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356 C. CAILLER

de la divisibilité de «* 4 6 par a2* 4+ »? et autres théorémes
analogues ; utilisalion de ces théorémes dans la recherche
des diviseurs des nombres : tout cela dit en principe a Fer-
mat, mais démontré et grandement perfectionné par Euler.

On lui doit en propre: la théorie de partitione numero-
rum ; de curieuses formules et séries sur les nombres pre-
miers et les diviseurs des nombres; la considération des
racines des congruences, de leur nombre possible, des raci-
nes primitives ; I'extension du crible arithmétique ; 'emploi
des fra tions conlinues dans la théorie des nombres; un
grand nombre d’identités des plus utiles ; des vues variées
et ingénieuses sur 'analyse indéterminée, qu’ila enrichie de
méthodes et de questions nouvelles ; enfin de nombreuses
tables dont il souhaitait ’extension, pour favoriser la décou-
verte des propriétés des nombres. C

A. Ausry (Dijon).

LE POLYGONE INSCRIT
EN GEOMETRIE NON-EUCLIDIENNE

L'article publié par M. A. Pavos dans I'Ens. math. du
15 mars 1909, attire de nouveau l'attention sur 'intéressant
probléme de l'inscription dans un cercle d’'un polygone de
cotés donnés dans leur ordre de succession et leur gran-
deur. Ce probleme de Géométrie élémenlaire peut étre ré-
solu d'une maniére rigoureuse seulement par des équations
algébriques de degré élevé, mais le recours a un postulat
tel que celui invoqué par M. Padoa me parait plutot com-
pliquer les choses que les faciliter. En effet, quand on étudie
le maximum ou le minimum de la surface d'un polygone arti-
culé, la possibilité de I'inscription dans un cercle n’est qu'un
premier pas vers la solution du probléeme. De plus il en va
ici comme toutes les fois qu'on s’appuie sur une. propriété
de maximum pour élablir un théoréme d’existence : a sup-
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poser méme le procédé exact, et évident le maximum, on
n'a encore aucun moyen pour calculer les inconnues de la
question, dans le cas actuel, les angles du polygone ou le
rayon du cercle circonscrit.

Le probléme de I'inscription peut se poser en Géomélrie
sphérique ou riemannienne. Il se raméne alors de suite au
cas du plan ordinaire, car si un polygone sphérique a cotés
a, b, ... [ est inscrit dans un cercle, il en est de méme pour
le polygone plan formé avec les cordes du premier, ou

.a . b
sin 5 , sin 5,
distincts que ceux du maximum des polygones plan ou sphé-
rique. En ‘Géométrie de Lobatchewski, les deux questions
sont nouvelles et présentent quelques particularités qu’on
ne rencontre pas dans les deux autres cas. Clest ce qui
m’engage a les traiter ici avec quelques détails, sinon com-
pletement; nous ne nous occuperons en effet que de ’hypo-
thése de beaucoup la plus simple, celle de polygones non-
étoilés et méme convexes. La méthode est du reste générale;
on retombera, par exemple, sur le cas du plan euclidien en
prenant égal a 'infini le module %4 de la Géométrie de Lo-
batchewski.

Pour alléger 1'écriture, désignons par f(x), o(r), ¢ () le
cosinus, le sinus et la tangente hyperboliques,

.ol : . -
... sin - ; ce sont, au conlraire, deux problemes

z Lz z  _z x =z
. ___ek—|—e k __ek——e ke ’ —BIL_P k
eF -+ B k

Inscription dans un cercle. Soient 2a, , 2a,, ... 2a, les
cotés d'un polygone fermé, 2a, le plus grand d’entre eux,
p le rayon inconnu du cercle circonscrit, 2«,, 24, ... 24, les
angles au centre correspondant a ces colés. On doit avoir

o(g) sin a; = o(a,) , (t=1,2,..n
“ou bien
sin z
nooa. — — ’
i =5 . -
- | , 1 1 .
en faisant pour abréger g(p) = ~, et g(a) = . Onvoit que

b ;
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'inconnue . ne peut étre négative ni dépasser la plus petite
des quantités b, ou b,; lous les angles o seront comptés
aigus et se trouvent exprimés par I’équation (1) en fonclion
de I'indéterminée r. Le polygone étant fermé, il faut de plus
qu’on ait

Flajy=a +a + ... +a, ==, (2)

si le centre est intérieur au polygone, et
(I)(x):a1+a2-}-...—[—a”_1~—an:O, (3)

si ce centre est en dehors du polygone. Les équations (1)
et (2), ou (1) et (3) seront ainsi, suivant le cas, celles du pro-
bleme a résoudre.

Faisons varier x de 0 a b,, tous les angles « augmentent

b T

en méme temps, o, jusqu’a arce sin -, o, jusqua g . Ainsi
1

' (x) augmente constamment de zéro jusqu’a

b b b -
. n . n . n .1

arc sin — -+ arc sin — - ... -+ arc sin + 5.
b /)2 b, 4 2

On aura donc une solution, et une seule, de I'équation (2)
a condition que I'inégalité

?la,) ola, ela, 1) _ =
arc sin —<——1— -+ arc sin . | ... 4 arc sin ol = T, (4)
? (an) ) ? (an) ? (an) 2
soil satisfaite.
En second lieu, la fonction ®(x) admet pour dérivée
1 ' 1 1 1
7 (x) = — e T ally——— el
\//)j — a? \/b: — x? , \/l)i‘__l — b, — x*

et celle-ci ne peut pas s’annuler plus d'une fois comme on le
voit en écrivant

. — /)i — x? /)i — a?
\/,I’L — .%'2 (I)’(JJ} p— -3 + e + —2——‘—‘—‘; s 1 7
1/1—x2 [)__—‘x"

équation dont tous les termes variables au second membre
sont décroissants. Supposons que le colé «, ne soil égal a
aucun des autres, seul cas ou I'équation (3) puisse étre véri-




GFOMETRIE NON-EUCLIDIEZNNE ' 359

fice, @ (z) finit alors avec une valeur négative pour x = D, .

Ainsi ®(x) sera ou toujours décroissante, ou d abord crois-
. , - . !

sanle puis décroissante, suivant que @ (0) ou

(?((li) -+ (.O((lz) + "lr_. C.O(an—l) T C?((L“)

est négatil ou posilif. Dans le premier cas il n’y a aucune
solution de ®(r) = 0 sauf la solution inopérante x =0; dans
le second, il n'y a de solution que si la valeur finale de @ (x)
est négative. En résumé, nous trouverons une solution et
une seule de I'équation (3), sous la double condition

ela) + ola) + . +ola, 4) —eola,) >0, (5)
(a) ola, ) 7:
arc sin ;D(Z:) -+ ... 4+ arc sin .;O_,_(;L_;)_l_ < g » (6)

Inscription dans une équidistante de droie. Remarquons
que si des angles aigus ¢, 6,, ... 6, ont une somme égale a
un droit, ou plus grande, la somme de leurs sinus est supe-
rieure a l'unité. En effet on a

sin (f; 4+ ;) = sin 0; cos 0, + sin 6, cos 6, < sin ; + sin 0, |
d’ott 'on tire immédiatement
sin 91 —'l—- Sill 62 + .. —}—— Sil] G//z > Siﬂ(ej_ + 62 + 6/)1) > 1 5

si la somme des angles est égale a 90°. A fortiori, la méme
inégalité a lieu quand cette somme est > 90°, chaque sinus
atgmentant quand on fait croitre I'angle correspondant.

Ainsi I'inégalité (4) qu'on rencontre en traitant le premier
cas examiné plus haut entraine comme conséquence

?(a‘i) + ?(((2) .i_ e <P(au#—l) — cp(all,) > 0 ’ (5)

obtenuc aussi dans le second cas. On voit que cette inégalité
(5) est une condition nécessaire et suflisante pour I'inscrip-
tion du polvgone dans un cercle, le probléme admettant
alors une seule solution, laquelle rentre dans le premier
ou le second type selon qu’est satisfaite l'inégalité (4) ou sa
contraire (6). On peut remarquer aussi que le rayon du cercle

e
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circonscrit ne dépend pas de l'ordre de succession des cotés
mais seulement de leur grandeur.

Si l'inégalité de condition (5) n’a pas lieu, le polygone ne
peut étre inscriptible dans un cercle; nous allons voir qu'il
est inscriptible dans une équidistante de droite.

Nommons p I'équidistance inconnue et 2a, la pl‘OJE‘(‘llOIl du
coté 2a, sur la droite donnée, nous avons

: X
C.D(ai) == f(p) Cp(ai) s ou Q‘o(ai) — ]7 7
12
en posant cette fois x =— — quanlité positive et inférieure a
fip) |

'unité. Le polygone devant étre fermé, il fant en outre que
¢ (r) =a +a +...4+a, 4 —a =0,
du moins quand il n'y a pas d’angle rentrant. On a

1 1 1 1
s ol — + e+ e ——— B pe—
\//l)z -+ x? \/bz + a? \/l)i_1 4 a? \/l); 4 e

KD, () =

et comme le second membre ne peut s'annuler plus d’une
fois, I’équation ®,(x) — 0 possédera, en dehors de la solution
banale «, — o, =— ... a, == (), une Seule solution, ou aucune.

On a évidemment @ (0) = —-- - 0; la condition pour

’existence d’une solution est contenue dans les deux inéga-
lités ®'(0) << 0, @,(1) >0, ou comme on voit de suite

ola) + ola) 4 ... + ¢ola, ) — ola,) <0,
a, +a, + .o +a, — a, > 0 .

La derniére est nécessaire pour quon pulsse construire
un polygone fermé avec les cotés donnés et si elle ne se pré-
sentait pas pour linscription dans le cercle, c’est qu'elle
était déja impliquée par I'inégalité (5), comme on peut aisé-
ment le faire voir.

Quand la différence

ola) + ola) + ... + 9la,_,) — 9(a,)

-
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tend vers zéro par les valeurs positives ou négatives, les in- ;
connues ¢ ou p deviennent infinies et les lieux correspon-
dants dégénérent en horicycles.

Inscription dans un horicycle. Il est en effel facile de
reconnaitre directement que si

A}

ola) + ola,) 4 . —I—@ (¢, ) — ola,) =0, (

le polygone est inscriptible, d’'une seule maniére, dans un
horicycle. - C

Rapportons cette courbe a deux axes coordonnés, dont ;
I'un OX lui soit normal et l'autre OY tangent en O; son
équation est |

les ordonnées y étant, bien entendu, mesurées perpendicu-
lairement sur OX. La distance 2a de deux points de I'hori-
cycle Py(x,, v, et P,(x,, y,) est donnée par la formule

20(a) = o(y,) — 9ly) .

quand 7, > 7, . Soient alors, dans 'ordre de grandeur crois-
sante, v, , ¥, ... ¥.—1 les ordonnées des n sommets de nolre
polygone inscrit; on a

Zolu;) = olv,) — ol ., =1, %, n — 1
— 20(a, ) = "P()'o) — oly,)

L’addition de ces n équations fournit la formule (7) qui est
ainsl une condilion nécessaire de l'inscription. Rem[)roquef
ment, si elle est satisfaite, on déterminera les sommets par
les relations
' oiv) = 2ola) + oy )

C’)(‘T) j— 2@(({1) + 2%9((12) + @{‘0) .

]

o1,y == 20(a) —}— 20(a) + ... 4 20(a, ) + oly,) -
La quantité y, resle arbitraire, mais comme il n’exisle, aux
déplacements pres, qu'an seul horicycle, il est clair que

[’Enseignement mathém., 11¢ annde ; 1909, : 23

&
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notre probléme se trouve résolu d’une unique maniere, le
changement de la quanlité y, équivalant a déplacer le poly-
gone le long de 'horicycle.

Propriétés des Cycles. Rappelons que les points du plan
de Lobatchewski se déterminent a I'aide de irois coordon-
nées &, n, ¢, dont la premiére est positive, et assujetlies a la
condition £* — 4* — ¢® — 1. Une droite a pour équation une
relation linéaire homogeéne entre les coordonnées, tandis
qu'une équation non homogene du premier degré

af + by 4+ cC=d , (8)

représente un cercle, une équidistante de droite, ou un ho-
ricycle, selon que la quantité a® — 0* — ¢?* est positive, né-
gative, ou nulle. Sans distinguer les Lrois cas, appelons cycle
le lieu représenté par la formule précédente. Voici alors les
propositions dont nous avons besoin.

Coupons un cycle par deux cordes AB, CD; alors

1° Si ces cordes sont concourantes en O, complons sur
chaque droite, a partir de ce point de rencontre, les abs-
cisses OA =4, OB=p, OC =+, OD =2 on aura

(25) (57

| () )

2° Si ces cordes sont non-sécaites, comptons sur chacune,
dans le méme sens, a partir des pieds O et O' de la perpen-
diculaire commune les abscisses OA =« , OB=g, O'C =,

O'D =—= J; on aura
(7))
() (%)

3° Si ces cordes sont paralléles, comptons les abscisses
sur chacune de ces droites du co6té ou elles s'éloignent I'une
de l'autre et a parlir de deux points O et O dont la ligne de

(10)

-6
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jonction soit également inclinée sur les deux droites: on

aura
o § Y

e Pyo¥moFpa ®, (11)

4° Les réciproques des lrois propositions précédentes sont
exactes; autrement dit, si les équations (9). (10) ou (11) sont
salisfaites respectivement dans les hypothéses de la con-
vergence, de la non-intersection, ou du parallélisme des
cordes AB, CD, les quatre points A, B, C, D sont sur un
méme cycle.

Pour démontrer les théorémes énoncés, rappelons qu'une
droite issue d’un point P (Z . ¢) perpendiculairement a la
droite de coordonnées u,, v, w , passant en P, a pour
équations paramétriques

10‘

0"

E = Eof(s) - "oC.D(‘s) ’

1 =npf(s) 4 ¥(s)
C=Cf(s) 4 wols)

le parametre s étant précisément le segment rectiligne
compté de P . Les valeurs de celte abscisse s correspondant
aux points d'intersection du rayon avec le cycle (8) vérifient

donc la condition . |
Rf(s) + So(s) =d ;
on a posé

R = qEO + bn, + ¢, et S = —au, + by, + cw, .

Dans le premier des cas énumérés ci-dessus, faisons coin-
cider P, avec O, et remarquons qu’en changeant la direction

du rayon OAB, la quantité S changera, mais non pas R. On a -

Rfla) + Sola) = d , et RIB)+ Selp) =4, (12)
d’ou, en éliminant S
Rola — ) = d(o(a) — ¢ f)) ;
par suite de l'observation précédente

C,D;o'.-— B oly — 9
Pla) — (Bl oy — @(d)

équation qui différe de (9) seulement par 'écriture.
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Dans le second cas, prenons la perpendiculaire commune
pour la droite «, , ¢ . w, , et P, tantot en O, tantot en O" sui-
vant que nous voulons considérer une corde ou l'autre. Dans
les deux suppositions S est le méme, R est différent; ce
sera donc R qu’il convient d’éliminer entre les relations (12),
(qui donnent ‘

S¢la — 5) = d(f(x) — f17)) .
ou bien '

Cela est identique a U'équation (10).

On passe au cas du parallélisme en remplacant dans (9)
ou (10), les quantltés a. ooy dpara+dpo, G4, 7+ 0.
d 4+ o, puis en rendant 'auxiliaire » infinie ; mais il est aussi
facile de démontrer directement I'équation (I1) relative a ce
cas. Ecrivons a cet effet les équations d'une parallele a
I'axe des .r sous la forme

R R

(s) o)

——— g N = -,
() 'y

/'.

IES

-
z L == giyme

= f’i)‘)ek —

™

y est le segment détaché par cette paralléle sur 'axe OY et
change de signe quand on remplace cetle parallele par sa
symétrique, s est le segment rectiligne compté a partir du
méme axe OY. En substituant les valeurs précédentes dans
'équation du cycle, on aura, pour déterminer les rayons vec-
teurs des points d'intersection, ['équation du second degré

s

T 2dfy) T

[ —

+ ... =0,

a — b

et s1 elle admet deux racines «. 5 on aura

v

i
Tk, 2dfly)
¢ +e o + a-—=b’

>~ R
T

mais comme le second membre ne dépend pas du signe de v,
la relation (11) se trouve établie.
Pour éviter des longueurs inutiles, nous ne démonlre-
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rons la réciproque que dans le premier cas, les deux autres
se traitant d’'une maniére entiérement analogue.

Soient comme ci-dessus P (& . n,. ¢) le point de concours
des cordes AB, CD; a¢ 4 by + ¢ = d le cycle qui passe
par les trois points A, B, C; u,, ¢,, w, les coordonnées de
la droite PAB, u'. ¢/, w celles de la droite PCD; enfin
R=aé + bn, + ¢ ., S = —au, + bo, + cw,, 8 = —au,

+ 00 + cw' . L’hypothése est résumée dans les équations

Rfly) 4 S's(f) = d ,

el enfin (9), ou

d’ott I'on tire I'équation
R/(B) + S'0(8) = d ,

laquelle établit que le rayon P,C recoupe le cycle en D.

Maximum d’'un polygone de cétés donnés. Soit un ravon
mobile tournant autour d’'un point O, si 'autre extrémité M
-se déplace de M en M’, tandis que le rayon tourne de
T'angle da. I'aire balayée vaut

: , [ OM
du = FP{f(OM) — 1] ds = 2/1‘2(‘5“)<——2—> o, .

Désignons d’autre part par dn le déplacement du point M,
estimé perpendiculairement a OM, on a encore

dn = /o(OM)do = 2A@<OM>f<O—1\il>dq. ,

2 2
d’out
du = ki (92M> dn .

Traitons d’abord le probléme pour un quadrilatere ABCD.
Déformons-le sans bouger les points A et C. Alors si dn et
dn’ sont les déplacements des points B et D), normaux sur les
cotés AB et CD et comptés positifs a gauche de ces cotés,




366 C. CAILLER

. T , AB 7 9 N ’
les aires balayées sont"/ﬂ‘b<~é—>dn, knlb<(—:29>cln’, d’ou résulte

/ un accroissement de 'aire du polygone
\
B ‘/\ \ AB CD
’r T i P Y B ’
' D ds _/fljy< 5 )dn y< 5 >dn]. (13)

L’aire balayée par le coté BD — x s’ob-

tient en laissant immobile successivement
A C l'une ou lautre des deux extrémités; on a

| donc pour I'accroissement correspondant
du quadrilatére

[

ds" = kS (%) [cos Bdn — cos an'J , (14)

ot B et D représentent les angles extérieurs marqués sur la
figure. Quant a la différentielle ds de l’aire.du polygone,
elle est donnée par l'équation ds = ds’ + ds". et la condi-
tion du maximum est ds’ + ds” — 0. Les valeurs précé-
dentes (13) et (L4) peuvent étre simplifiées, mais nous devons
de nouveau distinguer différents cas suivant que les rayons
AB et CD sont concourants, non-sécants ou paralleles. Dans
tous ces cas la distance BD devant rester invariable pendant
le mouvement, on doit avoir aussi

an dn’

sin D sin B ;
c’est seulement la mise en ceuvre de cette condition qui varie
suivant les diverses hypothéses.
En premier lieu si les rayons AB, CD concourent en O,
ce point servira d’origine aux segments rectilignes OA = o,
OB = 3, etc.; on a par la Trigonométrie

sin D o'l3) ,
smB o) (1)
ou
dn = wo(f) , dn’ = wo1d) ; (16)

~puis encore
f19) =18 flx) — ¢(B ¢(xjcos B,
fiB) = [19) f(x) — ¢(J) o(x) cos D ,
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et, par soustraction,
1+ fl=)

o (x)

{ —_— 'j‘ ,-
3)

En porlant dans ds’ et ds” les valeurs (16) et (17), la condi-
“tion du maximum devient ‘

o) cos B — o(d) cos D = [fii — [191]

o —— : v — 0
?’ﬁ)*lf( 3 ﬁ) + f1f) = ry(d‘y¢</———2——> + 19,

ce qui est une autre forme de I'équation (9).

En second lieu, si les rayons AB, CD sont non-sécants,
soient O et O les pieds de la perpendiculaire commune
servant d’origine respeclivement aux segments OA = «,
OB=p, OC=4y, O'D =27. La figure BDOO" est un tra-
peze rectangle en O et O'; on a alors, comme on sait,

sin D f1B)
sin B /14
ou - .
dn — o)/'(ﬁ} , an’ — wf(d} (18)
puis

wldl = [lx) !B — g (x) [1B) cos B,
vl = flx) ¢td) — 9(x) f(d cos D,

et en procédant comme dans le premier cas,

[/18) cos B — f1d) cos D] L<’2> = ¢lf) — 91d, . (19)

En substituant les valeurs (18) et (19) dans ds, on obtient
apres suppression du facteur o

f1f) ‘1[’<1_—2:“‘B> + 9if) = f1J Hb</__2f_r)\> + 9(d)

equation identique a (10).
Si enfin les droites AB, CD sont paralléles, on a, par un
caleul analogue, en comptant les segments o. 3. 5, ¢ de
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deux points O et O tels que leur ligne de jonction coupe
ces paralléles sous le méme angle,

£ J
dn — me/: , dn’ -—= w{; , (20)
puis
il
flxy — ¢(x) cos B = ¢ ko
p—d
flr) — o(x) cos D = e_—%— ,
et par suite
g J B4
[e; cos B — e cos D:I 1&<;—> — ek of . (21)

Les valeurs précédentes (20) et (21) introduites dans ds’ et
ds” donnent pour condition du maximum

8 3
Pl o) =605+

ce qul est conforme a 'équation (11).

En résumé, dans tous les cas, la condition du maximum
se réduit a ce que le quadrilatére doit étre inscriptible dans
un cycle. Si au lieu d'un quadrilatére on considere un poly-
gone quelconque, la condition reste la méme. C'est ce qu’on
verra en prenant comme variables les diagonales issues d'un
méme sommet A; en faisant varier une seule de ces lignes.
on voit qu'un cycle doit passer par A et les trois sommets con-
tigus du polygone; ce dernier est donc inscrit dans le cycle.

Les calculs qui précédent n’achévent pas le probleme du
maximum, car s'il est vrai que la condition oblenue soit né-
cessaire, il ne s’ensuit pas qu’elle soit suffisante. En la sup-
posant telle, il faut encore s’assurer que le polygone trouvé
est maximum et non minimum, et reconnaitre enfin s'il

existe d’autres maxima ou minima répondant aux valeurs
extrémes des diagonales qui sont ici limitées par I'obligation
ou l'on est de construire avec elles un polygone de cotés
donnés. Si on astreint le polygone & rester convexe dans
ses diverses configurations, on démontre aisément que le




GEOMETRIE DESCRIPTIVE , 369

polygone inscrit fournit un maximum de la surface et qu’il
n'y en a pas d’autres; des minima sont obtenus quand un
ou plusieurs cotés se placent en ligne droite.

Ces conclusions ne sont pas modifiées si on autorise des
dispositions concaves; mais dans le cas des formes éloilées,
—— qui exige la généralisation de la notion de surface, — on
aura des maxima et minima correspondant aux divers cas
d’inscription. La description et le classement de tous les
résultats est un probléme sans doule fort difficile et qui sort

du cadre de cet article.
C. CatLrLer (Genéve).

UNE LECON DE GEOMETRIE DESCRIPTIVE
SUR L'EMPLOI DES QUANTITES IMAGINAIRES

ProsLEME. On donne dans le plan horizontal un cercle ¢
dont le centre M se trouve sur la ligne de terre LT et une
droite d perpendiculaire a LT. Par le point A de c, situé
sur LT, on méne un plan quelconque « normal au plan hori-
zontal, coupant ¢ pour la seconde fois en B et d en C; puis
on s'imagine en « le cervcle ¢, dont B(I est un diamétre
Conslruire en un point quelconque P de ¢, le plan tangent =
a la surface S, lieu de ¢, quand « tourne autour de la droite «
du plan vertical, normale en A a LT.

1. On trouve le plan cherché » a l’aide de la tangente ¢ en
P ac, et la tangente en P a une autre courbe plane de S pas-
sant par P. Dans la premiére et la seconde des trois solu-
tions qui suivent, nous choisissons pour le plan de cette
seconde courbe successivement le plan de front par P et le
plan par P et d. 1l sera alors facile de déterminer cette tan-
gente dans les deux cas 1ndlques, des qu’on connait 'ordre
de S et la nature de sa section avec le plan «_ & l'infini.
Enfin la nature particuliere de la surface S nous suggérera
une troisieme solution, la plus simple de toutes

2. Ordre de la surface S. — Le plan horizontal ne contient
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