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SUR LES TRAVAUX ARITHMÉTIQUES
de Lagrange, de Legendre et de Gauss.

Le premier travail arithmétique de Lagrange fut la démonstration

de la solution connue de l'équation de Pell (.Miscel.
Taurin. 1766-69). Il fait voir que le calcul de Brouncker aboutit

toujours a une solution, laquelle est la plus petite possible1

; que cle cette solution on déduit toutes les autres, par
des suites ou des récurrences déjà indiquées par Euler ; que,
clans le cas où elle est possible, la solution de Véquation
x2 — ky2 — 1 se ramène à celle cle Véquation de Pell ;

il ramène à cette dernière différents cas de l'équation x2 — ky2
l.

En 1768 (M. D.), il démontre l'important théorème sur le
maximum du nombre des racines des congruences, déjà
traité autrement par Euler, et en montre l'importance, avec
des corollaires qui le complètent. (E. M. 1907, p. 294).

En 1769 (Id.), il donne la solution de l'équation ax2 + b y2 ;

à laquelle se réduit toute équation du second degré.
En 1770 (Id.), même sujet. C'est là qu'il imagine la notation

Eco, pour désigner le plus grand entier contenu dans le
nombre «, notation qu'on a remplacée par celle-ci : Eo
(Legendre) et [w] (Gauss) L

1 Voir par exemple Mathesis 1906, p. 233.
2 L'idée de remplacer les nombres non entiers parleur partie entière s'est présentée aux

premiers calculateurs qui ont eu à opérer sur des nombres de ce genre ; mais ce n'était là
qu'un procédé abréviatif. La théorie de la division, la recherche du p. g. c. d. de deux nombres,

l'extraction de la racine carrée, et plus tard l'analyse indéterminée du premier puis du
second degrés utilisaient implicitement la fonction Em; mais ce n'était encore qu'une
application de la méthode instinctive des approximations successives. Lagrange l'emploie explicitement

dans sa solution de l'équation de Pell ; puis Legendre, dans une formule arithmétique
qu'on signale plus loin. Mais c'est surtout Gauss qui en a compris l'importance ; et depuis,
elle est utilisée à chaque instant dans la théorie des nombres.

On en a même déduit l'idée de plusieurs autres fonctions arithmétiques dont les suivantes :

G •>, qui désigne l'entier, E Uo -f i V le plus voisin de m (Kronecker)
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La même année (Id.), il donne la preuve de la solubilité de

l'équation oo" — cty2 — b 0, la généralisation du théorème
d'Euler sur le produit de deux sommes de quatre carrés et
la première démonstration qu'on ait encore eue du théorème
de Bachet.

En 1771 (Id.), deux démonstrations du théorème de Wilson

1.

La grande découverte de Lagrange est celle qui permet de

trouver la forme quadratique des diviseurs de l'expression
cix~ + bxy -f cy1 (id. 1773-75). (Voir le t. III des Œuvres
complètes de Lagrange), et dont nous avons donné une idée
suffisante (E. M. 1907, p. 289). Rappelons seulement ici que
c'est là qu'on voit pour la première fois la considération du
déterminant d'une forme et de la réduite de celle-ci.

En 1777 (Id.), usage de la descente infinie pour vérifier
cette assertion de Fermât que le plus petit triangle rectangle
clont l'hypoténuse est un carré ainsi que la somme de ses
ccithètes est celui dont les cathètes sont 1061652293520 et
4565486027761, solution qu'Eu 1 er avait reconnue exacte mais
qu'il n'avait pas démontrée être la plus simple.

Enfin, à la suite de sa traduction de 1'Algebra d'Euler
(Lyon, 1794), plusieurs notes importantes relatives à la théorie
des fractions continues; à la solution de l'équation de Pel!
et de l'équation quadratique indéterminée, par des moyens
nouveaux, et particulièrement par la considération des
minima de la valeur absolue des fonctions x — v>y

2 et ax2 + bxy

Tto ou Rm la différence positive ou négative, _ E (yx> + L j de to et de Geo (Tchebichef),

E «i E (2to) - 2Eto, E"tâ — — Eto (1 -J- Eco) E"'c>) (Eo ^E' — ^ (Hermite)
1 Pour la première il fait voir qu'on a :

(x + 1) (x -f 2) (x -f p — 1) xP~l — 1

ce qui généralise à la lois les deux théorèmes de Fermât et de Wilson (voir E. M. 1907, p. 299).
La seconde s'obtient en faisant a p — 1 dans l'identité de Mercator

a — a<X~ Ca,\ (a ~~ a + Ca,2(a~2)a — — a •

2 Bien que cette théorie soit plutôt du ressort de l'analyse indéterminée, il convient d'en
donner une idée, à cause de l'importance qu'elle a prise ultérieurement.

Soient « et ß les entiers tels que, pour m < « y < ß on ait : | et — toô I < | a: — I

xety étant premiers entre eux. Cherchons a' et ß' tels que oeß' - or'ß ± 1 et posons
(a^ x=kx'V a'y' y ßx' + ß'y' :

x' et y' seront entiers. Les conditions x < a y < ß font voir que pour x<<*/ et y < ß',
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+ et/2 à la recherche des expressions dont la forme se

reproduit quand on la multiplie par une formule semblable1.

Legendre fit paraître en 1785, dans les Mém. de FAc. de

Sc., un mémoire où, entre autres choses de haute importance,

il démontrait un remarquable théorème sur la
solubilité de l'équation ax? + by2 cz2 ;

2 — énonçait sa célèbre
loi de réciprocité3 dont il ne donnait qu'une démonstration
incomplète; trouvait incidemment cet important théorème
démontré plus tard par Lejeune-Dirichlet : toute progression
arithmétique dont le premier terme est premier avec la raison,
renferme une infinité de nombres premiers; et posait les bases

on a de même
| v.' — coß/ | < | x — toy I

Opérant de même sur a ßf, sur les résultats obtenus, et ainsi de suite, on trouve ies
suites représentées par les relations générales

(n) /a("+i) ("+'!) ß('1) I (11) ß.-n) I I I

a\ I ß\ ~r I — a\ ~r I — do I I a — wp '
| j x — toy |

^ Ml ci")x <( a y <C p

+ i) _ a("+0
** - «(») ~ ~E

,(«) - aßr«i

La série des a est décroissante et se termine par ies termes E (to — 1) 1 ou 1, 0 suivant

que to ^ 1 ; celle des ß est également décroissante et se termine par les termes 1,0 ou

E( f — l \ 1 dans les mêmes cas. Les nombres a représentent les quotients du dévelop-/
pement de ro en fraction continue.

La série des a — toß est croissante et les signes des termes alternent.
Legendre a commencé l'étude des substitutions (a); mais c'est Gauss qui a le premier*

reconnu l'importance de cette théorie : il a fait voir qu'il y a grand avantage à distinguer les
deux cas uß' — a'ß l et c/ß' — aß — 1

1 Ainsi la formule x2 -j- axy -J- by2 (Voir Mathesis, 1907, p. 259.)
2 II faut et il suffit qu'on puisse trouver trois nombres pt, v, tels que a),2 -(- b eg2 — b r

•j2 — a. soient respectivement des multiples de c, a, b.
3 Cette loi, qui se note ainsi d'après Legendre :

©CO-'-"
(/?-!) (<7-11

P—[

le symbole désignant le reste de la division de a 2
par p, publiée deux ans après

les Op. Anal. d'Euler, qui en donne l'équivalent (voir la citation que nous avons faite à

propos de cet ouvrage), — a fait accuser Legendre de plagiat. Cette accusation ne nous
paraît pas fondée : il était plus facile de conclure par induction la loi de Legendre des cas

particuliers qu'en avaient découverts Fermât et Euler, que de la déduire de la proposition
des Op. Anal. D'ailleurs, sous cette forme, cette proposition était peu apte à faire découvrir
les importantes conséquences que Legendre a tirées de sa formule.
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d'une théorie des nombres trinaires ou déeomposables en

trois carrés.
Ce fut l'occasion de son Essai sur la théorie des nombres

(Paris, 1798), où il étudie les propriétés élémentaires des

nombres; remplace la formule (24) d'Euler par la suivante

(32) ?(n) n( 1 - i) ('1 - j.

et en tire le moyen de déterminer combien il y a de nombres
premiers dans une progression arithmétique donnée;
remarque qu'on a sensiblement

(33) I0a) —

d'où il déduit la formule approchée

(34) c?(a
2 log a

et conjecture que la formule exacte doit être de la forme

A log a + B ' étudie ensuite les fractions continues; enseigne
la solution des équations linéaires indéterminées; reproduit
en l'améliorant la solution de Lagrange des équations
indéterminées du second degré; donne différents théorèmes sur
la possibilité de certaines équations de la forme ax* — by2,

c 2, la démonstration des théorèmes de Fermât, d'Euler,

1 C'est là le premier exemple de valeur moyenne dans la théorie des nombres. Gauss a également

envisagé ce genre d'approximation à propos d'une certaine classification des déterminants.

Libri a découvert une formule donnant en moyenne le nombre des solutions entières
et positives de la congruence générale F (x, y, z, 0 Lejeune-Dirichlet a posé les
fondements de cette importante théorie, dont il a indiqué de très intéressantes applications.
Voir : Berger, Sur qq. appt. de la fonction gamma (Upsal, 1880); Cesàro, Sur div. quest, arith.
(Bruxelles, 1883); Cesàro, Excursions arith. à l'infini (Paris, 1885); Berger, Rech, sur les
valeurs moyennes (Upsal, 1887).

Citons seulement ceci : on a en moyenne

n E {ne)ij x ^ 2 Q(x)

1-~r=- (Lejeune-Dirichlet), (Berger),

n
IçpOr)

£ (Perott) >

Il y a en moyenne 61 contre 39 à parier que deux nombres quelconques sont premiers entre
eux. (Cesàro.)

2 Lejeune-Dirichlet a étendu ces théorèmes.

L'Enseignement mathém., 11® année; 1909. 28
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de Wilson, de Bachel, de Lagrange; développe les
conséquences de la loi de réciprocité1; donne dans sa théorie des
nombres trinaires, d'importants théorèmes, dont l'un
concernant la relation existant entre le nombre de décompositions

de n en trois carrés et les classes de formes de
déterminant — n, théorème démontré rigoureusement par Gauss
et étendu par Jacobi, Lejeune-Dirichlet, Liouville, Kronecker
et Hermite.

Rappelons aussi le symbole qui porte le nom de Le-

gendre, et qu'on énonce caractère quadratique de a : il dé-

signe le reste de la division de a
2

par p, reste qui est
toujours, comme on le sait, 1 ou —1 2. Citons encore
d'importantes tables de formes des diviseus, tant linéaires que
quadra tiq ues, et celle des solutions de l'équation de Pell
jusqu'à k =1000.

Ajoutons qu'on voit pour la première fois, dans cet

ouvrage, l'idée et le-nom des formes linéaires et quadratiques,
qu'il appelle aussi formules. Legendre y montre que la
transformation la plus générale d'une forme quadratique en une
autre s'obtient à l'aide clés substitutions linéaires représentées

aujourd'hui par la notation ; que les nouvelles

indéterminées sont des nombres entiers, quelles que soient les
indéterminées primitives si on a ad — ßy zh 1, et qu'en
général on a entre les deux expressions D, D' appelées
depuis déterminants, par Gauss, la relation

D' ßy)3

Ces remarques en généralisent d'autres données par La-

grange, dans son mémoire de 1775.

1 Ce sera le sujet de notre prochain article, ce qui nous dispense d'en dire davantage ici.
On trouvera de nombreux renseignements sur cette belle loi, dans le t. II des Werke de Gauss;
la Note sur les rès. quad, de Genocchi (Bull, de l'Ac. de Belgique, 1852); la brochure de Baum-
gart. Ueber das quadratische Reciprocitätgesetz (Leipzig, 1885) et la Niedere Zahlentheorie, de
Bachmann (Leipzig, 1902). Pour un aperçu de la question, on pourra consulter le fascicule 1

du vol. III de l'Encycl. des sc. math. (Paris, 1906).
2 Gauss indique que r est résidu et p non résidu de p au moyen des notations rRp, pNp,

qui n'ont guère été employées que par lui. Jacobi a étendu l'emploi du symbole de Legendre

à une valeur quelconque de p; il a mis ^ Pour désigner Ie caractère biquadratique de a,

et Eisenstein I - I pour le caractère cubique du même nombre.
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Dans la deuxième édition de son Essai (Paris, 1808), Le-
gendre ajoute plusieurs remarques très intéressantes : la

formule

(35) E-+ E ^ + E -8+' PPP
indiquant combien de fois le nombre premier p est facteur
dans le produit n. ; la recherche du nombre des termes
d'une progression arithmétique, divisibles par des nombres
premiers donnés, d'où les formules suivantes :

n _ n _ n
n — 1 —\- iE —. — 2E p

p pq PcJr

n _ se + ie^+J-LT_1 _2p 2pq

donnant respectivement le nombre des termes des deux
suites 1, 2, 3, n et 1, 3, 5, 2n — 1, non divisibles par
les nombres premiers différents p, g, /',... ; cette formule
empirique

'38) La — 1,08366

fournissant approximativement le nombre N (a) des entiers
plus-petits que a, La désignant un logarithme népérien. Il
en déduit l'évaluation des expressions suivantes2

nK)
1 Cette formule est remarquablement exacte dans la limite des tables actuelles de nombres

premiers. Tchebichef a étudié les expressions de cette forme et a démontré que la formule
moyenne ou asymptotique ^^ représente N (a) en général, avec une approximation poussée

a /»a
aux termes de l'ordre ——- et a en outre proposé cette autre / —, que, dès 1793, Gauss\La) J 2 La;

CL

— ainsi que Lejeune-Dirichlet, qui la notait
1

ainsi 2—La
Riemann, dans un mémoire célèbre, a montré la haute importance de la formule de Gauss

au point de vue de la théorie des nombres premiers.
Voir à ce sujet la savante et très intéressante monographie de Torelli : Sulla totalità del

numeri primi fino ad un limite assegnato (Naples, 1901).
8 Euler avait évalué les séries de cès expressions continuées à l'infini.

(36)

(37)
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ainsi que ce théorème, insuffisamment démontré : de a à
a + 2V/a il y a au moins un nombre premier1.

Signalons aussi les notations M (a) pour désigner un certain

multiple de a2, et T pour désigner le nombre

destermes de la progression 1, 3, 5, 2n — T non divisibles-
par les nombres premiers 3, 5, 7, 1L, p 3.

Legendre a en outre donné en 1816 et en 1825, deux
suppléments à son Essai; dans le premier, il démontre, d'aprè&
Cauchy, le théorème de Fermât sur les nombres polygones ;
dans le second, il fait voir que l'équation.^1 + y11 z11 ne
peut avoir lieu pour n > 2 que pour des nombres d'une
grandeur excessive4. Il cite Sophie Germain comme lui ayant
fourni quelques-uns des théorèmes utilisés par lui ; donne,
en même temps que Lejeune-Dirichlet la démonstration de
l'impossibilité de cette égalité pour n 5 et étudie l'équation

x3 -f- yz — azz, qui, dit-il, est impossible pour a — lr
2, 3, 4, 5, 6, 8, 16, 5.

Enfin il a donné en 1830 une édition définitive de son
ouvrage, réédité en allemand en 1885 et reproduit textuellement

en 1900.
En résumé, malgré son titre, l'ouvrage de Legendre n'est

1 J. Bertrand a énoncé ce théorème, démontré par Tchebichef : entre a et 2a — 2, il y a
nécessairement an nombre premier.

2 Leibniz indiquait un multiple d'une quantité par un point placé au-dessus de cette quantité
: cette notation, qui s'applique mal à des expressions compliquées et cause des embarras

typographiques, a été peu employée. Celle de Legendre, qu'il a remplacée par celle-ci tïï (a),
s'emploie encore aujourd'hui ainsi : ïîî (a), dans les traités élémentaires. Gauss se sert de la
notation EE 0 (mod a), encore plus encombrante. On aurait, ce nous semble, une notation très^

expressive en indiquant les multiples par des caractères gras.
Le plus souvent, on a avantage a employer la forme linéaire ax + b.
3 On a imaginé depuis un grand nombre de fonctions de ce genre, qui ont surtout pour but

* de simplifier les énoncés et faciliter la découverte de nouvelles propriétés des nombres. Telles-
sont les suivantes, prises parmi les plus simples :

f(n), nombre des entiers premiers avec n et non supérieurs à n (Gauss).
Q(n), nombre des entiers premiers jusqu'à n (Voir Cesàro, op. cit.).
A(w), fonction dont la valeur est zfc 1 selon que le nombre des facteurs égaux ou inégaux de-

n est pair ou impair (id.).
fo(n), nombre de manières dont l'entier n peut se décomposer en deux facteurs (Mertens),
pt,(}i), fonction dont la valeur est riz 1 selon que le nombre des facteurs premiers inégaux de

n est pair ou impair (id.).
a(n) pt(l)-j- pt (2) -f- |x(n) (id.). Mertens a construit une table de cette fonction

allant jusqu'à G (10000) — 23. (Sitzb. d. math.-naturw. Cl. 1897)

t(n), nombre des diviseurs carrés de n.( Cesàro).
Voir pour d'autrès notations : Cesàro et Torelli, op. cit.
4 Landry a continué ces recherches de Legendre.
6 Cependant, comme l'a remarqué le P. Pépin, on a : 173 -f- 373 6.213.
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pas un véritable traité, mais plutôt un recueil de théorèmes

non reliés entre eux par une conception ou un but communs.
Seule, la loi de réciprocité y est l'objet d'une théorie bien

complète. D'ailleurs, même à l'époque de sa troisième
édition, il n'était déjà plus au niveau des progrès de la science.

Remarquons aussi que, bien à tort selon nous., Legendre
commence par une longue et fastidieuse exposition de la théorie
des fractions continues, et qu'il considère la théorie des nombres

comme une division de l'analyse indéterminée. Néanmoins

il est encore souvent consulté aujourd'hui, surtout à

cause de ses tables, et il faut reconnaître combien il a été

utile pour la vulgarisation de la haute arithmétique.
Si Legendre n'a pas toujours été aussi heureux dans ses

démonstrations que dans ses découvertes, la clarté de ses

écrits, sa loi de réciprocité et les applications qu'il en a

faites, ses études sur les formes trinaires et sur la progression

arithmétique, ses formules semi-empiriques sur les nombres

premiers lui assurent une place parmi les fondateurs
de l'arithmétique moderne.

Il nous reste à donner un aperçu des travaux arithmétiques

de l'illustre Gauss. A l'encontre de Legendre, le livre
qu'il a modestement intitulé Disquisitiones arithmetics^
contient un ensemble de théories complètes, qui sont d'ailleurs
aussi remarquables par l'importance, la nouveauté, la variété
et la généralité des résultats que par la profondeur,
l'élégance et la concision des méthodes. Gauss a la vérité paraît
avoir eu pour but le perfectionnement, non de l'arithmétique,
mais celui de l'algèbre, dans ce célèbre ouvrage, qui a

ouvert un champ immense surtout aux investigations des algé-
bristes et sera encore longtemps l'objet de leur étude ; mais,
bien qu'elle n'y soit qu'accessoirement traitée, c'est là que
l'arithmétique a reçu sa constitution définitive et le
programme des travaux qu'elle devait aborder. Ecrit vers 1796,
il ne fut imprimé qu'en 1801, à Leipzig ; et encore il ne
contient que la moitié de ce que Gauss pensait y mettre : dans
le but d'abréger, il a supprimé l'analyse des questions traitées

ainsi que toute la huitième et dernière section ; depuis,
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de multiples et importantes occupations, l'ont toujours
empêché de publier le complément de son travail, ainsi que ses
découvertes postérieure^, dont on n'a que quelques fragments1.

Les Disq. ar. ont paru, traduites en français, en 1807 ; elles
ont été réimprimées dans les deux éditions des Werke de
Gauss (Göttingue, 1863 et 1870), dont elles forment le
premier volume ; et ont été en outre publiées, dans le texte
primitif allemand (Berlin, 1889). Nous allons donner une
courte analyse de son contenu.

Sect. I. Définition, notation et théorie de la congruence7
dont Gauss fait la base de toute l'arithmétique2. Lemme
fondamental de Bachet (E. M. 1907, p. 288).

Sect. II. Application de la notion de la congruence à la
démonstration des théorèmes arithmétiques. Congruences'6.
Congruences linéaires. C'est là qu'on voit la remarquable
formule

(39) çp(<2) -j- cp — n

a, b, désignant tous les facteurs premiers de /?, y compris
n lui-même4.

1 II semble qu'une certaine fatalité s'attache aux écrits de vulgarisation arithmétique. Bien
que les documents qui nous restent sur la science mathématique et astronomique des Egyptiens,

des Chaldéens et des Babyloniens montrent que l'étude des nombres a chez eux
progressé bien plus rapidement que celle des figures, on a bien plus de renseignements sur
l'histoire de celle-ci ; ce qui tient à ce que les Grecs prisaient beaucoup plus l'exactitude des
résultats de la géométrie que les opérations numériques, se terminant le plus souvent en
approximation. Passant aux temps historiques, on peut citer d'importants travaux d'Apollonius
sur la numération, qui ont été perdus, ainsi que la seconde partie de l'ouvrage de Diophante
et son commentaire par Hypathia. D'insignifiantes difficultés ont empêché Fermât de publier
ses méthodes ; Gauss n'a pu divulguer toutes les siennes ; Eisenstein, Riemann, Stieltjès sont
morts jeunes ; Liouville n'a pas eu le temps de faire connaître ses méthodes et de compléter
ses découvertes arithmétiques ; Lejeune-Dirichlet est mort avant d'avoir produit le commentaire

de Gauss qu'il pensait écrire ; Lebesgue n'a pas trouvé de souscripteurs pour le Traite
qu'il se proposait de publier ; Ed. Lucas est mort, le premier volume de sa Th. des n. à peine
publié; Cesàro a dû abandonner ses études arithmétiques auxquelles il avait dû ses premiers
succès. Parlerons-nous de l'obstination avec laquelle cette science, — si éminemment propre
à former l'esprit mathématique, — est bannie de l'enseignement ; bien que, sans charger
davantage les programmes, il soit facile de lui trouver place en élaguant cà et là de ceux-ci
divers articles bien moins utiles. Le nom même de l'arithmétique a été détourné de son sens
primitif, science des nombres, pour en faire la désignation de la science du calcul.

3 Cette notion était connue des Anciens, mais ne commença guère à être utilisée que lors de
l'invention de la preuve des opérations numériques. Euler et Lagrange y font souvent appel ;
mais c'est Legendre qui le premier a compris la nécessité de la considérer systématiquement.
Toutefois il la traite et la note comme une équation ordinaire, en ajoutant le plus souvent : à
un multiple près de p, et « sans qu'il soit besoin des égalités ni des dénominations nouvelles
assez incongrues dont quelques géomètres font usage ».

3 II s'agit des équations de la forme F (a;) Ay. Libri a tenté l'étude des équations
F (x, y) 0, mais la trop grande généralité de ses résultats a rendu son travail à peu près
inutilisable.

4 Cette formule semble avoir donné le signal de la découverte d'une foule de relations
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Divisibilité par p du nombre de permutations de p choses
avec répétitions. Théorème sur le nombre possible des
racines des congruences h

Sect. III. Théorème de Fermât. Etude approfondie des
racines primitives. Théorème de Wilson et sa généralisation.
Divers théorèmes sur la somme et le produit des racines
primitives. Diverses extensions du théorème de Fermât.

Sect. IY. Théorie des résidus. Critérium d'Euler. Théorèmes

quadratiques de Fermât; démonstration de quelques-

arithmétiques qu'il y aurait grand intérêt à réunir et à rapprocher. En voici quelques-unes
élémentaires et assez caractéristiques :

lo>(a) 6K) (Liouville) l,o la) B ('±) 6'(n) (Cesàro)
£X (ft) co (ft) X (n) » \'aJ
lS(a*) e*(n) »

/ \ /» CP (ft) I

l'f (a) I«G («) »A"
(LejeUne-DiHchlet) ^ V, ^= ^ (#,

2À(o) 6g^) — l(")(Cesàro) l[A(a) (l »

£,*(»)! g) =^Wu(-J 2«l*g) ?(«>

2x«)4.g)=,
lu (a) I - z=z n „

lau (a) Ç ~t—
1

•>

A, B, représentent les diviseurs carrés de «. Les fonctions indiquées ont été définies
plus haut.

1 Gauss avance que les personnes doctes verront aisément que les deux démonstrations
de ce théorème, données par Euler et Lagrange (voir E. M., 1907, p. 295), ne diffèrent pasessentiellement, et revient plusieurs fois sur des remarques analogues.

Avant lui, le marquis de EHospital avait dit (Sect, con.) que rien n'est plus propre à éclairer
1 esprit que la comparaison de plusieurs démonstrations d'une même vérité; et après luiCesaro (Mem. d;'Ar.) observe que « si l'on connaît plusieurs moyens pour arriver à un même
but, on peut affirmer qu'il existe une méthode générale qui résume tous ces moyens les
coordonne et les explique ». Citons aussi Stouf (Les Lois de réciprocité) : « les principes quiservent aux définitions... se ramènent souvent les uns aux autres, mais chacun d'eux permetd envisager la question sous un point de vue spécial et d'en préciser les difficultés. »

Toute démonstration n'est au fond que l'identification de deux définitions. Les sorites quicomposent deux démonstrations sont virtuellement formés des mêmes syllogismes se succé-des ordres différents, de sorte qu'un être parfaitement intelligent n'y trouverait pasde difference essentielle et verrait clairement toutes les transformations qui conduisent deune a autre; le puissant cerveau d'un Gauss peut en embrasser plusieurs d'un coup, tandis
qu un esprit ordinaire les saisira avec peine, en les prenant une à une. Nous croyons que ceserait œuvre utile de faire saisir aux commençants, dans quelques cas choisis, les principesdes demonstrations, et de leur en faire sentir l'identité. Rappelons cà ce propos ce passage de*la Logiquede Port-Royal : « Les géomètres... n'ont pas assez pris garde qu'il no suffit paspour avon une parfaite science de quelque vérité d'être convaincu que cela est vrai, si de pluson ne pénétré, par des raisons prises de la nature de la chose même, pourquoi cela est vrai. »
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uns par la méthode de la descente1. Démonstration de ce
théorème : tout nombre premier 4 + 1, positif ou négatif est
non résidu d'un nombre premier qui lui est inférieur. Exposition

et démonstration du theorema fundamentalei. Moyen de

reconnaître si a est résidu de p. Détermination des formes
quadratiques des diviseurs de x1 — a. Extension aux nombres
composés des propriétés précédentes démontrées seulement

pour des nombres premiers.
Sect. Y. Cette section, qui a été l'objet de nombreux et

importants travaux, est consacrée à l'étude des propriétés
des formes quadratiques 3. C'est une savante application de

l'algèbre à l'analyse quadratique indéterminée, aussi remarquable

par la simplicité et le choix des considérations mises
en jeu, que par leur multiplicité et leur enchaînement. Celui-
ci d'ailleurs, avec la densité et la longueur du texte, la
rendent d'une difficulté telle que peu sont capables de la
tension intellectuelle nécessaire à son étude, et qu'on a dû la
scinder et la particulariser, malgré l'unité et la belle ordonnance

qui ont présidé à l'édification de cette théorie. On
trouvera une excellente préparation à cette étude dans la
Theory ofnumbers de Mathews (Cambridge, 1892). La Zahlentheorie.

cle Lejeune-Dirichlet, la donne plus complètement-

1 Si — 1 est un résidu, p ne peut être de la forme 4 — 1. Autrement, soit p le plus petit
nombre de cette forme donnant le résidu — 1, et soit a2 pu — 1 ; on peut supposer a <f p.
On a alors

a2 \ p2 -1- 1 1
Nu — <T p H d ou u ^ p

p p p ~

Or on ne peut avoir u — p car il viendrait l'égalité impossible a2 p2 — 1 : on a donc u p.
Remarquons que a peut être supposé pair; autrement on le remplacerait par le nombre
b — p — a qui donne également b2 pv — 1 On a ainsi pu 4 -f- 1 d'où u 4 — 1 Ainsi
u serait <fp et contiendrait des facteurs premiers de la forme 4 — 1, lesquels seraient à fortiori
<f p et auraient — 1 comme résidu; p ne serait donc pas le plus petit nombre dans ce cas, ce

qui implique contradiction avec l'hypothèse, laquelle est donc fausse.
Gauss fait voir de même que — 2 ne peut être résidu de p 8 — 3 ni de 8 — 1 ; ni 2 résidu

de 8 ± 3 ; ni — 3 résidu de 6 — 1 ; ni 3 résidu de 12 ± 5.
11 semble que cette méthode n'a pas été utilisée autant qu'elle aurait pu l'être.
2 Gauss désigne ainsi la loi de réciprocité, qu'il avait trouvée de son côté en 1796. Cette

démonstration, la première qui en ait été donnée était très appréciée de son auteur, parce
qu'elle n'emploie d'autre notion que celle des résidus. Lejeune-Dirichlet l'a présentée plus
simplemènt.

3 Diophante paraît avoir le premier imaginé les substitutions linéaires dans les expressions
algébriques, afin de rendre celles-ci plus traitables, et ce procédé a été imité par tous ceux
qui se sont occupés de l'analyse indéterminée. Lagrange, à qui on doit la considération des
formes, les a appliquées à ces dernières; il en a déduit l'importante théorie de la réduite
(voir E. M., 1907, p. 290); il a aussi remarqué la substitution modulaire, comme nous l'avons
vu plus haut. Legendre les a également étudiées.
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Bachmann lui a consacré un volume de son importante
collection [Arithmetik der quadratischen Formen, Leipzig, 1898).

Une première partie tout élémentaire1 aboutit à des solutions

directes et générales de problèmes déjà connus : on la

trouvera exposée dans le chap. VI de la Théorie des nombres
de Cahen (Paris, 1900). Les énoncés suivants donneront une
idée des sujets traités, mais non de l'ingéniosité des mille
considérations auxquelles l'auteur a recours et des remarques
dont il les accompagne.

Si l'entier n est représentable par la forme [a, b, c), le
déterminant D de celle-ci pris avec un signe contraire est
résidu de n 2.

Si deux formes ont même déterminant et que l'une
contienne l'autre, celle-ci contient également la première, et
elles sont dites équivalentes.

Si la forme F contient la forme F', et celle-ci la forme F",
F contient F".

Pour D positif, la solution de l'équation z2 + Dcc2 /r se

ramène à effectuer deux transformations d'une forme (a, è, c)

de déterminant D et telle que n soit le p. g. c. d. des entiers
a, ô, c.

Définition et détermination de la forme réduite à déterminant

positif, comme Lagrange.
Reconnaître si deux fonctions réduites de même déterminant

sont équivalentes.
Trouver la transformation permettant de passer de la forme

(#, ô, c) à l'une quelconque de ses formes contiguës 3.

(a', //, a") {a", b'\ a'") (a'". (/", a"") '...

Trouver les transformations permettant de passer d'une
forme à une autre qui lui soit équivalente.

Trouver les représentations d'un nombre donné par une
forme également donnée4.

1 Nous ne voulons pas dire que cette première partie serait à sa place dans un traité
élémentaire des nombres : les méthodes de Lagrange conduisent aux solutions des mêmes
problèmes, moins élégamment, mais sans nécessiter un aussi grand nombre de théories préliminaires.

Il conviendrait de la considérer avec Gauss, non comme un but, mais comme une
introduction à la deuxième partie. *

2 Voir, par exemple, E. M, 1907, p. 297.
3 Deux formes (a, b, c), (a', b'. c') sont contiguës quand a' c' et que b b' est un multiple

de c.
4 Si d'une part, on peut prouver que les diviseurs premiers du nombre a/2 -j- bfg -f- rg2 sont
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La forme réduite (A, B, C), dans le cas d'un déterminant
négatif D, non carré \ est celle où on a :

/Ü + B>|A|>/D~B, |/D > B > 0

On peut déterminer une période de réduites contiguës
(A, B, C), (C, B', C'), (G', B", C"), et elle est cyclique.

Ces considérations permettent à Gauss la solution des

problèmes analogues à ceux indiqués plus haut pour le cas
de D positif. Il traite ensuite le cas d'un déterminant négatif
et carré, et termine la première partie par le problème
général de reconnaître si une forme est contenue dans une
autre forme de déterminant différent, et si cela a lieu, de
trouver les transformations qui les lient; — et par là, la
solution de l'équation indéterminée du second degré.

La deuxième partie, entièrement neuve mais très abstraite,
commence par l'étude de la composition des formes2, c'est-
à-dire la transformation de la forme AX2 + 2BXY -f- CY2 en
le produit des deux formes ctx1 -|- 2bxy -f- c?/2, cl'-f-
au moyen de la substitution

X gxxf -j- g'xy' + g"x'y + gmyyf Y hxx' +

Par exemple voici deux propositions tirées de cette théorie :

Les formes composées avec f et f sont identiques à celles
qui sont composées avec les formes g et g*', respectivement
équivalentes à f et f'.

Si deux nombres sont représentables par deux formes de

de l'une des formes ax2 -f- ßxy -}- yy% (a'xa etc., et que dJautre part un certain nombre
premier p divise un nombre de la forme ax3 + bxy + cya, il s'ensuivra que p est de l'une des
formes ax3 -f- etc.

Fermât et Euler ont trouvé plusieurs cas simples de ce théorème. Lagrange, par son
théorème, a montré comment on peut réaliser en général la première condition; et Legendre, par
sa loi de réciprocité, a permis de réaliser la seconde.

Grauss arrive directement à représenter un nombre n par une forme de déterminant D, en
résolvant l'équation x2 -j- D EE 0 (mod il) et utilisant divers théorèmes qu'il a donnés
précédemment.

1 L'étude de ce cas a grandement été simplifié par Lejeune-Dirichlet.
2 Euler et Lagrange avaient eu quelque idée de cette théorie dans leurs recherches de fonctions

se reproduisant par multiplication; Legendre avait considéré plus généralement la
multiplication de formes; mais c'est Gauss qui a attaqué la question dans toute son étendue.

On consultera avec fruit les Werke de Lejeune-Dirichlet, où sont expliqués et démontrés
beaucoup de beaux problèmes de Gauss, qui ne peuvent guère être exposés ici.

Voir aussi, parmi les auteurs qui se sont occupés de la composition des formes, un mémoire
du P. Pépin, paru en 1880, dans les Atti nuovi lincei, où la théorie de Gauss est très simplement

exposée.
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déterminant D, leur produit 1 est par la forme composée avec

ces deux form e s4.

Entre autres conséquences importantes, Gauss en tire une

seconde démonstration de la loi de réciprocité.
Il considère ensuite les formes ternaires quadratiques.

(^d
^ ~ aX* ^xz d" ^eyz d~ A2

dont l'étude dépend surtout du déterminant

t> ad2 + bed + cf2 — abc — 2def

ainsi que de la forme adjointe

f d2 — bc c2 — ac f2 — abX

\ad — ef be — df cf— de)

dont le déterminant est D2. 11 aborde l'étude des problèmes
suivants :

Représentation d'un nombre donné par une forme
ternaire.

Représentation d'une forme binaire donnée par une forme
ternaire de déterminant donné.

Reconnaître si deux formes ternaires sont équivalentes, et
dans ce cas, trouver les transformations qui les changent
l'une dans l'autre.

Application à la démonstration de théorèmes énoncés par
Legendre et de celui-ci d'Euler : tout nombre entier 8 + 3 est
la somme de trois carrés, insuffisamment prouvé par Legendre

et qui conduit immédiatement à celui-ci, de Fermât :

tout entier est la somme de trois triangulaires et de quatre
carrés.

Généralisation du théorème de Legendre sur la solubilité
de l'équation cix2 -f- by2 -f cz2 — 0.

Dans le reste de la section Y, Gauss traite un grand nombre

de questions relatives à la classification des formes, et
sur lesquelles s'est exercée la sagacité de nombreux
géomètres.
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Sect. YI. Cette section renferme d'intéressantes applications

des théories qui précèdent, et dont voici les plus simples

:

Résolution de l'équation ^ et sa généralisation.
Utilisation de la théorie des racines primitives dans celle

des fractions décimales périodiques.
Emploi des considérations qui précèdent pour la recherche

du quotient de deux grands nombres.
Solution de l'équation x2 — ky a au moyen d'une

méthode d'exclusion basée sur cette remarque que si /', r',r",
sont les résidus du nombre quelconque E, et a, a t les
racines des équations a + ky /\ a -f- ky (mod. E),
on peut se dispenser d'essayer les nombres contenus sous
les formes E^ -f- a, Ex -f- Cette méthode a reçu depuis
de notables perfectionnements.

Recherche des diviseurs des nombres, d'abord par une
méthode déjà employée par Euler et Legendre, puis à l'aide
de la considération des résidus. (VoirE. M. 1907, pp. 292 et
36).

Sect. VII. C'est là surtout qu'éclate le génie de Gauss. La
résolution complète de l'équation binôme qu'il donne dans
cette section est non seulement neuve mais entièrement
inattendue. Elle s'appuie sur un grand nombre de considérations

algébraïeo-arithmétiques, dont nous mentionnerons les

plus importantes.
Soient a ß y certaines racines de Véquation X xp—1

-f- xp"2+ 1 0, lesquelles sont, comme on sait, les

puissances de l'une d'elles ; cp (t, u, e, une fonction entière
et à coefficients entiers, et enfin n un entier quelconque ; en

posant :

?(u, ß, \ + Bol + Ca2 + + N/""1

on aura :

?(a'1, ß'\ — A -f- B«,l + C«2,i +

y (a, ß + f (a2 ß2 -f- -f <j>(ap, ßp 0

Le polynôme X ne saurait avoir de diviseur entier à coefficients

tous rationnels l. Soit R une racine primitive de p; les
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deux suites

oP aR aR et a, a1, a2, a^""1

s<9/?,£ identiques à Vordre près.
Soient p — 1 ef, Re h ; si on pose :

f— i
14.' W A

I ^ I
XA*

I L(/, X) a -fa -f a -f -f a

/e second membre est indépendant de la racine primitive choisie

: on l'appelle la période de /'et de X.

On a, pour deux périodes semblables (f, X) (f, g) :

(/*> X) [fy p) — (/» X f*) H- (/*> X/* ~b fO Hh (/*' X42 "f p) 4~ •••

Posons (f, X) g ; la période semblable (f, p.) peut se mettre

sous la forme d'un polynôme entier en g et du degré e — 1.

Si <p(t, un v, est une fonction symétrique entière des f
racines de la période (f, X), qu on ramènera ci la forme A -f
Bal + Ca2 -f les racines de cette expression appartenant
à une même période auront des coefficients égaux.

Soit p — 1 abc ; si la période (be, X) est composée cle b

périodes (c, X), c, X'), de c termes chacune, la substitution
des sommes de ces périodes dans Vexpression symétrique
<p(t, u 5 en donnera une autre de la forme

A -f B(c, 1) + C(c, R) -f -f N (c Rab~l)

telle que les périodes appartenant à une même période de be
termes auront les mêmes coefficients.

Gauss applique cette belle théorie à la solution de l'équation
binôme, pour les cas de p 17 et p — 19, et à la division
du cercle en 2" -f 1 parties égales, ce nombre étant premier2.

Viennent ensuite ces très remarquables propositions

(^) -a' — l&P — -f j/p ou Ht?» i |/ p
3

2 <7 TK 2 a 0 TT

(41) 2 cos — 2 cos — ~ -h i/n ou — 0
P P —ri-

n. 2arit 2 a on n « —(•*2) 2 sin — 2 sin — — 0 ou — {/n
P P ~Vl

1 Autrement dit, le polynome X est irréductible. Cette importante proposition a été démontrée
de bien des façons.

2 Richelot et Cayley ont traité le cas de p — 257, et Hermes, celui de p — 65537.
3 Le signe du radiéal reste indéterminé et il y a grande difficulté à le définir. Gauss plus
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Dans ces dèux dernières relations, le signe 2 s'étend à

tous les résidus r ou à tous les non résidus p; ona d'ailleurs
le signe + ou le signe— selon que a est résidu ou non
résidu. De plus, on a le premier ou le second résultat selon

que p 4 üz 1.

Faisant p 2m -f- 1 et appelant z xm — axm~l + bxm~l
— =0 l'équation donnant la période (;m, 1), on pourra
écrire :

z rz K — Ci [m.1 -- II (m R)

(43) 4X= (2F — G — H)2 +/>(H — G)2, (p 4±l)

Le premier membre peut donc se mettre sous la forme
Y2 h= />Z2, comme nous l'avions annoncé. (Voir E. M., 1907,

p. 443.)1
Gauss termine par diverses considérations tendant à

l'extension de ces propositions au cas des résidus cubiques.
L'ouvrage se termine par des tables de racines primitives,

de résidus quadratiques et de périodes décimales.

Non moins profonds et non moins élégants sont les autres
écrits arithmétiques de Gauss. Ce sont des mémoires
détachés, parus dans les Commentationes societatis Gottingensis.
Nous en rappellerons le sujet en quelques mots.

1808. Troisième démonstration du théorème fondamental,
la plus simple de toutes celles qui en ont été données.

1811. Summatioserierum quarumdam singularium. Il s'agit
des suites2

1 _ (('1 1 _ a» 1 — a'1"1 xlx-U x*
I — 1- : 7 * h la' { } 2ax

1 — a 1 — a 1 — a

tard, Eisenstein, Lejeune-Dirichlet, Cauchy, Lebesgue, Kronecker, Mertens et d'autres encore
ont fait voir que ce signe est le signe -j-

Ajoutons que c'est dans cette même section que le symbole i a été introduit dans l'analyse,

pour remplacer l'imaginaire V — *•
1 Grauss donne les expressions des polynômes Y et Z pour p 3, 5, 7, 11, 13, 17, 19 et 23.

Legendre a donné celui correspondant à p — 29. En général on les calculera à l'aide des
formules suivantes de Lejeune-Dirichlet

/ 2rffA / 2pm\

Y — ZVG 2ri — e
P J Y -j- Zp 2Ï1 — e ^

Ce dernier, ainsi que Jacobi, en ont tiré la solution de l'équation de Pell.
2 Jacobi en a donné de plus générales, déduites de la théorie des fonctions elliptiques, dont
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cl où Gauss tire de nombreuses conséquences, dont la valeur
des sommes

p—1 P—1
2.x2 n 2x tt

> cos ^ sin
p p

1 i

et une nouvelle démonstration du théorème fondamental.
Ce mémoire passe pour une des plus belles productions

du génie de Gauss.
1818. Cinquième et sixième démonstrations du théorème

fondamental.
1828. Theoria residuorum biquadraticomun. Commentatio

prima. Posons p — 4u + 1 et /2 — 1 ; les entiers inférieurs
à p se partagent en quatre classes également nombreuses

r ' ' ••• ' Pi ' Pi ' •••; P, • k • ••• > P*> P*> •••

des racines des congruences
x* 1 /', - 1 — /'

Gauss examine le nombre des solutions des congruences
telles que /' + /' -f- 1 0, les relations de ces nombres entre
eux, et en tire la décomposition de p en une somme de deux
carrés2 ainsi que le caractère biquadratique du nombre 2 b.

1832. Ici. Commentatio secunda. Il étend aux nombres
imaginaires les éléments de la théorie des nombres,
contenus clans les quatre premières sections des Disq. Ar. Il en
déduit le caractère biquadratique des nombres i-h 1 4, et

les formules sont d'ailleurs la traduction de celles de l'arithmétique quadratique, cubique et
biquadratique. Voir la démonstration de Lebesgue Journal de Liouville, 1840).

La théorie des nombres n'est au fond que l'étude des identités, les unes simplement
algébriques, les autres concernant des suites de termes en nombre indéterminé mais fini, comme
celles de Gauss, ou bien des séries élémentaires, ou des séries transcendantes, ou des
intégrales définies. C'est Jacobi qui paraît avoir le premier soupçonné ces mystérieux liens qui
unissent l'analyse des quantités continues à la théorie des nombres.

1 Ces sommes ont été calculées autrement par Lejeune-Dirichlet.
2 Soit p x3 -{- 4y2, ona:

T_±2p(¥-l)...(fx+l)
2fj.

3 Gauss avait fait la découverte de ce caractère en 1805 et l'avait fait connaître en 1807 dans
une letti'e à Sophie Germain.

4 Lire sur ce sujet l'intéressante Contribution à l'étude des rès. biquadr. et cub. de Stieljès,
parue dans les Archives néerlandaises, 1883, et reproduite dans les Ann. de la Fac. de Toulouse.

Lejeune-Dirichlet a démontré la loi de réciprocité généralisée de la même manière, et a
étendu ses recherches aux formes.- quadratiques à coefficients et indéterminées imaginaires.
La théorie des nombres a reçu de la notion des imaginaires une nouvelle impulsion, grâce surtout

aux travaux de Galois, de Kummer et de Dedekind.



448 A:AUBRY
énonce la loi générale de réciprocité biquadratique, démontrée

par Eisenstein.
1831. Premières applications de la géométrie à la théorie

des nombres.
Considérons deux systèmes de parallèles équidistantes se

coupant sous un angle 9 dont le cosinus est égal à ~^= ;

appelons \/ a les longueurs des divisions d'un des systèmes
de parallèles et \/ b celles de l'autre. Prenons l'une des
intersections, 0, ainsi déterminées comme origine. Le carré de
la distance d'une autre intersection, M, à l'origine est
ax2 -f- 2bxy -f- cy2, x et y désignant les nombres de parallèles

rencontrées par OM dans chacun des deux systèmes.
La surface d'un des petits parallélogrammes ainsi construits
représente la racine carrée du déterminant b2— clc D.

Si on remarque que par tous ces points passent une infinité

de systèmes de parallèles, il s'ensuivra que l'ensemble
de ces mêmes points représentent, non seulement la forme
ax2 + 2bxy -f- cy*, mais toutes celles qui s'en déduisent au

moyen de substitutions linéaires telles que Dans le cas

où ay — ßd — 1, le nouveau déterminant est égal au
premier ; les parallélogrammes élémentaires sont égaux et il y
a simple translation. Si ay — ß — 1, le nouveau déterminant

est égal à — D et il y a retournement.
Les formes ternaires font l'objet d'une semblable symbo-

lisation dans l'espace *.

Le reste des travaux arithmétiques de Gauss se trouve
dans sa correspondance et dans ses œuvres posthumes. Nous
en extrayons seulement ces théorèmes [Werke, b. Iï) :

[n) désignant le nombre des fonctions entières du degré n

suivant le module p et a, b, c, les facteurs premiers de

1 Depuis Gauss, les plus éminents géomètres ont utilisé de même la géométrie pour la
représentation dés théorèmes arithmétiques et découvrir de nouvelles propriétés des nombres.
Il suffira de citer les noms d'Eisenstein, Lejeune-Dirichlet, Smith, Ed. Lucas, Poincaré, Cesàro,
Hurwitz, Klein, Minkowski. Gauss paraît être arrivé ainsi à ses théorèmes de la composition
des formes. (Voir Klein, Conf. sur les Math. 1898).
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n, on a :

(44) p'1 n (n)+ (1) + a (a) + b +
11 11

(45)
/ > 71 \* _

CC I vn (n) — p — 1p + Zp

Le nombre des points dont les coordonnées à l'intérieur
d'un cercle de rayon \/h sont des nombres entiers est 2

Les sujets traités sont d'ailleurs : l'analyse des résidus,
des développements sur la section Y1I des Disq. Ar., les

congruences en général, le classement des formes, la
représentation géométrique des formes ternaires et des résidus
biquadratiques, enfin une théorie des nombres complexes
des troisième, cinquième et septième degrés.

Avec Gauss se termine la deuxième période de l'histoire
de l'arithmétique. D'auxiliaire de l'algèbre qu'elle était chez

ce profond analyste, — surtout dans ses Disq. Ar., — elle
va reprendre son autonomie et appeler à son aide l'intuition
géométrique, la théorie des séries, celle des fonctions, l'analyse

infinitésimale et plus tard la théorie des ensembles, qui
permettront d'entrevoir et même de formuler certains des

principes qui la relient à l'analyse générale ; de sorte qu'il
ne sera plus chimérique d'espérer soumettre les fonctions
arithmétiques aux méthodes habituelles d'étude des fonctions,
après transformation de la discontinuité variable des éléments
qu'elle considère en discontinuité infinitésimale. D'abord la

théorie des moyennes, créée par Legendre et Gauss, mise
dans tout son joui- par Lejeune-Dirichlet, ne sera plus qu'une
première approximation, que Tchebichef et Riemann apprendront

à perfectionner par de géniales conceptions. Liouville,
par sa découverte des nombres transcendants, créera une
branche nouvelle et inattendue de l'arithmétique et dont

1 Ces deux formules ont été trouvées par plusieurs auteurs avant la publication des oeuvres
posthumes de Gauss. • •

2 Eisenstein a publié la même chose en 1844 (Journal de Crelle).
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l'élude produira d'importants résultats en même temps qu'il
ouvrira un domaine immense aux recherches des savants.
Les lois numériques, — particulièrement celles des nombres

premiers, — plus savamment attaquées, livreront de

plus en plus leurs secrets, et l'idée de nombre entier paraîtra
si primordiale qu'on pensera à en faire la base de toute

l'analyse mathématique.
Quoique la littérature arithmétique nous soit assez connue,

le caractère élémentaire que nous avons tenu à laisser à la

présente notice, et surtout la défiance que nous avons de

nos modestes lumières, ne nous permettent pas d'en dire
davantage sur cet important sujet, dont nous avons voulu
seulement essayer d'expliquer les origines.

A. Aurry (Dijon).

LE THÉORÈME DE PYTHAGORE
EN MÉTAGÉOMÉTRIE

Dans un article publié au 42e volume du Journal de Grelle
(année 1851, page 280), et paru la veille de sa mort, Guder-
mann donnait pour le triangle rectangle sphérique de côtés

a,b, c l'énoncé et la démonstration d'un théorème analogue
à celui de Pythagore pour le triangle rectangle plan. Si S,
S' et S" sont les aires des carrés ayant pour côtés respectifs
a, b et c, le théorème de Gudermann peut s'exprimer par la
relation

l(ts) l(Ïs') + l(Ï s")'

en posant pour abréger,

T /l + SI*1 X jL (*) log y/ - _ sin -Arg. th [sin x)


	SUR LES TRAVAUX ARITHMÉTIQUES de Lagrange, de Legendre et de Gauss.

