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356 CAILLER
de la divisibilité de a"2 + ô2 par x2 + y2 et autres théorèmes
analogues ; utilisation de ces théorèmes dans la recherche
des diviseurs des nombres : tout cela du en principe à Fer-
mat, mais démontré et grandement perfectionné par Euler.

On lui doit en propre : la théorie de partitione numero-
rum ; de curieuses formules et séries sur les nombres
premiers et les diviseurs des nombres ; la considération des
racines des congruences, de leur nombre possible, des racines

primitives ; l'extension du crible arithmétique ; l'emploi
des fra tions continues dans la théorie des nombres; un
grand nombre d'identités des plus utiles ; des vues variées
et ingénieuses sur l'analyse indéterminée, qu'il a enrichie de
méthodes et de questions nouvelles ; enfin de nombreuses
tables dont il souhaitait l'extension, pour favoriser la découverte

des propriétés des nombres.
A. Aubry (Dijon).

LE POLYGONE INSCRIT

EN GÉOMÉTRIE NON-EUCLIDIENNE

L'article publié par M. A. Padoa dans 1 'Ens. math, du
15 mars 1909, attire de nouveau l'attention sur l'intéressant
problème de l'inscription dans un cercle d'un polygone de
côtés donnés dans leur ordre de succession et leur grandeur.

Ce problème de Géométrie élémentaire peut être
résolu d'une manière rigoureuse seulement par des équations
algébriques de degré élevé, mais le recours à un postulat
tel que celui invoqué par M. Padoa me paraît plutôt
compliquer les choses que les faciliter. En effet, quand on étudie
le maximum ou le minimum de la surface d'un polygone
articulé, la possibilité de l'inscription dans un cercle n'est qu'un
premier pas vers la solution du problème. De plus il en va
ici comme toutes les fois qu'on s'appuie sur une propriété
de maximum pour établir un théorème d'existence : à sup-
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poser même le procédé exact, et évident le maxi m uni, on
n'a encore aucun moyen pour calculer les inconnues de la

question, dans le cas actuel, les angles du polygone ou le

rayon du cercle circonscrit.
Le problème de l'inscription peut se poser en Géométrie

sphérique ou riemannienne. Il se ramène alors de suite au

cas du plan ordinaire, car si un polygone sphérique à côtés

a, b, I est inscrit dané un cercle, il en est de même pour
le polygone plan formé avec les cordes du premier, ou

sin | sin | sin ^ ; ce sont, au contraire, deux problèmes

distincts que ceux du maximum des polygones plan ou
sphérique. En Géométrie de Lobatchewski, les deux questions
sont nouvelles et présentent quelques particularités qu'on
ne rencontre pas dans les deux autres cas. C'est ce qui
m'engage à les traiter ici avec quelques détails, sinon
complètement; nous ne nous occuperons en effet que de l'hypothèse

de beaucoup la plus simple, celle de polygones non-
étoilés et même convexes. La méthode est du reste générale;
on retombera, par exemple, sur le cas du plan euclidien en
prenant égal à l'infini le module k de la Géométrie de
Lobatchewski.

Pour alléger l'écriture, désignons par /(;r) jG) [pÇv) le
cosinus, le sinus et la tangente hyperboliques,

ek -h e
k

^ ek~ e
k

x

ek
f\x) 7} > ®(x) 'li(x) =z

ek + e
k

Inscription dans un cercle. Soient 2ax 2a2 2an les
côtés d'un polygone fermé, 2an le plus grand d'entre eux,
p le rayon inconnu du cercle circonscrit, 2a±, 2a2, 2ot}l les
angles au centre correspondant à ces côtés. On doit avoir

Cp(p) sin cl. — 9(a.) (i 1 2 ri)

ou bien

—; C .1,

en faisant pour abréger <p( p)|, et 9 (a.) i On voit que



358 C. CAILLER

l'inconnue x ne peut être négative ni dépasser la plus petite
des quantités b, ou bn\ tous les angles a seront comptés
aigus et se trouvent exprimés par l'équation (1) en fonction
de l'indéterminée x. Le polygone étant fermé, il faut de plus
qu'on ait

F (x) — -f- a2 -|- -{- an — tz (2)

si le centre est intérieur au polygone, et

$(£) — ai 4- aa H" + V-n -i — an — 0 (3)

si ce centre est en dehors du polygone. Les équations (1)

et (2), ou (1) et (3) seront ainsi, suivant le cas, celles du
problème à résoudre.

Faisons varier x de 0 à ba tous les angles a augmentent
(>n 77

en même temps, at jusqu'à arc sin — an jusqu'à y • Ainsi

F (x) augmente constamment de zéro jusqu'à

• •
h"

< • i71arc sin -(- arc sin F -j- arc sin i H~ 7: •

/; /> b 2
1 2 h—1

On aura donc une solution, et une seule, de l'équation (2)

à condition que l'inégalité

?K) ?Ki-1) ^ * /Marc sin ——- 4- arc sin — F 4- arc sin — - (4)
?K) ?(«„)

soit satisfaite.
En second lieu, la fonction <ï>(x) admet pour dérivée

A// x i l 1 l$'(*) _ + 7 +\/ // — x2 \/ h
^ — x2 \/ — .x2 V/ bn — x2,

et celle-ci ne peut pas s'annuler plus d'une fois comme on le

voit en écrivant
b — X1 /L, — x

V!>n - *'(*) \ 4 + + V/ tF —; - 1

K-, - x-

équation dont tous les termes variables au second membre
sont décroissants. Supposons que le côté ccn ne soit égal à

aucun des autres, seul cas où l'équation (3) puisse être véri-
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fiée, 3>'(.r) finit alors avec une valeur négative pour x — bn

Ainsi $(.r) sera ou toujours décroissante, ou d abord croissante

puis décroissante, suivant que $'(0) ou

"b ?(as) ~b "b 9(an—É ?(aJ

est négatif ou positif. Dans le premier cas il n'y a aucune

solution de (p(x) 0 saufla solution inopérante x — 0 ; dans

le second, il n'y a de solution que si la valeur finale de $(.#)

est négative. En résumé, nous trouverons une solution et

une seule de l'équation (3), sous la double condition

+ Dfi + • • 4- > 0
> (5)

t: /narc sin — p arc sin --—-- < ö • lb)
?(V 2

Inscription dans une équiclistante de droite. Remarquons

que si des angles aigus 0L, 0.2, 6m ont une somme égale à

un droit, ou plus grande, la somme de leurs sinus est
supérieure à l'unité. En effet on a

sin(0i -f- 02) =: sin 0i cos 02 -p sin 02 cos 0! <P sin 0i -p sin 02

d'où l'on tire immédiatement

sin 0! ~p sin 02 -p • • -p sin 0,„ p> sin(0i -p 02 -p ••• 0/«) P> t

si la somme des angles est égale à 90°. A fortiori, la même

inégalité a lieu quand cette somme est 90°, chaque sinus
augmentant quand on fait croître l'angle correspondant.

Ainsi l'inégalité (4) qu'on rencontre en traitant le premier
cas examiné plus haut entraîne comme conséquence

?K! + H- H~ fD/,_fi — 9(an) A* 0 (5)

obtenue aussi dans le second cas. On voit que cette inégalité
(5) est une condition nécessaire et suffisante pour l'inscription

du polygone dans un cercle, le problème admettant
alors une seule solution, laquelle rentre dans le premier
ou le second type selon qu'est satisfaite l'inégalité (4) ou sa
contraire (6). On peut remarquer aussi que le rayon du cercle
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circonscrit ne dépend pas de Tordre de succession des côtés
mais seulement de leur grandeur.

Si l'inégalité de condition (5) n'a pas lieu, le polygone ne

peut être inscriptible dans un cercle; nous allons voir qu'il
est inscriptible dans une équidistante de droite.

Nommons p l'équidistance inconnue et 2a. la projection du
côté 2ai sur la droite donnée, nous avons

?K) — f(p) ?K) ' °u ?K) >

ien posant cette fois x —
j quantité positive et inférieure à

l'unité. Le polygone devant être fermé, il faut en outre que

I\(x) z= a + a + + a/i_1 - a„ 0

du moins quand il n'y a pas d'angle rentrant. On a

i l 1 i
/^<i> {x)=z —— H + H —

V/t\ + x2 \/h\ + x2 V ///_1 + .x2 \/// + x2 '

et comme le second membre ne peut s'annuler plus d'une
fois, l'équation 0 possédera, en dehors de la solution
banale u1 ai — ~ 0, une seule solution, ou aucune.

n 2
On a évidemment O'foo) >0; la condition pour1 ' /-1 X 1

l'existence d'une solution est contenue dans les deux inégalités

$[(0) < 0 $i(l) > 0 ou comme on voit de suite

o[a±) + 9(a2) -f -f- v{an_x) — olaj < 0

+ (l2 +"•• + ail—1 ~~ Clll > 0 '

La dernière est nécessaire pour qu'on puisse construire
un polygone fermé avec les côtés donnés et si elle ne se
présentait pas pour l'inscription dans le cercle, c'est qu'elle
était déjà impliquée par l'inégalité (5), comme on peut
aisément le faire voir.

Quand la différence

+ ••• H- ?K_i) —



GÉOMÉTRIE NON-EUCLIDIENNE 361

tend vers zéro par les valeurs positives ou négatives, les

inconnues p ou p deviennent infinies et les lieux correspondants

dégénèrent en horicvcles.

Inscription dans un horicycle. Il est en effet facile de

reconnaître directement que si

okq) + p{a\ -f- ~f- — o[an) 0 (7)

le polygone est inscriptible, d'une seule manière, dans un
horicycle.

Rapportons cette courbe à deux axes coordonnés, dont
l'un OX lui soit normal et l'autre OY tangent en 0; son
équation est

Xf[y)•e1

les ordonnées y étant, bien entendu, mesurées perpendiculairement

sur OX. La distance 2a de deux points de l'hori-
cycle P0(u?0, y0) et yi) est donnée par la formule

2z>(a) cpfjj — p{rQ)

quand y±1> y0 Soient alors, dans l'ordre de grandeur
croissante, y0 yt yn—\ les ordonnées des n sommets de notre
polygone inscrit; on a

2y («y © (r^l — » i — y 2, ..il — î

— 2z>(an) o (yo) — çgvy

L'addition de ces n équations fournit la formule (7) qui est
ainsi une condition nécessaire de l'inscription. Réciproquement,

si elle est satisfaite, on déterminera les sommets par
les relations

©(vj 2©kq) -f ©fjo)

©(r2) zn 2© (Yq) -f 2©(r/s) + © vq)

fY,—é — 2?(Y -f 2?('0 + • + 2cP^L-d +
La quantité y0 resle arbitraire, mais comme il n'existe, aux

déplacements près, qu'un seul horicycle, il est clair que
L'Enseignement mathém., 11e année ; 1909. 23
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notre problème se trouve résolu d'une unique manière, le

changement de la quantité y0 équivalant à déplacer le polygone

le long de I'horicycle.

Propriétés cles Cycles. Rappelons que les points du plan
de Lobatehewski se déterminent à l'aide de trois coordonnées

£, yj, Ç, dont la première est positive, et assujetties à la

condition £2 — r2 — £2 1. Une droite a pour équation une
relation linéaire homogène entre les coordonnées, tandis
qu'une équation non homogène du premier degré

q_ frf] ^ — d (8)

représente un cercle, une équidistante de droite, ou un ho-
ricycle, selon que la quantité a2 — b2 — c2 est positive,
négative, ou nulle. Sans distinguer les trois cas, appelons cycle
le lieu représenté par la formule précédente. Voici alors les

propositions dont nous avons besoin.
Coupons un cycle par deux cordes AB, CD; alors
1° Si ces cordes sont concourantes en 0, comptons sur

chaque droite, à partir de ce point de rencontre, les
abscisses OA öl OB ß OC — y OD à ; on aura

2° Si ces cordes sont non-sécantes, comptons sur chacune,
dans le même sens, à partir des pieds 0 et 0' de la
perpendiculaire commune les abscisses OA « OB ß O'C y
O'D ô ; on aura

i /I:t»s)

mi im
3° Si ces cordes sont parallèles, comptons les abscisses

sur chacune de ces droites du côté où elles s'éloignent l'une
de l'autre et à partir de deux points O et 0' dont la ligne de
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jonction soit également inclinée sur les deux droites; on

aura
a ß y __

5

e
* -f e

k
=: e

k + e
* (11)

4° Les réciproques des trois propositions précédentes sont
exactes; autrement dit, si les équations (9), (10) ou (il) sont
satisfaites respectivement dans les hypothèses de la

convergence, de la non-intersection, ou du parallélisme des
cordes AB, CD, les quatre points A, B, C, D sont sur un
même cycle.

Pour démontrer les théorèmes énoncés, rappelons qu'une
droite issue d'un point P0(£0, tï0, Ç0) perpendiculairement à la
droite de coordonnées ê/0 co. u;0, passant en P0, a pour*
équations paramétriques

Ç =5 %0fiS) ~ U0?(S) '

1 \f(s) + *'„?(*)
Ç -- ^0 f(S) + »

le paramètre s étant précisément le segment recti ligne
compté de Po. Les valeurs de cette abscisse s correspondant
aux points d'intersection du rayon avec le cycle (8) vérifient
donc la condition

Rf(s) + S® (s) d ;

on a posé

R — acQ -j- br\0 -j- cÇq et S — — auQ -f- bvQ -f- avQ

Dans le premier des cas énumérés ci-dessus, faisons
coïncider Po avec O, et remarquons qu'en changeant la direction
du rayon OAB, la quantité S changera, mais non pas R. On a

Rfia) -f So (a) — d et Rf(ß). -f So(ß[ — d
'

(12)

d'où, en éliminant S

Ro (a — ß) — d( o(a) — o ßjj ;

par suite de l'observation précédente

ç> l'q — g] o (y — 8)

<p(a) — o ß <p y — cp(8)

équation qui diffère de (9) seulement par l'écriture.
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Dans le second cas, prenons la perpendiculaire commune

pour la droite uQ, cy, mo, et P0 tantôt en 0, tantôt en 0'
suivant que nous voulons considérer une corde ou l'autre. Dans
les deux suppositions S est le même, R est différent; ce
sera donc R qu'il convient d'éliminer entre les relations (12),

qui donnent
Sç(a — p) d (/'(a) — /\p|

ou bien
r (a — ft) _ Qy — o)

/"(a) — /'(pj ~ /'(y, — /'(I)

Cela est identique à Féqnation (10
On passe au cas du parallélisme en remplaçant dans (9)

ou (10), les quantités a, /S, y. § par a + p ß + o y + £

J + o puis en rendant l'auxiliaire â infinie ; mais il est aussi
facile de démontrer directement l'équation (11) relative à ce

cas. Ecrivons à cet effet les équations d'une parallèle à

Faxe des x sous la l'orme

r r >
k r (-s'l 9 (ä î ^ /,-

ç f[y)e — Yj —— C y vin ;J /<j) t'y)

y est le segment détaché par celte parallèle sur l'axe OY et
change de signe quand on remplace cette parallèle par sa

symétrique, x est le segment rectiligne compté à partir du
même axe OY. En substituant les valeurs précédentes dans

l'équation du cycle, on aura, pour déterminer les rayons
vecteurs des points d'intersection, l'équation du second degré

"î
_ _ o

a — b

et si elle admet deux racines ß on aura

e
*

+ e
^ + ;

a — b

mais comme le second membre ne dépend pas du signe de y,
la relation (11) se trouve établie.

Pour éviter des longueurs inutiles, nous ne démontre-
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rons la réciproque que dans le premier cas, les deux autres

se traitant d'une manière entièrement analogue.
Soient comme ci-dessus P0('|0. nQ. Ç0) le point de concours

des cordes AB, CD; ct\ 4- bn + (% d le cycle qui passe

par les trois points A, B, G; uQ, c0, m0 les coordonnées de

la droite P0AB, u'^ G, u/ celles de la droite P0CD ; enfin
R ctiQ + ùrlQ + c°£0 S — au0 + bv0 + cwQ S' —ciu\

+ bv -f- çw L'hypothèse est résumée dans les équations

R/"(y^ d- S'cpfy) — d

R©(a — ß) J (o (a) — (ßl

et enfin (9), ou

ç> a — ß fîj — 8)

0(a) — ©(ß) ç y) — 0(0)

d'où l'on tire l'équation

Rf[8) -f- S'f(B) — cl

laquelle établit que le rayon P0G recoupe le cycle en D.

Maximum d'un polygone de côtés donnés. Soit un rayon
mobile tournant autour d'un point 0, si l'autre extrémité M

se déplace de M en M', tandis que le rayon tourne de

l'angle cla, l'aire balayée vaut

/OM\du — P[f{ OM) — 1] Ja =0 2k2fl-^-)da

Désignons d'autre part par cln le déplacement du point M,
estimé perpendiculairement à OM, on a encore

0M\ /0M\J/2 — /©(OM) Ja =0 Ja

d'où

du

Traitons d'abord le problème pour un quadrilatère ABGD.
Déformons-le sans bouger les points A et C. Alors si dn et
du' sont les déplacements des points B etD, normaux sur les
côtés AB et CD et comptés positifs à gauche de ces côtés,
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les aires balayées sontclu d'où résulte

un accroissement de Taire du polygone

<fe' ^(^)rf«-4(^)rf«'J. (13)

L'aire balayée par le côté BD — x s'obtient

en laissant immobile successivement
C Tune ou l'autre des deux extrémités; on a

donc pour l'accroissement correspondant
du quadrilatère

ds" j^cos Bdn — cos Dd//J (14)

où B et D représentent les angles extérieurs marqués sur la

ligure. Quant à la différentielle ds de Taire, du polygone,
elle est donnée par l'équation ds ds' + ds", et la condition

du maximum est ds' + ds" 0. Les valeurs
précédentes (13) et (14) peuvent être simplifiées, mais nous devons
de nouveau distinguer différents cas suivant que les rayons
AB et CD sont concourants, non-sécants ou parallèles. Dans
tous ces cas la distance BD devant rester invariable pendant
le mouvement, on doit avoir aussi

dn dn'
sin D sin B

c'est seulement la mise en œuvre de cette condition qui varie
suivant les diverses hypothèses.

En premier lieu si les rayons AB, CD concourent en 0,
ce point servira d'origine aux segments rectilignes CL\ a

OB ß etc. ; on a par la Trigonométrie

sin D _ y Iß)

sin ß ~ <p(8j ' 1 1

OU

dn — oj<p((3) dn' — moi 8) ; (16)

puis encore

f{ß — fiß) f(x) — fiß > Cp (a?) cos B

f(ß) — fid) f(x) — cp (rj) cp [x) cos D
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et, par soustraction,

f iß) cos B — cp(<7) cos D ^5 Ifißi ~~ fi^l] ' ^ ^

\x)

ÉP1 -/•(<?)
(17)

En portant dans rfs' et ûfo" les valeurs (16) et (17), la condition

du maximum devient

+ + /Ï|S) ¥ l°i $ (*/~""7~) + M '

ce qui est une autre forme de l'équation (9).
En second lieu, si les rayons AB, GD sont non-sécants,

soient O et 0' les pieds de la perpendiculaire commune
servant d'origine respeclivement aux segments OA — ^
OB ß O'C y O'D § La figure BDOO' e&t un
trapèze rectangle en 0 et 0'; on a alors, comme on sait,

sin D _ /y/5)
sin B

OU

du — o>f{ß) du' — w/Vfi (18)

puis
y(dj fix) y Iß) — y (x) /'(/3) cos B

0,1/3) zr: f(x) y i/Jj — y(x) f[d cos D

et en procédant comme dans le premier cas,

(f(ß) cos B — f\d) cos y iß) ~ y id, (19)

En substituant les valeurs (18) et (19) dans ds, on obtient
après suppression du facteur o>

fiß)ß(^—Y~^) ?[ß] ~ ?!r^J '

équation identique à (10).
Si enfin les droites AB, CD sont parallèles, on a, par un

calcul analogue, en comptant les segments a. /3, y, S de



368 C AILLER
deux points 0 et 0' tels que leur ligne de jonction coupe

(20)

o

ek (21)

Les valeurs précédentes (20) et (21) introduites dans äs' et
cls" donnent pour condition du maximum

ce qui est conforme à l'équation (11).
En résumé, dans tous les cas, la condition du maximum

se réduit à ce que le quadrilatère doit être inscriptible dans
un cycle. Si au lieu d'un quadrilatère on considère un polygone

quelconque, la condition reste la même. C'est ce qu'on
verra en prenant comme variables les diagonales issues d'un
même sommet A; en faisant varier une seule de ces lignes,
on voit qu'un cycle doit passer par A et les trois sommets con-
tigus du polygone; ce dernier est donc inscrit dans le cycle.

Les calculs qui précèdent n'achèvent pas le problème du

maximum, car s'il est vrai que la condition obtenue soit
nécessaire, il ne s'ensuit pas qu'elle soit suffisante. En la

supposant telle, il faut encore s'assurer que le polygone trouvé
est maximum et non minimum, et reconnaître enfin s'il
existe d'autres maxima ou minima répondant aux valeurs
extrêmes des diagonales qui sont ici limitées par l'obligation
où l'on est de construire avec elles un polygone de côtés
donnés. Si on astreint le polygone à rester convexe dans

ses diverses configurations, on démontre aisément que le

ces parallèles sous le même angle,

dn — we/l did — taä

puis
rJ - ß

f(x) — <p(,r) cos B r-r e
'

ÊLz*
f(x) — f [x) cos D se: e

k

et par suite

r ê i p
\_ek cos B — ek cos DJ èf y j — "ke
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polygone inscrit fournit un maximum de la surface et qu il

n'y en a pas d'autres; des minima sont obtenus quand un

ou plusieurs côtés se placent en ligne droite.
Ces conclusions ne sont pas modifiées si on autorise des

dispositions concaves ; mais dans le cas des formes éloilées,

— qui exige la généralisation de la notion de surface, — on

aura des maxima et minima correspondant aux divers cas

d'inscription. La description et le classement de tous les

résultats est un problème sans doute fort difficile et qui sort
du cadre de cet article.

C. Cailler (Genève).

UNE LEÇON DE GÉOMÉTRIE DESCRIPTIVE

SUR L'EMPLOI DES QUANTITÉS IMAGINAIRES

Probleme. On donne dans le plan horizontal un cercle c

dont le centre M se trouve sur la ligne de terre LT et une
droite d perpendiculaire à LT. Par le point A de c, situé
sur LT, on mène un plan quelconque a normal au plan
horizontal, coupant c pour la seconde fois en B et d en C; puis
on s'imagine en a le cercle ca dont BC est un diamètre.
Construire en un point quelconque P de ca le plan tangent r.
à la surface S, lieu de ca quand a tourne autour de la droite a
du plan vertical, normale en A à LT.

1. On trouve le plan cherché n à l'aide de la tangente t en
P à ca et la tangente en P à une autre courbe plane de S passant

par P. Dans la première et la seconde des trois solutions

qui suivent, nous choisissons pour le plan de cette
seconde courbe successivement le plan de front par P et le
plan par P et d. Il sera alors facile de déterminer cette
tangente dans les deux cas indiqués, dès qu'on connaît l'ordre
de S et la nature de sa section avec le plan à l'infini.
Enfin la nature particulière de la surface S nous suggérera
une troisième solution, la plus simple de toutes.

2. Ordre de la surface S. — Le plan horizontal ne contient
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