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11 est aisé de démontrer qu’une telle fonction ® est iden-
tiquement nulle.
L’intégrale la plus générale de lequatxon aux dérivées

partielles

td od
+ 0 2=,

D,X'i 0X'g !X’
dont elle est une solution, est

o(axy + bag + ... 4 Iz, + m),

ou ¢ est une fonction arbitraire, avec @ + 0 + ... + (=0 .
Il dérive donc de la définition de ® (différence de deux fonc-
tions linéaires et homogeénes), que

¢ = ax; + bry + ... Ix '

n

et, pour la condition de symétrie,

@=—b=—..=<1l=0.

On a donc ® — 0
F — '-1— S Xq + X'o —t* + .’lf" )Q ®
n ! '

7

C.Q.F.D. , Ugo Brocact (Rome).

LE THEOREME FONDAMENTAL DE LA THEORIE
DES EQUATIONS ALGEBRIQUES
ET LA THEORIE DES ASYMPTOTES

Le Théoréme fondamental de la théorie, des équations al-
gébriques s’énonce ainsi :

Toute équation algébrique entiére a coeﬁ?czents réels ou ima-
ginaires admet au moins une racine de la forme: a + bV —1,
aet b étant des nombres re’el&, pcuvant -étre nuls.

Nous allons d’abord démontrer ce Théoréme a 'aide de la
Théorie des asymptotes, dans le cas ou tous les coeflicients

T’Enseignement mathém., 11e année; 1909 2




18 E. DE RICHARD

de I’équation F (X) = 0 sont réels, puis ’étendre au cas ou
il y a des coeflicients imaginaires.

1. Cas des coefficients tous réels.

Toute équation algébrique entiére de degré impair admet
au moins une racine réelle. La démonstration en est immé-
diate et connue. '

Nous n’avons donc & considérer que le cas ou le degré m
est pair et dans ce qui suit nous supposons m pair.

Posons :

X:x—}—iy. (1 = ‘/d——l)
Ona: A
F(X) =P 4 Qi
2

N
P=Fx) — 21— F"(x)+ 1—22-—5-—

I P (@) — . e F ™ a),

TT—1.2.3...m

le dernier terme n’étant pas autre chose que ym précédé du

signe + ou du signe — suivant que m est ou non multiple
de 4.
Q=1y9.
— F’ (%) - >* B (x) 4 — ym—2 F(m_i)(x)
1= 1.2.3 L RO R P '

La proposition adémontrer revientdonc a celle ci: Les deux
courbes P — 0 et Q == 0 ont au moins un point d’intersection
réel.

Notons que la courbe Q = 0 se décompose en deux y ="

Cherchons les branches infinies et les asymptotes des deux
courbes P — 0 et Q = 0 (soient en abrégé P et Q).

D’apres les regles ordinaires de la géométrie analytique
il suffit pour avoir les directions des branches infinies, ou les
coeflicients angulaires des asymptotes, ¢ ou tg P, d’égaler a 0
I’ensemble des termes du degré le plus élevé, c’est-a-dire du
degré m, en remplacant y par ¢ ou tg ¢ et x par 1.

Il est facile de voir que pour la courbe P, cette équation
est:

(A 4+ i)™ + (1 — ity" =

——
===
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et pour la courbe Q, c'est:
(1 4+ )" — (1 + )y = 0.
La premiére équation, celle relative a P, peut s’écrire :

1

COS)]ISD

[((‘,os_ me - i sin mg) 4 (cos me — I sin mgo):, — 0,

Ol :

cos mg == 0,

a condition que cos™g ne soit pas nul, d'ou

4

mp — (2 &k 4 1)

rol A

¢t
p = 2k + 1)~

2m

On a donc m direction d’asymptotes. toutes distinctes les

' . .y T
unes des autres et les angles ¢ successifs different de ~.
‘ 12

Ce sont :

b 3w om (2m — 1) =

e ——

2m "’ 2m’ m’ T’ 2m

Par exemple pour le 4me degré on a :

La condition: cos™p non nul est vérifiée par tous ces angles
et quelque soit m.

On démontre semblablement que les directions des asymp-
totes de ) sont aussi au nombre de m, toutes distinctes les
unes des autres et que les angles ¢ correspondants, différant

. . s
successivement aussi entre eux de -, sont:
m

Doz b 2(m—1)=w

"9m 2m ) 2m
Par exemple pour le 4™° degré, on a :

3w

T
A

0,

e

s
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La condition cos™p non nul est vérifiée par tous ces angles,

’ ™ . ’ .
excepté pour ¢ == 5, valeur qui se présenle quelque soit m.

Mais il faut remarquer que les asymptotes paralleles a oY
se déterminent autrement; pour les obtenir, on égale a o le
coeflicient du terme du plus haut degré en y; or on voit que
dans le cas présent, il y a une et une seule asymptote paral-
lele a oY, pour la courbe ¢ = 0, le coeflicient de y™—2 étant :

F(m—i)(x)
.2 ... (m— 1)

Remarquons de plus que I'asymptote qui a o pour coefli-
cient angulaire n’est pas autre chose que OX, droite qui fait
elle-méme partie de Q.

et par suite du 1°* degré.

A chacune des asymptotes correspondent bien deux bran-
ches de courbe réelles, parce que toutes les asymptotes sont
distinctes, les équations aux coefficients angulaires ayant
toutes leurs racines simples; nous en avons en effet trouvé m
pour chacune et il ne peut pas y en avoir davantage.

De plus ces deux branches sont afférentes 'une a I'une des
extrémités de 'asymptote et l'autre a l'autre extrémité, ce
qui a lieu de méme pour I'asymptote paralléle a 0Y.

Quant a la situation des asymptotes, nous pouvons sup-
poser que le terme du degré m — 1 manque dans I'équation

F(X) = 0. car on peut tou-
c Y b jours le ramener a étre nul. 11
: enrésulte quelestermesde ce
degré: m—1, manquant ausst
a dans les équations P =0 et
Q =0, toutes les asymptotes,
X tant de P que de ), sont is-
sues de l'origine des coor-
données, d’aprés un corol-
laire de la Théorie des asymp-
totes, qui s’appliqueici, parce
Fig. 1. que tous les coeflicients an-

gulaires sont distincts.

Les asymplotes des deux courbes s’emboitent donc les
unes dans les autres, c'est-a-dire sont alternées, comme 1'in-
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dique la figure ci-contre relative pour plus de simplicité et de
clarté au cas ou m = 4, mais qui peut étre établie de meme
quelque soit m pair.

"D’autre pdart nous nous appuyons sur ce théoréeme bien
connu : « Les courbes algébriques n’ont pas de point d’ar-
rét ». Il se démontre en effet sans supposer établi le théo-
réeme proposé. Dés lors, on voit facilement que les courbes
P et Q se coupent nécessairement au moins en un point réel
et que de plus si ce point se trouve autre part que sur XX/,
ce qui correspondrait a une racine réelle pour F(X) =0, il a
son symétrique par rapport a XX', puisque P et Q) sont symé-
triques chacune par rapport a XX', d’ou deux racines imagi-
naires conjuguées. Considérons en effet la premiére asymp-

tote de P, celle qui correspond a ¢ = 2% (ici : g), ou bien

la branche y afférente au-dessus de XX’ coupe XX’ et alors
on a une racine réelle de F (X) =0, ou bien elle ne coupe
pas XX/, et alors, aprés plus ou moins de sinuosités et de
circonvolutions qui sont en nombre limité d’ailleurs, il est
facile de le démontrer, elle doit aboutir a une autre asymp-
tote; elle doit donc aller ou a &, ou a ¢ ou & d. Si elle va a b,
la branche de Q qui part de ¢, la coupe nécessairément. On

voit de méme que si elle va a ¢ ou d, il y a au moins une
intersection nécessaire.

Il est impossible de combiner les différentes branches sans
qu’il y ait au moins une intersection.

La démonstration peut étre considérée comme terminée.
On peut toutefois lui ajouter le raisonnement suivant pour
une valeur indéterminée, c’est-a-dire quelconque de m pair.
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Supposons qu’il n'y ait pas de racines réelles, car s’il y em
a le théoréme est démontré !, et ne nous occupons que de
la partie supérieure de la figure (I'autre partie étant d’ail-
leurs symétrique a la premiere par rapport a XX').

Considérons une branche infinie quelconque de P et ses.
deux asymptotes; entre ces deux asymptotes il y a un nombre
impair total d’autres asymptotes. Ou bien c'est le nombre
d’asymptotes de Q comprises qui est impair et alors il y a au
moins une branche infinie de Q qui doit nécessairement.
couper la branche considérée de P.

Ou bien ¢’est le nombre d’asymptotes de P comprises qui
est impair, et alors il y a au moins une branche de P qui doit
couper la premiere ; ces deux branches de P forment entre
elles un angle curviligne qui comprend encore un nombre
total impair d’extrémités d’autres asymptotes 2. Nous pouvons.
continuer ce raisonnement et comme le nombre total d’extré-
mités d’asymptotes comprises est toujours impair et comme
il diminue chaque fois, nous devons nécessairement arriver
a un nombre impair d’asymptotes de ) comprises, ce nombre
dat-il étre 'unité, et finalement il y a une branche de Q qui
doit couper une’ branche de P.

Observation. La démonstration ci-dessus n'a, comme on le
voit, rien qui soit ardu; c’est une simple et immédiate appli-
cation de la Théorie des branches infinies et des asymptotes
en géométrie analytique. |

Si les démonstrations purement algébriques peuvent pa-
raitre plus de circonstance pour le Théoréme en question,
elles ont presque toutes l'inconvénient, dans un cours de
Mathématiques spéciales, d’étre plus ou moins difficiles a
comprendre et a retenir. Celle-ci est une suite immédiate et
naturelle d’'une Théorie de géométrie analytique et en cons-
titue un exercice d’application.

1 Remarque. Les équations P== 0 et Q=0 etles courbes.
qu’elles représentent sont loin d’étre quelconques I'une par

1 Locution usuelle.

2 La locution : « extrémité d’asymptote » peut paraitre impropre, nous 'employons cepen--
dant a défaut d’antre aussi bréve, car elle est trés intelligible par une interprétation men-
tale et nous ne faisons en cela qu’imiter 'exemple de MM. Briot et Bouquet dans leur
Géométrie analytique.
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rapport a 'autre, et évidemment a priori il doit en étre ainsi.
On a d’abord les relations connues :
2P 2Q P 0Q
dx o o

Il ressort de la preqente démonstration les deux Théo-
réemes Suivants :

I. Les asymptotes de P et de () sont toutes issues d'un
méme point situé sur XX’'. Nous avons supposé que le terme
de degré m — 1 manquait dans I'équation F(X)== 0, mais
cette circonstance n’a servi qu’a mettre en évidence la pro-
priété susdite et & nous permettre d’en profiter. La propriété
subsiste lorsque la condition supposée n’est pas remplie,
car on n’a fait par cette hypothése qu'un changement d’axes
de coordonnées, I'axe des y étant seul déplacé parallélement
a lui-méme.

II. Lesasymptotes de P et de () forment une étoile réguliére
alternée.

2m¢ Remarque. La proposition des couples de racines ima-
ginaires conjuguées se trouve démontrée dans le cas des
coeflicients tous réels.

2. Cas des coefficients imaginaires.

Si F(X) a un ou pluswurs ou tous ses coefficients imagi-
naires, on peut toujours écrire : F(X) = /(X) + io (X),
[(X) et 9(X) ayant tous leurs coeflicients réels. .

L’équation f(X)? 4 ¢ (X)?> = 0 ayant tous ses coeflicients
réels, admet au moins, d’aprés le premier cas étudié, une
racine : o« 4 z',@

Orona: f(X)? 4 ¢(X) (fX)—}—lgo( I [ (X) — ip(X)]; on
démontre aisement que sl o 4+ if3 n’est pas une racine de
[(X) + ip (X) = 0, « — 0 en est nécessairement racine. Ces
deux imaginaires conjuguées peuvent d’ailleurs en étre toutes
deux racines, mais alors on a séparément et pour chacune de
ces valeurs :

f1X) =0, o (X) = 0.

Ii. b Ricaarp p’ABoncourt (Lille).
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