurs "~,p~
h

< -- ; de là encore une contradic-
f)n—p **

tion si 1 est assez petit. Gomme les diverses inégalités de

même sens ainsi imposées à À, et qu'il serait oiseux d'écrire,
sont en nombre limité, nous pouvons les supposer toutes
vérifiées.

Alors, envisageons la suite S à partir d'un moment où il
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en sera toujours ainsi. J'appelle x[ une racine (système E^)

de la lre équation, x% une des p qui lui sont associées dans

la 2me, x une des p qui lui sont de même associées dans la 3ine

et ainsi de suite.
Dans ces conditions q et s étant deux entiers quelconques,

xq+s est une des racines associées à x'q, car

I *q+s — I - I ïq+s — *1 I + I xq ~ 'T1 I < 2 + 2 " '' '

u étant toujours inférieur, pour la suite S, à ^
Posant

4 — -xVi '

la série

A + ;v2 + •••

est convergente. Quel que soit n' on peut trouver q tel que

pour toute valeur de s

| yq + yq+[ + -f ?q+s-i I < ?,/
' ou I

Xq ~ -*'q+> I < •

II'suffit de choisir q assez grand pour que, à partir de

Féquation de rang q, la quantité a ne dépasse point y/, c'est-

à-dire que X reste inférieur à j La suite x[ x2... x\... a donc

une limite I'. Avec un second choix quelconque des racines
associées à x± on aurait manifestement la même limite. Sortons

à présent de la suite S; si Ton remplace l'équation (4)

par l'équation (2) à laquelle £' satisfait et l'équation (5) par
Féquation (1) dont les coefficients ai diffèrent des de moins
de X en module, les raisonnements faits plus haut prouvent
qu'il y a exactement p racines qui diffèrent de £ de moins de

j ; d'ailleurs les/? — 1 dérivées de /'sont évidemment nulles

pour £', la pnu' ne l'étant point. Ainsi se trouve établi le théorème

énoncé, avec la précision habituelle1 relative au nombre
des racines infiniment voisines d'une racine de Féquation
limite.
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Théorème de d'Alembert. — Toute équation algébrique de

degré n
(9) f\x) + a±xn-~l + o

a n racines distinctes ou non.
Je m'appuierai sur le lemme suivant :

Si f(x) prend la valeur c, et si Von trace avec un rayon
quelconque r un cercle dont le centre a c pour afpxe, f(x)
prend certainement comme valeur Va/fixe d'un point de
n'importe quel rayon de ce cercle.

Soient
f(x0) ~ c x zr: ,r0 -)- y

et

(10) f(xo -L y) — V* + ^ij" + + hn—\y ~f~ c • «A — c0>

Supposons généralement

A-i — • • — 'V-^+i — 0 ^ 0 •

on a

/I«» + ri < + y+ + •• + i •

Si y p (cos ö ^ i sin ©), que p soit assez petit et que Ton
fasse varier e de 0 à 2k de manière que le point d'abscisse
Xq -h y décrive un petit cercle autour du point x0, le point
f(xo + y) tournera autour du point c de manière à effectuer
p tours complets en restant dans un cercle de rayon un peu
supérieur à pp | bt | D'une manière précise, on peut prendre

p assez petit pour que | f(x0 + y) — c\ < r ; d'ailleurs
l'argument de yp y"~~p b^ étant fonction
continue de 0 (p constant), le point f(xQ + y) rencontre bien
chaque rayon au moins une fois.

Le théorème de d'Alembert est alors immédiat. Exact pour
les deux premiers degrés, admettons-le jusqu'au degré n — i.
Nous allons l'établir pour un polynôme quelconque de
degré n<, fix), en observant d'abord que si un polynôme de

degré n a une racine, il en a certainement n — i autres comme
on le voit aisément au moyen d'une division.

Pour une valeur quelconque x0 f(x) prend la valeur c.
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Joignons le point G d'abscisse c à l'origine 0. Sur le

segment GO à partir de C il y a indéfiniment des points dont
les affixes sont pris par f(x). Soit G le point d'affixe c' de

ce segment, tel que I c'| soit la limite inférieure des
modules de ces affixes. On peut former une suite cA c2 cp

de ces quantités ayant cr pour limite. Cela posé, l'équation

(11) g[x) — Ciüx11 -f- atxn~l -j- + an — cp — 0

ayant une racine, en a n. Lorsque p est infiniment grand,
ces racines ont des limites qui sont racines de l'équation
limite; c' est donc nul, sans quoi l'on pourrait trouver sur
C'O des points dont les affixes seraient encore des valeurs
de f(œ). Ainsi l'équation limite est l'équation (9). Le théorème

est donc vrai pour le degré n : il est général.
Remarque. —J'ai fait allusion plus haut au théorème relatif

à la continuité des racines. En se reportant aux démonstrations

classiques on voit aisément que la difficulté provient
(dans le cas par exemple des coefficients a0 ai ap—i
infiniment grands) de ce que l'on ne sait rien sur les racines
qui ne sont pas infiniment grandes et que l'on ignore si elles
sont limitées supérieurement. Je lève cette difficulté en prouvant

qu'il n'existe pas de racines dans une couronne
comprise entre un cercle de rayon fixe et un autre de rayon
infiniment grand. On peut, mais sans avoir le bénéfice de cette
précision, raisonner plus rapidement comme il suit : soit v

une variable positive croissante infiniment grande; pour l'un
donné de ses états il arrive un moment (coefficients assez
près de leurs limites) à partir duquel le nombre des
modules supérieurs à v ne descend pas au-dessous d'un certain
minimum (il y a au moins un tel module); ce minimum est
une fonction de e, Ä(e), non croissante et qui a par conséquent

une limite inférieure h. Par définition, c'est ce nombre
h qui est le nombre des racines infiniment grandes et qu'il
faut déterminer. Il existe certainement un nombre R assez
grand, mais fixe, et une suite de systèmes de coefficients
tendant vers leurs limites, tels que, pour chaque équation
correspondante, h modules seulement soient supérieurs
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à R. Donc, un état de c étant choisi aussi grand que l'on
veut, on peut aller assez loin dans la suite particulière
d'équations considérées pour que ces équations n'aient pas
de racines dont le module soit compris entre R et v. A ces
équations s'applique le raisonnement habituel prouvant que
h ==: p.

L. Leau (Paris).

UNE DÉMONSTRATION

DU THÉORÈME DE DESCARTES

La règle des signes, dite de Descartes, attribuée aussi à

Harriot, peut être énoncée : Le nombre p des racines positives,

non nulles, d'un polynôme entier en x, à coefficients
réels, est au plus égal au nombre v des variations de signe
que présente la suite des coefficients ; la différence v — p est

toujours un nombre pair.
Voici une démonstration basée sur les propriétés qui

résultent de la continuité de la fonction entière.
Nous démontrons tout d'abord la seconde partie, v — p

est un nombre pair.
Il existe un nombre A tel que, pour tous les x supérieurs

à A, le polynôme a le signe de son premier coefficient et un
nombre positifs tel que, pour tous les x positifs, inférieurs
à s, le polynôme a le signe du dernier coefficient. Les
racines positives du polynôme sont comprises entre s et A. En
examinant les signes du polynôme pour x —~ s et x A, on
obtient la proposition suivante : Le nombre p des x^acines

positives d'un polynôme entier en x à coefficients réels est

pair ou impair, suivant que les coefficients extrêmes sont de
même signe ou de signes différents.

Dans le premier cas, lorsque les coefficients extrêmes ont
le même signe, le nombre v des variations de signe est pair,
dans le second il est impair. Les deux nombres v et p étant
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