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46 MÉLANGES ET CORRESPONDANCE

A propos d'un article de M. Burali-Forti sur le calcul vectoriel.

Dans le numéro de XEnseignement mathèm. du 15 sept. 1908
M. Burali-Forti a produit des arguments qu'il estime de nature à

orienter le choix d'une notation pour le calcul vectoriel. Il est
permis de se demander s'il y a un intérêt réel à fixer la notation
pour ce domaine particulier des Mathématiques, contrairement à

ce qui a lieu dans tous les autres domaines, où l'usage seul a fait,
jusqu'à présent, œuvre d'unification plus ou moins imparfaite.

Une notation vectorielle ne présente en effet rien de bien
particulier et les quelques lignes nécessaires pour l'exposer ne dépassent

pas les limites du préambule indispensable dans toute œuvre
mathématique. De fait, il s'agit uniquement de représenter deux
opérations sur les vecteurs (produit externe et produit interne).
Dans ces conditions, la question n'est-elle pas sans importance

Quant aux propriétés des opérations linéaires (ou transformations

homographiques) et au calcul qui serait susceptible de les
mettre automatiquement en œuvre, ce sont choses indépendantes
de la notation vectorielle elle-même. C'est ainsi que les formules
élémentaires signalées par M. Burali-Forti se trouvent dans la
plupart des traités sur les quaternions, exprimées, il est vrai, sous
des formes un peu différentes, mais tout aussi simples — plus
simples même, à mon avis, puisque mes préférences personnelles
vont à la notation quaternionienne.

Au surplus, pense-t-on faire observer une restriction à la
liberté qui ne s'imposerait pas d'elle-même

G. Combebiac (Bourges.)

Sur une fonction continue sans dérivée

à propos d'un article de M. Cahen.

M. Cahen a donné dans l'Enseignement mathématique, (t. VIII,
p. 361) un exemple de fonction continue n'ayant pas de dérivée

pour une infinité de valeurs de la variable. En étudiant plus avant
cette fonction, qu'il appelle (voir Ann. de l'Ec. normale sup
XXV, p. 200-219, 1908) il trouve les propriétés suivantes :

« Pour toute valeur de .x, appartenant à un certain ensemble
infini dénombrable (E), dont les éléments sont certaines fonctions
rationnelles d'un paramètre a, la fonction prend une valeur qui
est la même fonction rationnelle d'un paramètre b.

« On peut donc calculer ces valeurs sous forme finie. La fonction
X dépend des deux paramètres a, b ; il y a donc une double infinité
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de ces fonctions ; mais on ramène leur étude à celle d'une simple
infinité de fonctions ne contenant qu'un paramètre.

«La fonction X n'a de dérivée pour aucune valeur de x, sauf

peut-être pour des valeurs exceptionnelles.
« Cette fonction satisfait à une infinité de relations fonctionnelles,

qui permettent de calculer sa valeur pour toute valeur de x,
quand on la connaît pour les valeurs de x comprises dans certains
intervalles, aussi petits qu'on le veut d'ailleurs.

cx±
« On peut aussi calculer, sous forme finie, l'expression J X [x)dx,

xo

lorsque x0 et xi sont deux nombres de l'ensemble (E).
« Enfin ces recherches se rattachent à un mode particulier

d'approximation des nombres, dont la numération binaire est un cas

particulier, et qui sera peut-être susceptible d'applications
arithmétiques. »

Démonstration élémentaire du théorème de Mannheim.

Théorème. — Si deux côtés d'un triangle circonscrit à un cercle
donné sont fixes et que le troisième côté soit variable, l'enveloppe
du cercle circonscrit à ce triangle est un cercle.

Soient I le centre du cercle donné, et ABC le triangle circonscrit
dont les côtés AB, AC sopt fixes et le troisième côté BG est

mobile. Nous voulons démoptrer que, quelle que soit la position
du côté BC, le cercle circonscrit au triangle ABC est toujours
tangent à un cercle déterminé.

A cet effet décrivons un cercle tangent intérieurement au cercle
ABC en un point P et qui touche de plus les côtés AC et AB du
triangle ABC aux points Q et R. Joignons d'abord PB, PC ainsi
que QR, nous avons :

/\ /\ /\ /\ /x
AQR + ARQ ABC + ACB — BPC

tous étant supplémentaires à l'angle A. Joignons ensuite PQ et PR ;

nous aurons par rapport au cercle PQR :

/\ /\ /\AQR Z= ARQ QPR

Si donc on mène la bissectrice PD de l'angle BPC, on a :

/\ /\ /\ /\ /\ \ /\ /\BPD CPD - AQR - ARQ QPR i (ABC + ACB) (1)

Soit maintenant M le point où la droite PQ prolongée rencontre
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