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MELANGES T CORRESPONDANCLE 49

avee les cotés fixes AC, AB. Maic comme la droite Al est fixe
quelle que soit la position de la droite BC, les points Q et I sont
aussi fixes et le cercle PQR qui toache en ces points aux deux
droites fixes AC et AB est bien déterminé et ne dépend nullement
de la position de la droite BC.

Ainsi donc, tout cercle circonscrit au triangle ABC est bien
tangent au Lerde déterminé PQR, quelle que soit la position du
coté BC.

Y. Sawavaya (Tokio).

Sur le dernier théoréme de Fermat.

(A propos dlnlarLuJe de M. Cailler sur les congrucnces
du troisieme degré).

[l est facile, comme on sait, de rattacher la théorie de I'équa-
tion de Fermat

¢
2! + 7y + =

a celle des é¢quations et des congruences du troisicme degre.

Soient, en eflet, s,, s,, s, les fonctions symétriques élémentai-
res & 4+ y + 7, 2y + 2z + yz, 2yz. La somme 2t 4yt + 5t edt
uane fonction rationnelle entiére a coeflicients entiers de s, s,, s,.
En 'égalant a zéro, on obtient une relation de la forme

?(Jl. S2 33) — O ’

¢ ¢tant un polynome de degré [ a coellicients entiers
Or 2, y, 5 sont racines de 1’équation

(1) t3_5'1i2+.5'2l—‘5'3:0 .

On voit donc que 'étude de 'équation de Fermat se ramence a
celle de équation (1) caractérisée par la relation ¢ = 0.

Au lieu de I'équation (1) on peut envisager la congruence cor-
respondante mod n, n étant un nombre entier quelconque. [étude
se simplifie, mais la portée de la méthode diminue.

Il m’a paru intéressant d’appliquer a ces congruences les pro-
positions établies par M. Cailler dans son article « Sur les con-
gruences du troisiéme degré» ([ins. math., novembre 1908, p.
ATh-487).

Bornons-nous au cas ou les nombres 2, y, = sont supposés
premiers a /, et posons n = /. Dans ce cas s, n’est pas divisible
par /; d’autre part on a toujours

Ayt d =+

L’ Linscignement mathém., 1€ annde: 1909,
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Donc s, = 0 et la congruence du troisieme degré s’écrit
(1) 13 + s3¢ — s3 = 0 (mod. /).

Or lLegendre (Mém. Acad. Sc. Institut France, 1823) a déja fait
cette remarque que la différence

{ ot A ! l
S,— @ )y =8 —¢

est divisible par (v +y) (x + =) (y + 3) = 5,8, — s, et par /.

Posons

{
el
. — P (s1, Sz, S3) .
[(.51 89 — 33) &

Comme s’ est divisible par /et que d’autre part s, s, — s, cst
premier a /, on aura en faisant ¢ =0,

P (5'1, So, 83) — O

et par conséquent
P(O, Sao, 33) — 0 »

puisque s, = 0. ~
On en conclut ceci : si I'équation de Fermat admet une solution
premicre a /, la congruence (1') caractérisée par la relation P = 0
a trois racines. Or les polynomes P se calculent tres simplement
a I'aide de la formule de Waring (K. Lucas, Théorie des nombres,
p. 274). | : | ,
Pour /=23, P =1; donc P £ 0 (mod. 3) et I'’équation de Fer-
mat est impossible en nombres entiers premiers a / pour / = 3.
Pour [ =5, P = —s,. Lacondition P = 0 donne s, = 0, mais
alors le discriminant — 4s, — 2782 de (1} se réduit a — 2732 —=non-
résidu (puisque — 3 est non-résidu pour tous les / de la forme
3m — 1). La congruence (1') ne saurait donc avoir trois racines.
Pour i =11, P =s, (s, — 32) . Le module / étant un nombre de
la forme 3m — 1, nous pouvons écarter I’hypothese s, = 0. Reste

. 3 2 . . . " o
I’hypotheése s, = s,; le discriminant de (1’) se réduit a

T S
318‘,: 28"
— non-résidu.

6 - 3 2 4
. — 08,8, Ss)'

Al ’ 1 3 2
En écartant 'hypothese s, =0 et en posant s,==«, s, = ¢, on

Soit encore / — 17. L.e polyndome P s’écrit — s, (s

est conduit a la congruence
ut — duy 4+ v =0 ou (0 — 12¢) (u — 10v) = 0 .

— e

. . . . . . 2 2
Mais pour v = 12¢ le discriminant devient — 75s, = 10s, = non-
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résidu. Reste I'hypothése u = 10¢; le discriminant devient
— 67 S: = S:'_,_. résidu. |

Le nombre des racines de (1’) est doncégal 4 0 ou a 3. Mais est-
il égal 4 0, est-il égal 4 3? Pour répondre a cette question nous
allons appliquer a la congruence (1') le criterium donné par M.

Cailler a la p. 486 (quatriéme cas). Soient @, b deux nombres dé-
finis par les relations \

Sz - 383
ab = — = a«a + b=—,
=—5, ¢t o
Pour que Ta congruence (1) ait trois racines, il faut et il suffit
que
a® — 1°
© 77 =0 (mod. 17)
a—b ’
ou

% (@ 4+ b)? ___ ab % 5( (a + b)® -——'.361[)(61 + b) %

il

et comme a -4 & n’est pas divisible par 17, cette relation s’éerit
(u +270) (u + 9v) = 0.

Or pour u = 10¢ le premier membre n’est pas divisible par 17.
Les propositions établies par M. Cailler permettent donc de dé-
montrer I'impossibilité de 'équation de Fermat en nombres en-
tiers premiers a / pour /= 17.

Lorsque le module / est un nombre de la forme 3m 4 1, nous
n’avons plus le droit de rejeter 'hypothése s, = 0, car le discri-
minant de {1’), qui se réduit a — 2732; est résidu quadratique et
la congruence (1’) peut.avoir trois racines. C’est par I'étude di-
recte de la relation ¢ — 0 et non des congruences que Lamé et
I.ebesgue ont réussi, comme on sait, a démontrer 'impossibilité
de I'équation de Fermat pour [ =7 (J. de Mathém. 1840).

D. Miriymanorr (Geneve).

Régle a calculs pour les écoles.

Au moment ou la régle a calculs tend & pénétrer de plus en plus
dans la pratique, il est indispensable de pouvoir en montrer le
maniement dans les gymnases et écoles techniques. |

Jusqu’ici son introduction dans l'enseignement était rendue
difficile par suite du prix élevé de. cet instrument. [.a maison
Wichmann (Berlin, NW 6, Karlstrasse, 13), vient d’éditer une régle
a calculs en carton blanc, dont le prix trées modique (1 mark 25)
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