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NOUVELLE DEMONSTRATION DU THEOREME
DE D’ALEMBERT

Je demande la permission de retenir un moment ['attention
des lecteurs de I'Enseignement mathématique sur une dé-
monstration élémentaire nouvelle de ce théoréeme fonda-
mental.

Nous supposerons 'ordre que voici: on constate qu'une
équation algébrique de degré n peut avoir n racines et
qu’elle n'en saurait avoir davantage, distinctes ou non; on
établit alovs, pour de telles équations, les relations qui
existent entre les coeflicients et les racines et les propriétés
des équations dérivées relativement aux racines multiples.

Nous présentons ensuite, sous une forme un peu diffé-
rente de la forme usuelle, le théoréeme qui a trait a la conti-
nuité des racines. Je me servirai, en appliquant aux racines
nulles, d’un raisonnement que j'ai récemment donné! pour
rendre rigoureux I'exposé classique.

THuEoREME. Les coefficients de U'équation

(1 ) = a2 + a4 an = 0
0

tendant stmultanément et respectivement, suivant une lot don-
née quelconque, vers ceux de Uéquation

(2) (1) = g2 + w2 =0,

el a, n'€tant pas nut, st la 1" équation a pour chague ensem-
ble des valeurs des coefficients n racines, ces racines ont des
limites qui sont racines de la 2™ équation. |

I1 s’agit de prouver l'existence de n nombres & ... £, aux-
quels on puisse faire correspondre les racines x; ... x, de
I'équation (1) en sorte que Von ait|;— &\ < n si |aj— o] < e.

1 Revue de Mathématiques spéciales : février 1909,
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Ce premier point acquis, le second découlera de la conti-
nuité du polynome f(x) .

Posons
'/.(n.)
) . . () n 7 . - n
31 gy = fle 4 )= 2 3"+ o [y fla) = b A+
/)”_ly -+ l)”, — 0 (b, = a,)

Dans la suite, x sera remplacé, dans f(x 4 y), successive-
ment par diverses racines des équations(ljenméme temps que
les coefficients ¢ recevront un systéme de valeurs qui pourra
ne pas concorder avec ces racines, en sorte que l'on ait les
coefficients d'une équation (1) et un nombre .r racine d’'une
autre. Mais on peut fixer une quantité positive R telle que
les modules de toutes les racines des équations (1) soient in-
férieurs a R. 1l en résulte que des polyndomes donnés en
a; et x seront limités supérieurement en module : tels les
polynomes 6.

Nous allons & présent classer, dans une certaine mesure,
les racines des équations (1). Etant donnée une quantité po-
sitive A, I'équation (1) a peut-étre, pour chaque systeme des
coeflicients, des racines telles que | /" (x)| < 4; leur nombre
finit, les «; tendant vers les «;, par ne pas descendre au-
dessous d’un certain minimum 7 (1) ; si A décroit et tend vers
zéro, I'entier n, (1) a lui-méme un minimum 7n; (qui peut étre
nul). Deés lors, si l'on désigne n — n; par v, il existe une
quantité positive p1 et une suite des systémes a; tendant vers
les «;, tels que pour chaque équation (1) correspondante,

v; racines satisfassent & la condition | /' (1| > w . Pour cette

suite d’équations nous séparons ainsi des n, aulres un ensem-
ble E; de vy, racines.

Considérons ensuite les deux inégalités

4 1 1 "
<A G e | <

le nombre des racines de (1) qui les vérifient, les «; tendant

vers les «; ne descend pas finalement au-dessous d'un mini-
mum nz () qui est au plus égal & n:(2) el qui a lui-méme,




112 L. LEAU

pour i infiniment petit, un minimum n. au plus égal & n;. Po-
sant n, — ny =v,, il existe une quantité positive u, et une
suite des systemes a; tendant vers les a;, tels que pour
chaque équation (1) correspondante, v, racines satisfassent &

la condition 517" (@) | > pe mais aussi, A étant donné a vo-

lonté inférieur a u et les a; assez prés de leurs limites, a
Iinégalité | /" (x)| < 1. S'il y a quelque équation commune
a cette suite et a la précédente, aucune racine du nouvel
ensemble E, ainsi défini n’appartient a E,. La classification
se poursuivra ainsi au moyen de suites d’équations (1), la
somme des nombres des racines attachées a chaque suite
étant manifestement égale a n.

Pour plus de simplicité, aux quantités p, , g etc., nous
substituerons la plus petite p'.

Portons notre attention sur 'ensemble E, et sur la suite
correspondante S des équations (1); appelons

’

(%) filx) = za, 2" =0,

(5) falx) = Za AP =0,
deux équations de la suite S, puis &’ une racine de (4) appar-
tenant a E,; posons

(6) 3 (x')

von n ”

l)3+ +bn13+b: , (b —=a)

Nous allons voir que, les «; et les a; étant suffisamment
pres des a;, I’équation (6) a p racines ires petites et préciser
le sens de cette locution. '

Soient

S /)’ et /); — bi — c..
On a
(7) gﬁ(‘y) — (l); - CO)J‘n + (b; - Cl) _/Y”_'l + et + (bn_l - Cn,_]) J +

b, —c, =0 (b

n n
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. . ’ . T4 ! . 2
Nous mettons ainsi en évidence les quantités 6" au sujet
desquelles on sait que '

by 1> 075 Dby 1< Vo 1<h < @)

et les quantités ¢ desquelles on peut affirmer, | 2" | étant in-
férieur a R, que |¢;| < &, si seulement

i — e <D d—e | <)

[ étant un facteur fixe dont il est aisé de préciser une valeur.
Dés lors, posant p' — 4 = u, nous avons

i /‘;/z-p | > ps | bjt—p—{—l <2k, s I',z,z, <2k

D’ailleurs (et pour toute la suite), on peut trouver M assez
> 2 ¢ ) ) 1 . a
grand pour que | b; — ¢;| < M c’est-a-dire

M, b, <M

Je vais montrer que 'on peut trouver un nombre positif »
fixe et un nombre positif z infiniment petit avec ) tels que
le module d’aucune racine de (6)ne soit compris entre u et r.

Ecrivons ainsi I'équation (6)

4

" 1 v "o
(8) bn——p-l-ﬁ' + by = — (l)oy" P+ I)n‘___P) )

Si r est assez petit et si |y | < r, le module du second
membre est supérieur a un nombre positif ¢ ; x diminuant,
on pourra laisser /' et par suite d constants. Le module du
premier membre serait inférieur a ce méme nombre d si 'on
prenait

. ” . d /A CZ
i [)/1.—P+1y l { < n ; /)”’y ¢ I < -,
l p
ou, a plus forte raison, |y | supérieur a la plus grande des
quantités
4 Y S 4 .i_‘)f.}
d 7 d .
: | ' 2 P /3p
Soit k£ le plus grand des nombres —5— ey \/—5 , on peut

- , . N . F . . e
supposer i inférieur a 1 et a 57 5 des lors, choisissant pour «,

L’Enseignement mathém., 11¢ année ; 1909. 8
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kX, nous sommes assurés quil n’y aura pas de racines y

telles que u < |y | < r (et w < 'T> L o

11 va étre aisé de démontrer a présent, en suivant la voie
“habituelle que, i étant suffisamment petit, il y a exactement
p racines inférieures 4 u en module. ‘

!/)I/ .
Le produit des racines est en module | - , c'est-a-dire

b
0

; ! quantit‘é inﬁniment petite avec i, puisque el < Xet

que | @, | a une limite positive. Donc, 1 ‘étant suffisamment

petit, les n racines de (6) ne pourront étre toutes supérieures
r; quelques-unes seront par suite inférieures a u ; il v en

aura exactement p. S’il y en avait moins, p — &, le quotient
4

by p+h

)

qui est, au signe pres, e rapport 2" (3, étant la
n—p n—p

somme des produits ¢ a ¢ des racines) serait plus grand en
module qu'une quantité fixe puisque d’une part | y | < 2R el
d’autre part dans un terme de 2,—ptn lous les | y | sont supé-

rieurs a 7, 'un d’entre eux au moms dans les autres termes

b 2) ,
. ’ d \ — } . . . ) .
inférieurs a u ; or- _an_—H < =, de la une contradiction, si
"n—p f’-
A est assez petit. De méme s’il y avait p 4+ /& racines de mo-

5 3 v, . . )/I“p—"'h . \ ’ ' )

dule inférieur a u, le rapport —/=—" . au signe preés égal a

| ; o ‘ By ‘ : ,

)

-’S’::!il pourrait étre supérieur en module a n 1mp01 te quel
n—p

nombre donne car chaque terme de 3,_, contient au moins
un y tel que |y | < w et | Zu—p—s| est, comme | Z,_, 1, | dans
I’hypothése précédente, plus grand qu'un certain nombre

”

b M
; ! : .
positif. D'ailleurs ——-"3-——L < P de la encore une contradic-

)ll~—p ,
tion si 1 est assez pelit. Comme les diverses inégalilés de
méme sens ainsi imposées a i, et qu’il serait oiseux d’écrire,
sont en nombre limité, nous pouvons les supposer toutes ve-
rifiées. |
Alors, envisageons la suite S a partir d un moment ou il
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N\

en sera toujours ainsi. Jappelle x, une racine (systeme E,)
de la 1™ équation, x, une des p qui lui sont associées dans
la 2™¢, x, une des p qui lui sont de méme associées dans la 3™°
et ainsi de suite. |

Dans ces conditions ¢ et s étant deux entiers quelconques,

! . y [ 1 ’
4, est une des racines associées a x,, car

. N . . ' o ‘ - l ' r ]‘__ “
| Ty — T I E Ly = | H o — x| <g+g5="

. - ’ . i | I‘
u étant toujours mférieur, pour la suite S, a 5 -

Posant

’

’ 7 =
x;, — xi—}—l =,

la série

R . ’ S . ] .
est convergente. Quel que soit »" on peut trouver ¢ tel que
pour toute valeur de s

'l ‘I .l N ', ,.I ‘
Hq+3q+l+“'+9q+x—ll<’ . ou I.Iq—.x,q+.\]<i’.

Il suffit de choisir ¢ assez grand pour que, a partir de
I'équation de rang ¢, la quantité « ne dépasse point %', c'est-
o
k
une limite &. Avec un second choix quelconque des racines
associées a x, on aurait manifestement la méme limite. Sor-
tons a présent de la suite S; si I'on remplace 1'équation (4)
par Véquation (2) a laquelle £ satisfait et I'équation (5) par
I'équation (1)dont les coeflicients «; différent des «; de moins
de 2 en module. les raisonnements faits plus haut prouvent
qu’il y a exactement p racines qui différent de £ de moins de

< . ' . PR R ‘s ’ ’ ’
a-dire que ) reste inférieur a —-. La suite &, x,... x;... a donc

L

— 3 dlailleursles p — 1 dérivées de f sont évidemment nulles

pour &', la p™° ne I'étant point. Ainsi se trouve établi le théo-
réme énoncé,avec la précision habituelle relative au nombre
des racines infiniment voisines d’une racine de 1’équation
limite. ' | |
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TuroriME DE D’ALEMBERT. — Toule équation algébrique de
degré n |
(9) fix) = ax" + ayx" 1+ ... &+ a" =0

a n racines distinctes ou non.

Je m’appuierai sur le lemme suivant :

St 1(x) prend la valeur c, et si l'on trace avec un rayon
quelcongue v un cercle dont le centre a ¢ pour affixe, f(x)
prend certainement comme valeur Uaffize d’un-point de n’im-
porte quel rayon de ce cercle.

Soient

[l = ¢, e =a, + ¥
et

(10) flxy, + ) = /)0')'” - /)1)'" 1 + ...+ [)u—lj‘ 4+ ¢ . (hy = ¢,)

Supposons généralement

-

by g =2b, o=..= 1)1L~p+l =0 /'n~p = ) .
on a

y ; ? n—p -
[l + 5 =c 4y [l)n——p + /'n—-p——1 T o it A K

Si y = p (cos 6 + isin g), que o soit assez petit et que I'on
fasse varier ¢ de 0 a 2r de maniére que le point d’abscisse
Xy + y décrive un petit cercle autour du point x,, le point
/(x, + y) tournera autour du point ¢ de maniére a effectuer
p tours complets en restant dans un cercle de rayon un peu

s e h P . ? "\ 3 2 - . - -
supérieur a p I b,_, | - D’une maniére précise. on peut pren
dre p assez petit pour que | f(r, + y) — ¢ | < r; d’ailleurs

/I‘—‘-p ’ " . .
P bo] étant fonction con-

tinue de ¢ (p constant), le point f{x, + y¥) rencontre bien
chaque rayon au moins une fois.

Le théoréme de d’Alembert est alors immédiat. Exact pour
les deux premiers degrés, admettons-le jusqu'au degré n — 1.
Nous allons l’établir pour un polynéme quelconque de de-
gré n, f(x), en observant d’abord que si un polynéme de de-
gré n a une racine, il en a certainement n — 1 autres comme
on le voit aisément au moyen d’une division.

Pour une valeur quelconque x,, f(r) prend la valeur c.

l’argljment de y” [/9
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Joignons le point C d’abscisse ¢ a I'origine O. Sur le seg-
ment CO a partir de C il y a indéfiniment des points dont
les affixes sont pris par f(x). Soit C' le point , d’affixe ¢" de
ce segment, tel que | ¢'| soit la limite inférieure des mo-
dules de ces affixes. On peut former une suite ¢, ¢, ... Cp ...
de ces quantités ayant ¢’ pour limite. Cela posé, I'équation

(11) glr) = a2 + a2+ a, —c, =0,

ayant une racine, en a n. Lorsque p est infiniment grand,
ces racines ont des limites qui sont racines de 1'équation
limite; ¢ est donc nul, sans quoi 'on pourrait trouver sur
C'O des points dont les affixes seraient encore des valeurs
de f(x). Ainsi I'équation limite est I'équation (9). Le théo-
réme est donc vrai pour le degré n: il est général.
Remarque. — J'ai fait allusion plus haut au théoréme relatil
4 la continuité des racines. En se reportant aux démonstra-
tions classiques on voit aisément que la difficulté provient
(dans le cas par exemple des coeflicients @, , @, ... a,_, infi-
niment grands) de ce que l'on ne sait rien sur les racines
qui ne sont pas infiniment grandes et que 'on ignore si elles
sont limitées supérieurement. Je léve cette difficulté en prou-
vant qu'il n’existe pas de racines dans une couronne com-
prise entre un cercle de rayon fixe et un autre de rayon infi-
niment grand. On peut, mais sans avoir le bénéfice de cette
précision, raisonner plus rapidement comme il suit: soil ¢
une variable positive croissante infiniment grande; pour 'un
donné de ses élats il arrive un moment (coefficients assez
pres de leurs limites) & partir duquel le nombre des mo-
dules supérieurs a ¢ ne descend pas au-dessous d’un certain
minimum (il y a au moins un tel module); ce minimum est
une fonction de ¢, k(v), non croissante et qui a par consé-
quent une limite inférieure h. Par définition, ¢’est ce nombre
i qui est le nombre des racines infiniment grandes et qu’il
faut déterminer. Il existe certainement un nombre R assez
grand, mais fixe, et une suite de systémes de coefficients
tendant vers leurs limites, tels que, pour chaque équation
correspondante, £ modules seulement soient supérieurs
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a R. Donc, un état de ¢ étant choisi aussi grand que 'on
veut, on peut aller assez loin dans la suite particuliere
d’équations considérées pour que ces équations n’aient pas
de racines dont le module soit compris entre R et ¢. A ces
équations s’applique le raisonnement habituel prouvant que
h = p.

L. Leav (Paris).

UNE DEMONSTRATION
DU THEOREME DE DESCARTES

La regle des signes, dite de Descartes, atiribuée aussi a
Harriot, peut étre énoncée : Le nombre p des racines posi-
tives, non nulles, d’un polynéme entier en x, a coefficients
réels, est au plus égal au nombre v des variations de signe
que présente la suite des coefficients; la différence v— p est
toujours un nombre pair.

Voici une démonstration basée sur les propriétés qui ré-
sultent de la continuité de la fonction entiére.

Nous démontrons toul d’abord la seconde partie, v — p
est un nombre pair. |

Il existe un nombre A tel que, pour tous les & supérieurs
a A, le polynéme a le signe de son premier coeflicient et un
nombre positif'¢ tel que, pour tous les wx positifs, inférieurs
a ¢, le polynome a le signe du dernier coeflicient. Les ra-
cines positives du polynome sont comprises entre ¢ et A. En
examinant les signes du polynome pour x ==¢ et x = A, on
obtient la proposition suivante : Le nombre p des racines
positives d’'un polynome entier en x a coeflicients réels est
pair ou impair, suivant que les coeflicients extrémes sont de
méme signe ou de signes différents.

Dans le premier cas, lorsque les coeflicients extrémes ont
le méme signe, le nombre ¢ des variations de signe est pair,
dans le second il est impair. Les deux nombres v et p étant
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