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avec les cotés fixes AC, AB. Mais comme la droite AI est fixe

quelle que soit la position de la droite BC, les points et 1! sont
aussi fixes et le cercle PQR qui touche en ces points aux deux
droites fixes iVC et AB est bien déterminé et ne dépend nullement
de la position cle la droite BC.

Ainsi donc, tout cercle circonscrit au triangle ABC est bien

tangent au cercle déterminé PQR, quelle que soit la position du

coté BC.
Y. Sayvayama (Tokio).

Sur le dernier théorème de Fermât.

(A propos d'un article de M. Cailler sur les congruences
du troisième degré).

11 est facile, comme on sait, de rattacher la théorie de l'équation

de Fermât
X1 + y1 -h A r=r 0

à celle des équations et des congruences du troisième degré.
Soient, en effet, st, s2, s:i les fonctions symétriques élémentaires

x + // + £, xi) -f xz + yz xyz Ta somme xl + y1 + zl eat

une fonction rationnelle entière à coefficients entiers de si s2. ,s'3.

En fégalant à zéro, on obtient une relation de la forme

çp pr .v2 sZ) 0

<p étant un polynôme de degré l à coefficients entiers.
Or x, y, r. sont racines cle l'équation

1 tS -S't f2 T" ,S'2 i -v3 0

On voit donc que l'étude de l'équation de Fermât se ramène à

celle cle l'équation (i) caractérisée par la relation tp — 0.
Au lieu cle l'équation (1) on peut envisager la congruence

correspondante mod n n étant un nombre entier quelconque. L'étude
se simplifie, mais la portée cle la méthode diminue.

Il m'a paru intéressant d'appliquer à ces congruences les
propositions établies par M. Cailler clans son article « Sur les
congruences du troisième degré» Ens. math., novembre 1908, p.
474-487).

Bornons-nous au cas où les nombres x, y, c sont supposés
premiers à /, et posons n — l. Dans ce cas .s\{ n'est pas divisible
par l ; d'autre part on a toujours

x1 + y + zl x+ 3' + I

L'Knscigncment malhém., 1 Ie anmie: 1009.
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Donc 0 et la congruence du troisième degré s'écrit

(F) P + s2t — >S'g 0 (mod. /)

Or Legendre [Mém. Acad. Se. Institut France, 1823) a déjà fait
cette remarque que la différence

•y — A1 + y1 + — §lt —

est divisible par f.r -f- y) (x -(-3) (;// -f- z) si s2 — ê:l et par l.
Posons

/ - *
: P pi S2 S2)

I [i>i s2 S3)

fomme ^ est divisible par ll et que d'autre part s] s2 — s:) est

premier à l, 011 aura en faisant cp 0

P pi ^2 >
•<,'s é

et par conséquent
P (0 .s-2, 6"g) —E, 0

puisque .s, 0

On en conclut ceci : si l'équation de Fermât admet une solution
première à /, la congruence (f) caractérisée par la relation P — 0

a trois racines. Or les polynômes P se calculent très simplement
à l'aide de la formule de Waring (F. Lucas, Théorie des nombres,
p. 274).

Pour l 3 P 1 ; donc P ^ 0 (mod. 3) et l'équation de Fer-
mat est impossible en nombres entiers premiers à l pour 1 3.

Pour 1=3, P — s2. La condition P 0 donne s2 — 0, mais
alors le discriminant —4s* —21s"g de (P) se réduit à — 27s* non-
résidu (puisque — 3 est non-résidu pour tous les l de la forme
3m — if. La congruence (F) ne saurait donc avoir trois racines.

Pour l 11, P s2 (s2 — sg) Le module l étant un nombre de
la forme 3m — i nous pouvons écarter l'hypothèse s2 — 0. Reste

l'hypothèse s*
sg ; le discriminant de (1') se réduit à — 31s* 2.**

non-résidu.
Soit encore l 17. Le polynôme P s'écrit — s2 (y) — 5s*s* *s3)*

En écartant l'hypothèse s2 0 et en posant si u s* e, on
est conduit à la congruence

u2 — 5w -f- v2 0 ou (u — 12r) (u — lOr) 0

Mais pour u 12c le discriminant devient — 75s* 10s* non-
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rcsiclu. Reste l'hypothèse u EE 10e ; le discriminant devient

67s\= 5g résidu.
Le nombre des racines de (1') est donc égal à 0 ou à 3. Mais est-

il égal à 0, est-il égal à 3 Pour répondre à cette question nous
allons appliquer à la congruence (1') le critérium donné par M.
Cailler à la p. 486 (quatrième cas). Soient a, b deux nombres
définis par les relations

52 /
3S8

ci b — TT > a -J- U : $

3 S%

Pour que la congruence (F) ait trois racines, il faut et il suffit
que

6
J

G

- ~ 0 (mod. 17)
a — b

ou

j (a + b)2 — ab | j (a -j- b)s — 3ab (a -f- b) j 0

et comme a -f b iFest pas divisible par 17, cette relation s'écrit.

(u -j- 27e) (u -|- 9r) EE 0

Or pour u 10 e le premier membre n'est pas divisible par 17.
Les propositions établies par M. Cailler permettent donc de

démontrer l'impossibilité de l'équation de Fermât en nombres
entiers premiers à l pour l 17.

Lorsque le module l est un nombre de la forme 3m -|- 1, nous
n'avons plus le droit de rejeter l'hypothèse s2 0, car le
discriminant de (F), qui se réduit à — 27est résidu quadratique et
la congruence (F) peut avoir trois racines. C'est par l'étude
directe de la relation <p 0 et non des congruences que Lamé et
Lebesgue ont réussi, comme on sait, à démontrer l'impossibilité
de l'équation de Fermât pour 1=1 (J. de Mathëm. 1840).

D. Mirimanoff (Genève).

Règle à calculs pour les écoles.

Au moment où la règle à calculs tend à pénétrer de plus en plus
dans la pratique, il est indispensable de pouvoir en montrer le
maniement dans les gymnases et écoles techniques.

Jusqu'ici son introduction dans l'enseignement était rendue
difficile par suite du prix élevé de cet instrument. La maison
Wichmann (Berlin, NW 6, Karlstrasse, 13), vient d'éditer une règle
à calculs en carton blanc, dont le prix très modique (1 mark 25)
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