Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 11 (1909)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Kapitel: Démonstration vectorielle d'une construction des axes d'une ellipse.

Autor: Burali-Forti, C.

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

unités, j'en soustrais les unités multipliées par 2. Si le reste est divisible par 7, le nombre donné l'est aussi.

Par exemple:

$$294$$
 , $29 \mid 4$, $29 - 8 = 21$.

Pour les nombres indiqués plus haut nous obtenons le tableau :

On forme facilement pour chacun de ces nombres une règle analogue à celle que nous venons d'énoncer pour le nombre 7.

R. Suppantschitsch (Vienne).

Démonstration vectorielle d'une construction des axes d'une ellipse.

Par l'extrémité P d'un diamètre d'une ellipse de centre O, nous menons la perpendiculaire à son diamètre conjugué OQ et nous prenons sur cette normale les points M et N tels que

$$\overline{PM} = \overline{PN} = \overline{OQ}$$
.

Si a et b sont les longueurs des demi-axes de l'ellipse, on a

$$\overline{\mathrm{OM}} = a + b$$
 , $\overline{\mathrm{ON}} = a - b$

et les bissectrices des angles formés par les droites OM, ON sont les axes, en position, de l'ellipse.

Cette construction, très simple, des axes d'une ellipse dont deux diamètres conjugués sont donnés, est bien connue; elle est due à Chasles.

Nous indiquons la démonstration vectorielle, fort simple ellemème, pour donner un nouvel exemple de l'utilité de la méthode vectorielle en Géométrie analytique.

Soit I un vecteur-unité parallèle au grand axe de l'ellipse. Pour le point P on a, φ étant l'angle excentrique et i la rotation d'un angle droit dans le plan de la courbe

(1)
$$P = O + a\cos\varphi I + b\sin\varphi i I.$$

Pour le point Q on a

$$Q = O + \frac{dP}{d\varphi},$$

car, Q est donné par (1) en remplaçant φ par $\frac{\pi}{2} + \varphi$, et le diamètre OQ doit ètre parallèle à la tangente au point P.

On a encore, par la construction de M, N et d'après (2)

$$M = P - i \frac{dP}{d\varphi}$$
, $N = P + i \frac{dP}{d\varphi}$

ou bien, en vertu de (1),

$$M = O + (a + b) [\cos \varphi I + \sin \varphi i I]$$

$$N = O + (a - b) [\cos \varphi I - \sin \varphi i I],$$

dont on déduit

ce qui démontre la construction de Chasles.

C. Burali-Forti (Turin).

A propos d'un théorème de M. Arnoux.

Lettre adressée à M. C. A Laisant.

Cher monsieur,

J'ai remarqué récemment dans l'Enseignement mathématique, (15 mai 1908, p. 221) un article intitulé « Un nouveau théorème d'arithmétique » où vous signalez un théorème dù à M. Arnoux; vous pensez que ce théorème est nouveau. Il me semble que c'est une erreur. Dans « P. Bachmann's Niedere Zahlentheorie » (pp. 83-84, N° 8), on donne une méthode pour la solution des congruences simultanées, laquelle me paraît contenir implicitement le même principe. Cette méthode est due à Gauss, mais l'auteur appelle l'attention sur le fait qu'elle a été connue des Chinois il y a bien des siècles.

Votre bien dévoué,

E. B. Escott (Ann Arbor, Mich.)

Je remercie M. Escott de son intéressant renseignement. Je croyais la proposition nouvelle, sans en être sûr; elle est en tous cas digne de remarque, et le mérite de M. Arnoux reste entier, car il est permis de se rencontrer avec Gauss, et aussi avec les mathématiciens de l'antiquité chinoise.

C. A. L.