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SUR LES TRAVAUX ARITHMETIQUES

DE LAGRANGE, DE LLEGENDRE ET DE (GAUSS.

Le premier travail arithmétique de Lagrange fut la démons-
tration de la solution connue de l'équation de Pell (Miscel.
Taurin. 1766-69). 11 fait voir que le calcui de Brouncker abou-
tit toujours a une solution, laquelle est la plus petite possi-
ble!; que de cetle solution on déduit toutes les autres, par
des suites ou des récurrences déja indiquées par Euler ; que,
dans le cas ou elle est possible, la solution de U’équation
X2 — ky? = — 1 se raméne a celle de Uéquation de Pell ;
il ramene a cette derniere différents cas de I'équation x® — ky?
= &

En 1768 (M. D.), il démontre I'important théoreme sur le
maximum du nombre des racines des congruences, déja
traité autrement par Fuler, et en montre l'importance, avec
des corollaires qui le complétent. (E. M. 1907, p. 294).

En 1769 (Id.), il donne la solution de I'équation ax® 4+ b =1y?;
a laquelle se réduit toute équation du second degré.

En 1770 (Id.), méme sujet. C'est la qu’il imagine la nota-
tion Ew, pour désigner le plus grand entier contenu dans le
nombre w, notation qu'on a remplacée par celle-ci: Eo (Le-
gendre) et [w] (Gauss)®.

1 Voir par exemple Mathesis 1906, p. 233.

2 L’idée de remplacer les nombres non enticrs par leur partie enti¢re s’est présentée aux
premiers calculateurs qui ont eu & opérer sur des nombres de ce genre; mais ce n'élait la
quun procédé abréviatif. La théorie de la division, la recherche du p. g. c. d. de deux nom-
bres, I'extraction de la racine carrée, et plus tard 'analyse indéterminée du premier puis du
second degrés utilisaient implicitement la fonction Ew ; mais ce n’était encore qu’une appli-
cation de la méthode instinctive des approximations successives. Lagrange ’emploie explici-
tement dans sa solution de ’équation de Pell ; puis Legendre, dans une formule arithmétique
qu’on signale plus loin. Mais c’est surtout (Grauss qui en a compris importance ; et depuis,
elle est utilisée a chaque instant dans la théorie des nombres.

On en a méme déduit I'idée de plusieurs autres fonctions arithmétiques dont les suivantes :

1 -
G o, qui désigne D'entier, E (m + *.;) , le plus voisin de w (Kronecker) ,




LAGRANGE, LEGENDRE ET GAUSS 431

[.a méme année (Id.),‘ il donne la preuve de la solubilité de
Iéquation 2> — ay* — b =0, la généralisation du théoreme
d’Euler sur le produit de deux sommes de quatre carrés et
la premiere démonstration qu’on ait encore eue du théoréme

de Bachet. |
En 1771 (Id.), deux démonstrations du théoréeme de Wil-

son L.

La grande découverte de Lagrange est celle qui permet de
trouver la forme quadralique des diviseurs de 'expression
ax® + bxy + cy® (id. 1773-75). (Voir le t. IlI des (Fuvres
completes de Lagrange), et dont nous avons donné une idée
suffisante (E. M. 1907, p. 289). Rappelons seulement ici que
c'est la qu'on voit pour la premiére fois la considération du
déterminant d’une forme et de la réduite de celle-ci.

En 1777 (Id.), usage de la descente infinie pour vérifier
celte assertion de Fermat que le plus petit triangle rectangle
dont U'hypoténuse est un carré ainsi que la somme de ses
cathetes est celui dont les cathétes sont 1061652293520 et
4565486027761, solulion qu’Euler avait reconnue exacte mais
qu’il n’avait pas démontrée étre la plus simple.

Enfin, a la suite de sa traduction de 1'Algebra d’Euler
(Liyon, 1794), plusieurs notes importantes relatives a la théorie
des fractions continues:; a la solution de Péquation de Pell
et de I'équation quadratique indéterminée, par des moyens
nouveaux, et particulierement par la considération des mi-
nima de la valeur absolue des fonclions & —ay 2 et ax? + bxy

Tw ou R, la différence positive ou négative, n — E (m + -2—> de w et de Gw (Tchebichef),

1 )

E'v=E(@2w.—2Ew, E/w = 5 Ew(l4+ Ew), E”w = (E¢) (h’;) , (Hermite) .

1 Pour la premiére il fait voir qu’on a :
-1
(x+1)(@+2) . (z+p—D=2"1

ce qui généralise & la fois les deux théorémes de Fermat et de Wilson (voir E. M. 1907, p. 299).
La seconde s’obtient en faisant @ = p — 1 dans 'identité de Mercator

_a a a
al=a —Ca’1 (a — 1) +Ca,2(a—2) —..Ea.

% Bien que cette théorie soit plutot du ressort de Panalyse indéterminée, il convient d’en
donner une idée, 2 cause de 'importance quelle a prise ultérieurement.

Soient et f3 les entiers tels que, pour x < g , y<B,onait: |a— b <ix—ewyl,
x et y étant premiers entre eux. Cherchons a’ et f’ tels que aff’ — a’fB =1 et posons

(o) | x=ax +oy ,  y=Pfx+ By
x’ et y' seront entiers. Les conditions z < a y < B font voir que pour x < &’ et y<p’,
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+ cy?;. a la recherche des expressions dont la forme se re-
produit quand on la multiplie par une formule semblable!®.

Legendre fit paraitre en 1785, dans les Mém. de I'Ac. de
Sc., un mémoire ou, entre autres choses de haute impor-
tance, il démontrait un remarquable théoréme sur la solu-
bilité de I’équation ax® 4+ by* = cz*;? — énoncait sa célebre
loi de réciprocité® dont il ne donnait qu'une démonstration
incomplete ; trouvait incidemment cet important théoreme
démontré plus tard par Lejeune-Dirichlet : toute progression
arithmétique dont le premier terme est premier avec la raison,
renferme une infinité€ de nombres premiers; et posait les bases

on a de méme

4 /
[a—(oﬁ|<[9c-——my[.
Opérant de méme sur o, ﬁ', sur les résultats obtenus, et ainsi de suite, on trouve les

suites représentées par les relations générales

" 0| < |2 = o

z<a,  y<p™
Oc(”——” . a(n—-{—l) B(u-—l) _ ﬁ(”—i_l) B(n—{—l) (11+1)

(n—1) _ = - =E
- OL(’L) ’ ﬁ(”) (/z) ﬁ[ )

(n)‘B(/H—H . a(n—-}—'])ﬁ(n) — =1

- ]

| «

La série des o est décroissante et se termine par les termes E(w — 1), 1 ou 1,0 suivant

que w> ; celle des ﬁ est également décroissante et se termine par les termes 1,0 ou
( ) 1 dans les mémes cas. Les nombres @ représentent les quotients du dévelop-

pement de e en fraction continue.

La série des & — w[? est croissante et les signes des termes alternent.

Legendre a commencé 'étude des substitutions (®); mais c’est Gauss qui a le premier
reconnu 1’1mportance de cette théorie : il a fait voir qu’il y a grand avantage a distinguer les
deux cas aﬁ - ﬁ—l et aﬁ —aﬁ———l

1 Ainsi la formule 22 4+ axy + by2. (Voir Mathesis, 1907, p. 259.)

2 11 faut et il suffit qu’on puisse trouver trois nombres 2, @, v, tels que a) + b, cpt—0b,
J2 — a. soient respectivement des multiples de ¢, a, b.

3 Cette loi, qui se note ainsi d’apreés Legendre :

1 (q

() ()=

r—l1
le symbole (—) désignant le reste de la division de « 2 par p, publiée deux ans aprés

les Op. Anal. d’Euler, qui en donne l'équivalent (voir la citation que nous .avons faite &
propos de cet ouvrage), — a fait accuser Legendle de plagiat. Cette accusation ne nous pa-
rait pas fonddée : il .était plus facile de conclufe par induction la loi de Legendre des cas
particuliers qu’en avaient découverts Fermat et Euler, que -de la déduire de la proposition
des Op. Anal. D’ailleurs, sous cette forme, cette proposition était peu apte a hme déconvrir
les importantes conséquences que Legendre a tirées de sa formule.
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d’une théorie des nomb/'es trinaires ou décomposables en
trois carrés.

Ce fut l'occasion de son Essat sur la théorie des /zombi es
(Paris, 1798), ou il étudie les propriétés élémentaires des
nombres; remplace la formule (24) d’Euler par la suivante

(32 ?<fz>¥——rz(1——%>(1e%> .

et en tire le moyen de déterminer combien il y a de nombres
premiers dans une progression arithmétique donnée; re-
marque quon a sensiblement

1
(33) 9(10%4 = .-

2a
d’ou i1l déduit la formule approchée

a 1

(3%) 9 (a) =

] log «

et conjecture que la f'ormule exacte doit étre de la forme

a .
Aloga+ B’
la solution des équations linéaires indéterminées; reproduit
en 'améliorant la solution de Lagrange des équations indé-
terminées du second degré; donne différents théorémes sur
la possibilité de certaines équations de la forme ax? — by?
— ¢ 2, la démonstration des théoremes de Fermat d’Euler,

étudie ensuite les fractions continues: enseigne

1 C’est la le premicr exemple de valeur moyenne dans la théorie des nombres. Gauss a égale-
ment envisagé ce genre d’approximation a propos d’une certaine classification des détermi-
nants. Libri a découvert une formule donnant en moyenne le nombre des solutions entiéres
et positives de la congruence générale F(x, v, 3, ...) = 0. LeJeune Dirichlet a posé les fon-
dements de cette importante théorie, dont il a indiqué de trés intéressantes applications.
Voir : Berger, Sur qq. appl. de la fonction gamma (Upsal, 1880); Cesavo, Sur div. quest. arith.
(Bruxelles, 1883); Cesaro, Excursions arith. a Vinfini (Paris, 1885); Bel ger, Rech sur les
valeurs moyennes (Upml 1887).

Citons seulement ceci : on a en moyenne

n E (ne)

2= PR L By

1 . . . 1

= ' (Lejeune-Dirichlet) , ——2771—6)— = f(n) (Berger) ,
- .
19 (x)
1
. 3 —-7}—2 (Perott) ,

Iy aen moyenne 61 contre 39 a parier que deux nombres quelconques sont premiers entre
enx. (Cesaro.)

? Lejeune-Dirichlet a étendu ces théorémes.

I’Enseignement mathém., 11¢ année ; 19069.
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de Wilson, de Bachel, de Lagrange; développe les consé-
quences de la loi de réciprocité!; donne dans sa théorie des
nombres trinaires, d’'importants théorémes, dont 'un con-
cernant la relalion existant entre le nombre de décomposi-
tions'de n en trois carrés et les classes de formes de déter-
minant — 22, théoréme démontré rigoureusement par Gauss
et étendu par Jacobi, Lejeune-Dirichlet, Liouville, Kronecker
et Hermite.

Rappelons aussi le symbole (;-j) , qui porte le nom de Le-

gendre, et qu'on énonce caractére quadratique de a : il dé-
p—1

. . 3 :
signe le reste de la division de @ ~ par p, reste qui est tou-
jours, comme on le sait, 1 ou —1 2 Citons encore d'im-
portantes tables de formes des diviseus, tant linéaires que
quadratiques, et celle des solulions de l’équation de Pell
jusqu’a k& =1000.

Ajoutons qu’on voit pour la premiere fois, dans cet ou-
vrage, I'idée et le-nom des formes linéaires et quadratiques,
qu’il appelle aussi formules. Legendre y montre que la trans-
formation la plus générale d’'une forme quadratique en une

autre s’obtient a I'aide des subslitutions linéaires représen~

’ . . . ** . ’
tées aujourd’hui par lanotation (ﬁg“) ; que les nouvelles indé-
terminées sont des nombres entiers, quelles que soient les
indéterminées primitives si on a «d — By = == 1, et quen
général on a entre les deux expressions D, D" appelées de-
puis déterminants, par Gauss, la relation

D’ = D(ad — By? .

Ces remarques en généralisent d'autres données par La-
grange, dans son mémoire de 1775.

1 Ce sera le sujet de notre prochain article, ce qui nous dispense d’en dire davantage ici.
On trouvera de nombreux renseignements sur cette belle loi, dans le t. IT des Werke de Gauss;
la Note sur les rés. quad. de Genocchi (Bull. de ’Ac. de Belgique, 1852); la brochure de Baum-
gart. Ueber das quadratische Reciprocititgesetz (Leipzig, 1885) et la Niedere Zahlentheorie, de
Bachmann (Leipzig, 1902). Pour un aperc¢u de la question, on pourra consulter le fascicule 1
du vol. IIT de VEncycl. des sc. math. (Paris, 1906).

* Gauss indique que r est résidu et P non résidu de p au moyen des notations rRp, pNp,
qui n’ont guére été employées que par lui. Jacobi a étendu I'emploi du symbole de Legendre

5 . " a ‘oo ) : .
a une valeur quelconque de p; il a mis ((—)) pour désigner le caractere biquadratique de a,

< 5 a . 3 5
et Eisenstein [— , pour le caractere cubique du méme nombre.
p
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Dans la deuxiéme édition de son Essar (Paris, 1808), Le-
gendre ajoute plusieurs remarques trés intéressantes : la

formule

9 gt g2 ‘
(35) BEE GBS

indiquant combien de fois le nombre premier p est facteur
dans le produit n!; la recherche du nombre des termes
d’une progression arithmétique, divisibles par des nombres
premiers donnés, d’ou les formules suivantes :

36) - n—3o 4+ sEX —sE L 4
SN P Pq pyr

(37) p—sprtp =l gpindee—t

2p 2pq
donnant respectivement le nombre des termes des deux
suites 1, 2,3, ... n et 1,3,5, ... 2n — 1, non divisibles par
les nombres premiers dlfferents 22 c_], , ... ; cette formule
empirique
a. 1
(38) Le — 1,08366

fournissant approximativement le nombre N(z) des entiers
plus.petits que a, La désignant un logarithme népérien. Il
en déduit I'évaluation des expressions suivantes?

Sie 110-3)

! Cette {formule est remarquablement exacte dans la limite des tables actuelles de nombres \
premiers. Tchebichef a étudié les expressions de cette forme et a démontré que la formule

moyenne ou asymptotique

P représente N () en général, avec une approximation poussée

tq
aux termes de Uordre —— . et a en outre proposé cette autre d , que, dés 1793, Gauss
(Tay Jo Lz

. a
avait également trouvée sous la forme / 17> 2insi que Lejeune-Dirichlet, qui la notait

e/ €

# e 3
ainsi & —

Riemann, dans un mémoire célébre, a montré la haute importance de la formule de Grauss
an point de vue de la théorie des nombres premiers.

Voir a ce quet la savante et trés intéressante monographie de Torelli “Sulla totalita dei

numeri primi fino ad un limite assegnato (Naples 1901).
? Euler avait évalué les séries de cés expressions continuées a Pinfini.
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ainsi que ce théoréme, insuffisamment démontré: de a «
a4 2V a, il y a au moins un nombre premier?!.
Signalons aussi les notations M (@) pour désigner un cer-

tain multiple de a2, et T (%) pour désigner le nombre des

termes de la progression 1, 3,5, ... 22 — T non divisibles
par les nombres premiers 3, 5, 7, 11, ... p®.

Legendre a en outre donné en 1816 et en 1825, deux sup-
pléments & son Essai; dans le premier, il démontre, d’aprés
Cauchy, le théoreme de Fermat sur les nombres polygones ;
dans le second, il fait voir que 'équation 2" + y* — z" ne
peut avoir lieu pour n > 2 que pour des nombres d’'une
grandeur excessive®. 1l cite Sophie Germain comme lui ayant
fourni quelques-uns des théorémes utilisés par lui; donne.
en méme temps que Lejeune-Dirichlet la démonstration de
I'impossibilité de cette égalité pour n =5 et étudie I'équa-
tion a® + y*= az® qui, dit-il, est impossible pour a = 1,
2,3,4,5,6,8, 16, ... % ‘

Enfin il a donné en 1830 une édition définitive de son ou-
vrage, réédité en allemand en 1885 et reproduit textuelle-

ment en 1900.
En résumé, malgré son titre, I'ouvrage de Legendre n'est

1 J. Bertrand a énoncé ce théoréme, démontré par Tchebichef : entre a et 2a — 2, il y a neé-
cessairement un riombre premier.

2 Leibniz indiquait un multiple d’une quantité par un point placé au-dessus de cette quan-
tité ; cette notation, qui s’applique mal a des expressions compliquées et cause des embarras.
typographiques, a été peu employée. Celle de Legendre, qu’il a remplacée par celle-ci N1 (a),
s’emploie encore aujourd’hui ainsi: ! (a), dans les traités élémentaires. Gauss se sert de la
notation == 0 (mod «), encore plus encombrante. On aurait, ce nous semble, une notation tres.
expressive en indiquant les multiples par des caractéres gras.

Le plus souvent, on a avantage a employer la forme linéaire ax - .

3 On a imaginé depuis un grand nombre de fonctions de ce genre, qui ont surtout pour but.
' de simplifier les énoncés et faciliter la découverte de nouvelles propriétés des nombres. Telles
sont les suivantes, prises parmi les plus simples : :

¢ (), nombre des entiers premiers avec n ct non supérieurs a n (Gauss).

f)(n), nombre des entiers premiers jusqu’a n (Voir Cesaro, op. cit.).

) (n), fonction dont la valeur est == 1 selon que le nombre des facteurs égaux ou inégaux de
n est pair ou impair (id.).

w(n), nombre de mani¢res dont ’entier n peut se décomposer en deux facteurs (Mertens).

p(n), fonction dont la valeur est = 1 selon que le nombre des facteurs premiers inégaux de
n est pair on impair (id.).

a(n) = (1) + @®(2) + ... + p(n) (id.). Mertens a construit une table de cette fo_nction al-
lant jusqu’a ¢ (10000) = — 23. (Sitzb. d. math.-naturw. CL. 1897)

t(n), nombre des diviseurs carrés de n (Cesaro).

Voir pour d’autres notations : Cesaro et-Torelli, op. cit.

4 Landry a continué ces recherches de Legendre.

5 (Cependant, comme I’a remarqué le P. Pépin, on-a: 173 4 378 = 6.218.
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pas un véritable traité, mais plutot un recueil de théorémes
non reliés entre eux par une conception ou un but communs.
Seule, la loi de réciprocité y est I'objet d’une théorie bien
complete. D’ailleurs, méme a I'époque de sa troisieme édi-
tion, il n’était déja plus au niveau des progrés de la science.
Remarquons aussi que, bien atort selon nous, Legendre com-
mence par une longue et fastidieuse exposition de la théorie
des fractions continues, et qu'il considere lathéorie des nom-
bres comme une division de l'analyse indéterminée. Néan-
moins il est encore souvent consulté aujourd’hui, surtout a
cause de ses tables, et il faut reconnaitre combien il a été
utile pour la vulgarisation de la haute arithmétique.

Si Legendre n’a pas toujours été aussi heureux dans ses
démonstrations que dans ses découvertes, la clarté de ses
écrits, sa loi de réciprocité et les applications qu’il en a
faites, ses études sur les formes trinaires et sur la progres-
sion arithmétique, ses formules semi-empiriques sur lesnom-
bres premiers lui assurent une place parmi les fordateurs
de l'arithmétique moderne.

Il nous reste a donner un apercu des travaux arithméti-
ques de l'illustre Gauss. A 'encontre de Legendre, le livre
qu’il a modestement intitulé Disquisitiones arithmetica con-
tient un ensemble de théories completes, qui sont d’ailleurs
aussi remarquables par 'importance, la nouveauté, la variété
et la généralité des résultats que par la profondeur, I’élé-
gance et la concision des méthodes. Gauss a la vérité parait
avoir eu pour but le perfectionnement, non de arithmétique,
mais celui de 'algébre, dans ce célébre ouvrage, qui a ou-
vert un champ immense surtout aux investigations des algé-
bristes et sera encore longtemps 'objet de leur étude ; mais,
bien qu’elle n’y soit qu’accessoirement traitée, c’est la que
Parithmétique a recu sa constitution définitive et le pro-
gramme des travaux qu’elle devait aborder. Ecrit vers 1796,
il ne fut imprimé qu’en 1801, a Leipzig ; et encore il ne con-
tient que la moitié de ce que Gauss pensail y mettre : dans
le but d’abréger, il a supprimé l'analyse des questions trai-
tées ainsi que toute la huitieme et derniére section ; depuis,




438 : A. AUBRY

de multiples et importantes occupations, I'ont tonjours em-
péché depublierle complément deson travail, ainsi que ses dé-
couvertes postérieures, dont on n’a que quelques fragments’.

Les Disqg. ar. ont paru, traduites en francais, en 1807; elles
ont été réimprimées dans les deux éditions des Werke de
Gauss (Gottingue, 1863 et 1870), dont elles forment le pre-
mier volume ; et ont été en outre publiées, dans le texte
primitif allemand (Berlin, 1889). Nous allons donner une
courte analyse de son contenu.

Sect. I. Définition, notation et théorie de la congruence,
dont Gauss fait la base de toute arithmétique®. Lemme fon-
damental de Bachet (E. M. 1907, p. 288).

Sect. II. Application de la notion de la congruence a la
démonstration des théorémes arithmétiques. C’o;zg/ uences?®
Congruences linéaires. C’est la qu'on voit la remarquable
formule \

(39) 9(a) + ¢(b) + ... =n

a, b, ... désignant tous les facteurs premiers de n, y compris
n lm -méme *

1 J] semble qu'une certaine fatalité s’attache aux éerits de vulgarisation arithmétique. Bien
que les documents qui nous restent sur la science mathématique et astronomique des Egyp-
tiens, des Chaldéens et des Babyloniens montrent que I’étude des nombres a chez eux pro-
gressé bien plus rapidement que celle des figures, on a bien plus de renseignements sur
Phistoire de celle-ci; ce qui tient a ce que les Grees prisaient beaucoup plus lexactitude des
résultats de la géométrie que les opérations numériques, se terminant le plus souvent en ap-
proximation. Passant aux temps historiques, on peut citer d’importants travaux d’Apollonius
sur la numération, qui ont été perdus, ainsi que la seconde partie de 'ouvrage de Diophante
et son commentaire par Hypathia. D’'insignifiantes difficultés ont empéché Fermat de publier
ses méthodes ; (rauss n’a pu divulguer toutes les siennes ; Eisenstein, Riemann, Stieltjés sont
morts jeunes ; Liouville n’a pas eu le temps de fuire connaitre ses méthodes et de compléter
ses découvertes arithmétiques ; Lejeune-Dirichlet est mort avant d’avoir produit le commen-
taire de Grauss qu’il pensait écrire ; Lebesgue n’a pas trouvé de souscripteurs pour le Traité
qu’il se proposait de publier ; Ed. Lucas est mort, le premier volume de sa Th, des n. a peine
publié ; Cesaro a dfi abandonner ses études arithmétiques auxquelles il avait dd ses premiers
succes. Parlerons-nous de 'obstination avee laquelle cette science, — si éminemment propre
a former ’esprit mathématique, — est bannie de ’enseignement ; bien que, sans charger da-
vantage les programmes, il soit facile de lui trouver place en élaguant ca et la de ceux-ci
divers articles bien moins utiles. Le nom méme de l'arithmétique a été détourné de son sens
primitif, science des nombres, pour en faire la désignation de la science du calcul.

2 (lette notion était connue des Anciens, mais n¢ commengca gucre a étre utilisée que lors de
Pinvention de la preuve des opérations numériques. Euler et Lagrange y font souvent appel;
mais c’est Legendre qui le premier a compris la nécessité de la considérer systématiquement.
Toutefois il la traite et 1a note comme une équation ordinaire, en ajoutant le plus souvent: &
un multzple prés de p, et «sans qu'il soit besoin des égalités ni des dénominations nouvelles
assez incongrues dont quelques géometres font usage ».

3 11 s’agit des équations de la forme F(x) = Ay. Libri a tenté I’ etude des équations
F (2, y) = 0, mais la trop grande généralité de ses résultats a rendu son travail & peu preés
inutilisable. ,

4 Cette formule semble avoir donné le signal de la découverte d’une foule de relations
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Divisibilité par p du nombre de permutations de p choses
avec répétitions. Théoréme sur le nombre possible des ra-
cines des congruences !, :

Sect. III. Théoreme de Fermat. Etude approfondie des
racines primitives. Théoréme de Wilson et sa généralisation.
Divers théoremes sur la somme et le produit des racines
primitives. Diverses extensions du théoréme de Fermat.

Sect. I'V. Théorie des résidus. Critérium d’Euler. Théo-
remes quadratiques de Fermat; démonstration de quelques-

arithmétiques qu’il y aurait grand intérét a réunir et i rapprocher. En voici quelques-unes
¢lémentaires et assez caractéristiques :

Xo)fa) =0 (n2 (Liouville) ) Seola) b (l_t) = 63 (n) (Resdro)
Si(a) w(a) = k(n) » : . a
20(a%) = 62 (n) » s
o(a) 1
To(a) 6(2) :flc » ~ =2 (a) »
e sel@ 7 F
g (a) fg = 10 (n) » y (('L_'f) v ”
! : o ““\a)  ~

Zo (i\) = 0G(n) (Lejeune-Dirichlet) $h (@) B(a) = h(n) ¢ () ,
Zh(a) e(g) = t(n) (Cesaro) Spla) =0 »

! TSap(l) = (n) »
T (a) )(?z) =A(n) w(n) » P(a) ¢

2ha) o (%) =1 ), Tu(@ (%) =1 :

n
Tu(a) f—_ n »
(1

' e
n
Zap(a) | ~ =1 »
! J

A, B, ... représentent les diviscurs carrés de n. Les fonctions indiquées ont ¢té définies
plus haut.

! Gauss avance que les personnes doctes verront aisément que les deux démonstrations
de ce théoreme, dounées par Euler et Lagrange (voir E. M., 1907, p. 295), ne différent pas
essentiellement, et revient plusieurs fois sur des remarques analogues.

Avant lui, le marquis de PHospital avait dit (Sect. con.) que rien n’est plus propre a éclairer
Pesprit que la comparaison de plusicurs démonstrations d’unc méme vérité; et apres lui,
Cesaro (Mém. d’4r.) observe que « si Pon connait plusieurs moyens pour arriver & un méme
but, on peut affirmer qu’il existe une méthode géndrale qui résume tous ces moyens, les coor-
donne et les explique ». Citons aussi Stouf (Les Lois de réciprocité) : « ... les principes qui
servent aux définitions... se raménent souvent les uns aux autres, mais chacun d’eux permet
d’envisager la question sous un point de vue spécial et d’en préciser les difficultés. »

Toute démonstration n’est au fond que identification de deux définitions. Les sorites qui
composent deux démonslrations sont virtuellement formés des mémes syllogismes se succé-
dant dans des ordres différents, de sorte qu’un &tre parfaitement intelligent n’y trouverait pas
de différence essentielle et verrait clairement toutes les transformations qui conduisent do
I'une a Vautre; le puissant cervean d’un Gauss peut en embrasser plusieurs d’un coup, tandis
qu’un esprit ordinaire les saisira avec peine, en les prenant une A une. Nous croyons que ce
serait ceuvre utile de faire saisir aux commencants, dans quelques cas choisis, les principes
des démonstrations, et de leur en faire sentir I'identité. Rappelons a ce propos ce passage de’
la Logique de Port-Royal: « Les géométres... n’ont pas assez pris garde qu'il ne suffit pas,
pour avoir une parfaite science de quelque vérité d’étre convaincu que cela est vrai, si de plus
on ne pénétre, par des raisons prises de la nature dé la chose méme, pourquoi cela est vrai. »
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uns par la méthode de la descente!. Démonstration de ce
théoreme : tout nombre premier & + 1, positif ou négatif, est
non résidu d’un nombre premier qui lui est inférieur. Exposi-
tion et démonstration du theorema fundamentale*. Moyen de
reconnaitre si « est résidu de p. Détermination des formes
quadratiques des diviseurs de 2* — @. Extension aux nombres
composés des propriétés précédentes démontrées seulement
pour des nombres premiers.

Sect. V. Cette section, qui a été l'objet de nombreux et
importants travaux, est consacrée a l'étude des propriétés
des formes quadratiques®. C’est une savante application de
I'algébre a 'analyse quadratique indéterminée, aussi remar-
quable par la simplicité et le choix des considérations mises
en jeu, que par leur multiplicité et leur enchainement. Celui-
ci d’ailleurs, avec la densité et la longueur du texte, la
rendent d’une difficulté telle que peu sont capables de la ten-
sion intellectuelle nécessaire a son étude, et qu'on a du la
scinder et la particulariser, malgré 'unité et la belle ordon-
nance qui ont présidé a l'édification de cette théorie. On
trouvera une excellente préparation a cette étude dans la
Theory of numbers de Mathews (Cambridge, 1892). La Zahlen-
theorte, de Lejeune-Dirichlet, la donne plus completement-

180 — 1 est un résidu, p ne peut étre de la forme 4 — 1. Autrement, soit p le plus pelit
nombre de cette forme donnant le résidu — 1, et soit «? = pu — 1 ; on peut supposer a < p.
On a alors

@+1 _pr4i 1
= = — d’ol L p.
12 P < 7 P+ = ol w<Lp

Or on ne peut avoir « = p car il viendrait 1'égalité impossible «? = p? — 1 : on a donc « < p.
Remarquons que a peut étre supposé pair; autrement on le remplacerait par le nombre
b= p — a, qui donne également 42 =p¢y — 1. Onaainsi pu =4+ 1 d'ou v =4 — 1. Ainsi
« serait < p et contiendrait des facteurs premicrs de la forme 4 — 1, lesquels seraient a fortiori
< p et auraient — 1 comme résidu; p ne serait donc pas le plus petit nombre dans ce cas, cc
qui implique contradiction avec I'hypothése, laquelle est done fausse.

Gauss fait voir de méme que — 2 ne peut étre résidu de p =8 — 3 ni de 8 — 1; ni 2 résidu
de 8 &= 3; ni — 3 résidu de 6 — 1; ni 3 résidu de 12 == 5.

11 semble que cette méthode n a pas été utilisée autant qu’elle aurait pu I’étre.

? Gauss désigne ainsi' la loi de réciprocité, qu'il avait trouvée de son coté en 1796. Cette
démonstration, la premiére qui en ait été donnée était trés appréciée de son auteur, parce
qu’elle n’'emploie d’autre notion que celle des résidus. Lejeune-Dirichlet I'a présentée plus
simplemént.

2 Diophante parait avoir le premier imaginé les substitutions linéaires dans les expressions
algébriques, afin de rendre celles-ci plus traitables, ct ce procédé a été imité par tous ceux
qui se sont occupés de l’analyse indéterminée. Lagrange, a qui on doit la considération des
formes, les a appliquées a ces derniéres; il en a déduit I'importante théorie de la réduite
(voir E. M., 1907, p. 290); il a aussi remarqué la substitution modulaue, comme nous l'avons
vu plus haut. Lecrendxe les a également étudiées.
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Bachmann lui a consacré un volume de son imporlante col-
lection (4drithmetik der quadratischen Formen, Leipzig, 1898).

Une premiére partie tout élémentaire ! aboutit a des solu-
tions directes et générales de problemes déja connus : on la
trouvera exposée dans le chap. VI de la Théorie des nombres
de Cahen (Paris, 1900). Les énoncés suivants donneront une
idée des sujets traités, mais non de l’ingéniosité des mille
considérations auxquelles I’auteur a recours et des remarques
dont il les accompagne.

Si Pentier n est representable par la forme (a, b, c), le
déterminant D de celle-ci pris avec un signe contraire est
résidu de n 2.

Si deux formes ont méme déterminant et que 'une con-
tienne lautre, celle-ci contient également la premiere, et
elles sont diles équivalentes.

Si la forme F contient la forme [, et celle-ci la forme F”,
F contient F”.

Pour D positif, la solution de I'équation z* 4+ Da?==n? se
rameéne a effectuer deux transformations d’une forme A(d, b, c)
de determmant D et telle que n soit le p. g.c.d. des entiers
a, b, c.

Définition et détermination de la forme rédutte & détermi-
nant positif, comme Lagrange.

Reconnaitre si deux fonctlonq redmtes de méme détermi-
nant sont équivalentes.

Trouver la transformation permettant de passer de la forme
(a, b, ¢) a I'une quelconque de ses formes contigués 3.

(a, I)", ady o, (e, b, (L’f"j

( I/I [ I/l /24 )

a

’ y e

Trouver les transformations permettant de passer d’une
forme a une autre qui lui soit équivalente.

Trouver les représentations d’'un nombre donné par une
forme également donnée *.

1 Nous ne voulons pas dire que cette premiéere partie serait a sa place dans un traité élé-
mentaire des nombres : les méthodes de Lagrange conduisent aux solutions des mémes pro-
blémes, moins élégamment, mais sans nécessiter un aussi grand nombre de théories prélimi-
naires. Il conviendrait de la considérer aveec Gauss, non comme un but, mais comme une
introduction a la deuxiéme partie. .

2 Voir, par exemple, E. M, 1907, p. 297,

8 Deux formes (a, b, ¢), (¢, b'. ¢') sont contigués quand &’ = ¢’ et que & 4 &' est un mul-
tiple de ¢. ' '

4 Si d’une part, on peut prouver que les diviseurs premiers du nombre af? + bfg + cg? sont
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La forme réduite (A, B, C), dans le cas d’'un déterminant
négatif D, non carré!, est celle o on a:

VD+B>|A|>YD—-B, YD>B>0.

On peut déterminer une période de réduiles conligués
(A, B, C), (C, B, C), (C, B", C"), ... et elle est cyclique.

Ces considérations permettent a Gauss la solution des
problémes analogues a ceux indiqués plus haut pour le cas
de D positif. Il traite ensuite le cas d’un déterminant négatif
et carré, et termine la premiére partie par le probléme gé-
néral de reconnaitre si une forme est contenue dans une
autre forme de déterminant différent, et si cela a lieu, de
trouver les transformations qui les lient; — et par la, la so-
lution de 1'équation indéterminée du second degré.

La deuxiéme partie, entierement neuve mais trés abstraite,
commence par I’étude de la composition des formes?, c’est-
a-dire la transformation de la forme AX? + 2BXY -+ CY? en
le produit des deux formes ax® 4 20xy + cy®, a'x + ...,
au moyén de la substitution

X = gax’ ++ g'xy” + g'x'y 4+ g"yy" Y = hxx’ + ...

Par exemple voici deux propositions tirées de cette théorie :

Les formes composées avec f et /' sont identiques a celles
qui sont composées avec les formes g et g’, respectivement
équivalentes a fet f’.

Si deux nombres sont représentables par deux formes de

de Pune des formes ox? x 2, g’x3 4 ..., ete., et que d’autre part un certain nombre
Y1y q LT 7

premier p divise un nombre de la forme ax? + bxy -+ cy?, il s’ensuivra que p est de l'une des

formes 2x? 4 ..., ete.

Fermat et Euler ont trouvé plusieurs cas simples de ce théoréme. Lagrange, par son théo-
réme, a montré comment on peut réaliser en général la premiére condition; et Legendre, par
sa loi de réciprocité, a permis de réaliser la seconde.

Gauss arrive directement & représenter un nombre n par une forme de déterminant D, en
résolvant I’équation x2 4+ D = 0 (mod ») et utilisant divers théorémes qu’il a donnés précé-
demment.

1 LI’étude de ce cas a grandement été simplifié par Lejeune~Dirichlet.

2 Euler et Lagrange avaient cu quelque idée de cette théorie dans leurs recherches de fonc-
tions se reproduisant par multiplication; Legendre avait considéré plus généralement Ia mul-
tiplication de formes; mais c’est Gauss qui a attaqué la question dans toute son étendue.

On consultera avec fruit les Werke de Lejeune-Dirichlet, cu sont expliqués et démontrés
beaucoup de beaux problémes de Gauss, qui ne peuvent guére étre exposés ici.

Voir aussi, parmi les auteurs qui se sont occupés de la composition des formes, un mémoire
du P. Pépin, paru en 1880, dans les Atti nuovi lincei, ol la théorie de Gauss est trés simple-
ment exposée.
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déterminant D, leur produit I'est par la forme composée avec

ces deux formes?.
Entre autres conséquences importantes, (Gauss en tire une

seconde démonstration de la loi de réciprocité.
11 considére ensuite les formes ternaires quadratiques.

<Z Z ;) = ax* + 2bxy 4 ) + 2dxz + 2eyz + [

dont 'étude dépend surtout du déterminant
D = ad® + ba® + ¢f* — abc — 2def
ainsi que de la forme adjointe .

d* — be , e — ac , [*—ab\
ad — ef , be — df , cf — de

dont le déterminant est D2 1l aborde ’étude des problemes

suivants : ,
Représentation d’un nombre donné par une forme ter-

naire.

Représentation d’'une forme binaire donnée par une forme

ternaire de déterminant donné.

Reconnaitre si deux formes ternaires sont équivalentes, et
dans ce cas, trouver les transformations qui les changent
'une dans 'autre.

Application a la démonstration de théorémes énoncés par
Legendre et de celui-ci d'Euler : tout nombre entier 8 4+ 3 est
la somme de trois carrés, insuflisamment prouvé par Legen-
dre et qui conduit immédiatement a celui-ci, de Fermat :
tout entier est la somme de trois triangulaires et de quatre
Carres. | ,

Généralisation du théoreme de Legendre sur la solubilité
de I'équation ax® + by*® 4+ cz* = 0. -

Dans le reste de la section V, Gauss traite un grand nom-
bre de questions relatives a la classification des formes, el
sur lesquelles s’est exercée la sagacité de nombreux géo-
metres.
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Sect. 'VI. Cette section renferme d’'intéressantes applica-
tions des théories qui précédent, et dont voici les plus sim-
ples : | '

Résolution de l'équation i’% :% -{—% et sa généralisation.

Utilisation de la théorie des racines primitives dans celle
des fractions décimales périodiques.

Emploi des considérations qui précédent pour la recherche
du quotient de deux grands nombres.

Solution de I'équation #* — %y — @ au moyen d’'une mé-
thode d’exclusion basée sur cette remarque que sir, ", .
sont les résidus du nombre quelconque E, et «. &', ... les ra-
cines des équations @ + ky = r, a + ky = //, ... (mod. E),
on peut se dispenser d’essayer les nombres contenus sous
lesformes Ex + «, Ex 4 o, ... Cette inéthode a recu depuis
de notables perfectionnements.

Recherche des diviseurs des nombres, d’abord par une
méthode déja employée par Euler et Legendre, puis a l'aide
de la considération des résidus. (Voir E. M. 1907, pp. 292 et
36). '

Sect. VII. C’est la surtout qu’éclate le génie de Gauss. La
résolution compléete de I’équation bindme qu’il donne dans
‘cette section est non seulement neuve mais entiérement inat-
tendue. Elle s’appuie sur un grand nombre de considéra-
tions algébraico-arithmétiques, dont nous mentionnerons les
plus importantes.

Soient o, 3,y ... certaines racines de l'équation X — X
+ PP 4+ 1 =0, lesquelles sont, comme on sait, les
puissances de I'une d’elles ; ¢ (¢, u, v, ...) une fonction entiére
el a coefficients entiers, et enfin n un-entier quelconque ; en
posant :

p—1

ola, B, ...) = A 4 Ba 4 Ca® + ... + Nt

on aura :
o(o”, B, ..) = A 4 Bu" + Ca®" £ ...

(o, B, ) gl B2, ) .. b ola? PP, ) =0.

Le polynéme X ne saurait avoir de diviseur entier a coeffi-
ctents tous rationnels'. Soit R une racine primiiive de p ; les
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deux suites

sont identiques & Uordre pres.
Soientp — 1 = ef . R®=h; si on pose :
. . Lt
(f, A) = o’ —+ alh —I—Aa)’h + ...+ ML ,
le second membre est indépendant de la racine pr imitive choi-
sie: on 'appelle la période de f'et de A.
On a, pour deux périodes semblables (f, 3, (f, p) :

(£, W) = (fs % 4 )+ F M4 p) + (20 4 p) +

Posons (f, ) = g ; la période semblable (t, ) peut se mei-
tre sous la f0/ me d un polyndéme entier en g et du degré e — 1.

St oL, y -..) est une fonction syméirique entiére des |
racines de Za periode (f, X), qu'on raménera a la forme A +
Ba' + Ca® 4 ..., les racines de cette expression appartenant

@ une méme pe/ Lode auront des coefficients égaux.

Soit p — 1 = abc; st la période (be, X) est composée de b
périodes (c, 1), ¢, 1), ... de c termes chacune, la substitution
des sommes de ces périodes dans lexpression symétrique

o(t,u, ...)en donnera une autre de la forme

A+ B, 1)+ Cle, R + ... + N(¢, R®Y

telle que les périodes appartenant a une méme période de be
termes auront les mémes coefficients.

Gauss applique cette belle théorie ala solution de 1 équation
binome, pour les cas'de p = 17 et p = 19, et & la division
du cercle en 2" 41 parties égales, ce nombre étant premler2

Viennent ensuite ces tres remarquables propositions

(40) L - Eae: -+ ‘/]T ou —+.u ‘/—1)— 8 .
9 o 7

(41) Z cos ~apin—2cos g—a?;-z +yp ou =0.
2ar : _

(42) = sin (;;E—Zsm ewor ou == /p

1 Autrement dit, le polwmme Xestirr educnble Cette 1mp0rtante proposmon a été démon-
trée de bien des facons. ‘

% Richelot et Cayley ont traité le cas de p = 257, et Hermes, celui de p = 655317.

3 Le mgnc du radic¢al reste mdetelmme etilya gnande dltﬁculte ale dcﬁmr Gauss plus
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Dans ces déux derniéres relations, le signe X s’étend a
tous les résidus 7 ou a tous les non résidus p ; onad’ailleurs
le signe 4+ ou le signe — selon que a est résidu ou non ré-
sidu. De plus, on a le premier ou le second résultat selon
que p =4 + 1.

Faisant p — 2m 4 1 et appelant z = x™ — ax™ ! 4 bxm?
— ... = 0 l'équation donnant la période (m, 1), on pourra
écrire : ,

zt=F +G(m,1)+ H(m,R),
(43) 4Xe= (2F — G — H)2 I p (H — G)?, (p=411]

Le premier membre peut donc se mettre sous la forme
Y? = pZ2%, comme nous 'avions annoncé. (Voir E. M., 1907,
p. 443.)* '

Gauss termine par diverses considérations tendant a l'ex-
tension de ces propositions au cas des résidus cubiques.

L'ouvrage se termine par des tables de racines primitives,
de résidus quadratiques et de périodes décimales.

Non moins profonds et non moins élégants sont les autres
écrits arithmétiques de Gauss. Ce sont des mémoires déta-
chés, parus dans les Commentationes societatis Gottingensis.
Nous en rappellerons le sujet en quelques mots.

1808. Troisiéme démonstration du théoréme fondamental,
la plus simple de toutes celles qui en ont été données.

1811. Summatio serierum quarumdam singularium. Il s’agit
des suiles?

1—a" 1—a"1—a"! i 2
1 — e, Zax(x"—) , Ta®
R f — @ 1 — &* +'

tard, Eisenstein, LeJeune Dirichlet, Cauchy, Lebesgue, Kronecker, Mertens et d’autres encore

ont fait voir que ce signe est le signe 4.
Ajoutons que c’est daps cette méme section que le symbole 7 a été introduit dans l'analyse,

pour remplacer 'imaginaire vV —1.

! Gauss donne les expressions des polyndmes Y et Z pour p =3, 5, 7, 11, 13, 17, 19 et 23.
Legendre a donné celui correspondant a p = 29. En général on les calculera & l’aide des for-
mules suivanies de Lejeune-Dirichlet

?I“n'i> EEF_L
Y—-Z\/}}_=2H<x——e £/, Y+zv’;=2ﬂ<x’——e 3 )

"Ce dernier, ainsi que Jacobi, en ont tiré la solution de I’équation de Pell.
2 Jacobi en a donné de plus générales, déduites de la théorie des fonctions elliptiques, dont

e Wi ma e cinyn i o 4 e
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d'ou Gauss tire de nombreuses conséquences, dont la valeur

des sommes
p—1 p—1

S 22%n Yy | 2x%m
Z cos —- , Z sin ,
P p

1 . i

et une nouvelle démonstration du théoréme fondamental. .

Ce mémoire passe pour une des plus belles productions
du génie de Gauss.

1818. Cinquiéme et sixicme démonstrations du théoréme
fondamental.

1828. Theoria residuorum biquadraticorum. Commentatio
prima. Posons p =14y + 1 et f*=—1 les entiers inférieurs
a p se partagent en quatre classes également nombreuses

! !

! Vs
Pyl 5P B e s Py Py s Py Py ee
des racines des congruences
x*L"”—_:i,/', -1, —f.

Gauss examine le nombre des solutions des congruences
telles que 7 4+ 1" 4+ 1= 0, les relations de ces nombres entre
eux, et en tire la décomposition de p en une somme de deux
carrés? ainsi que le caractére biquadratique du nombre 2 *.

1832. Id. Commeniatio secunda. 1l étend aux nombres
imaginaires les éléments de la théorie des nombres, con-
tenus dans les quatre premieres sections des Disq. Ar. 1l en
déduit le caractére biquadratique des nombres ¢+ 14, et

les formules sont d’ailleurs la traduction de celles de Varithmélique quadratique, cubique et
biquadratique. Voir la démonstration de Lebesgue (Journal de Liouville, 1840).

La théorie des nombres n’est au fond que I'étude des identités, les unes simplement algé-
briques, les autres concernant des suites de termes en nombre indéterminé mais fini, comme
celles de Gauss, ou bien des séries élémentaires, ou des séries transcendantes, ou des inté-
grales définies. C’est Jacobi qui parait avoir le premier soup¢onné ces mystérieux liens qui
unissent I’analyse des quantités continues a la théorie des nombres.

1 Ces sommes ont été calculées autrement par Lejeune-Dirichlet.

2 Soit p = 2% 4 432, on a :

:
L 2pCe—1) g )
2 !

3 Gauss avait fait la découverte de ce caractére en 1805 et ’avait fait connaitre en 1807 dans
une lettre a Sophie Germain, _ :

* Lire sur ce sujet l'intéressante Contribution & Uétude des rés. biquadr. et cub. de Stieljes,
parue dans les Archives néerlandaises, 1583, et reproduite dans les Ann. de la Fac. de Toulouse.

Lejeune-Dirichlet a2 démontré la loi de réciprocité généralisée de la méme maniére, et a
étendu ses recherches aux formes. quadratiques 2 coelficients et indéterminées imaginaires.

La théorie des nombres a recu de la notion des imaginaires une nouvelle impulsion, grace sur-
tout aux travaux de Galois, de Kummer et de Dedekind,

x =

«



»
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énonce la loi générale de réciprocité biquadratique, démon-
trée par Eisenstein.
1831. Premiéres applications de la géométrie a la théorie
des nombres. ‘ '
Considérons deux systémes de paralleles équidistantes sc

' . , . b
coupant sous un angle # dont le cosinus est égal 4 — ; ap-
ac

pelons " a les longueurs des divisions d’un des systémes
de paralleles et |/ b celles de l’autre. Prenons 'une des in-
tersections, #, ainsi déterminées comme origine. Le carré de
la distance d'une autre intersection, M, a l"origine est
ax?® + 2bxy + cy?, x et y désignant les nombres de paral-
leles rencontrées par OM dans chacun des deux systémes.
La surface d’un des petits parallélogrammes ainsi construits
représente la racine carrée du déterminant 62 — ac —= D.

Si on remarque que par tous ces points passent une infi-
nité de systémes de paralleles, il s’ensuivra que 'ensemble
de ces mémes points représentent, non seulement la forme
ax?® + 2bxy + cy*, mais toutes celles qui s'en déduisent au

moyen de substilutions linéaires telles que (;?) . Dansle cas

ol ay — 80 = — 1, le nouveau déterminant est égal au pre-
mier; les parallélogrammes élémentaires sont égaux et il y
a simple translation. Si ¢y — 3 = — 1, le nouveau détermi-
nanl est égal a — D et il y a retournement.

Les formes ternaires font I'objet d’'une semblable symbo-
lisation dans I'espace .

Le reste des travaux arithmétiques de Gauss se trouve
dans sa correspondance et dans ses ceuvres posthumes. Nous
en extrayons seulement ces théorémes (Werke, b. 1F) :

(n) désignant le nombre des fonclions entiéres du degré n
suivant le module p et a, b, ¢, ... les facteurs premiers de

1 Depuis Gauss, les plus ‘éminents géométres ont utilisé de méme la géométrie pour la re-
présentation dés théorémes arithmétiques et découvrir de nouvelles propriétés des nombres.
I1 suffira de citer les noms d’Eisenstein, Lejeune-Dirichlet, Smith, Ed. Lucas, Poincaré, Cesaro,
Hurwitz, Klein, Minkowski. Gauss parait étre arrivé ainsi a ses théorémes de la composition
‘des tormes. (Voir Klein, Conf. sur les Math. 1898). T
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n, on a:
(44) ~ pt=n(n) + (1) + ala) + b(b) + ...
(45) nin)=p" — Ep—fz + 2])&3 — ..t

. ’ . b ’ “' : 2
LLe nombre des. points dont les coordonnées a l'intérieur
d’un cercle de rayon |}/ 1 sont des nombres entiers est 2

n n n_
1+4<LT—E§+E5 >

Les sujets traités sont d'ailleurs: l'analyse des résidus,
des développements sur la section VII des Disq. Ar., les
congruences en général, le classement des formes. la repré-
sentation géométrique des formes ternaires et des résidus
biquadratiques, enfin une théorie des nombres complexes
des troisiéme, cinquiéme et septieme degrés.

Avec Gauss se termine la deuxiéme période de I'histoire
de I'arithmétique. D’auxiliaire de 'algébre qu'elle était chez
ce profond analyste, — surtout dans ses Disq. Ar., — elle
va reprendre son autonomie et appeler a son aide l'intuition
géométrique, la théorie des séries, celle des fonctions, I'ana-
lyse infinitésimale et plus tard la théorie des ensembles, qui

permetiront d’entrevoir ¢t méme de formuler certains des

principes qui la relient a I'analyse générale; de sorte qu’il
ne sera plus chimérique d’espérer soumettre les fonctions
arithméliques aux méthodes habituelles d’étude des fonctions,
apréstransformation de la discontinuité variable des éléments
qu’clle considére en discontinuité infinitésimale. D’abord la
théorie des moyennes, créée par Legendre et Gauss, mise
dans tout son jour par Lejeune-Dirichlet, ne sera plus qu'une
premiére approximation, que Tchebichef et Riemannappren-
dront a perfectionner par de géniales conceptions. Liouville,
par sa découverte des nombres transcendants, créera une
branche nouvelle et inattendue de l'arithmétique et dont

1 Ces deux formules ont été trouvées pm plusieurs '1utblllS avant la publication des cuvres
posthumes de Gauss.

2 Eisenstein a publié la méme chose en 1844 (Jour /Lal de Crelle).
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I'élude ‘produira d'importants résultats en méme temps qu'’il
ouvrira un domaine immense aux recherches des savants.
Les lois numériques, — particuliérement celles des nom-
bres premiers, — plus savamment allaquées; livreront de
plus en plus leurs secrets, et 'idée de nombre entier parai-
tra si primordiale qu’on pensera a en faire la base de toute
I'analyse mathématique. '

Quoique lalittérature arithmélique nous soit assez connue,
le caractére élémentaire que nous avons tenu a laisser a la
présente notice, et surtout la défiance que nous avons de
nos modestes lumiéres, ne nous permettent pas d’en dire
davantage sur cet imporiant sujet, dont nous avons voulu
seulement essayer d’expliquer les origines.

A. Augry (Dijon).

LE THEOREME DE PYTHAGORE
EN METAGEOMETRIE

Dans un article publié au 42° volume du Journal de Crelle
(année 1851, page 280), et paru la veille de sa mort, Guder-
mann donnait pour le triangle rectangle sphérique de cotés
a, b, cl'énoncé et la démonstration d’un théoréme analogue
a celui de Pythagore pour le triangle rectangle plan. Si S,
S’ et S” sont les aires des carrés ayant pour co6tés respectifs
a, b et c, le théoreme de Gudermann peut s’exprimer par la

1 —_— 1 ’ 1 "
L(ZS>_L(ZS)—|—L<ZS>,
en posant pour abréger,

L (x) = log \/M — Arg. th(sina) .

1 — sin &

relation

P P ‘




	SUR LES TRAVAUX ARITHMÉTIQUES de Lagrange, de Legendre et de Gauss.

