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SUR LE PRINCIPE DE LA MOYENNE ARITHMÉTIQUE

I. — Il est naturellement indifférent, au point de vue de

l'Analyse, qu'on reconduise ou non le postulat de la moyenne
de Gauss à un système d'autres postulats, ou bien qu'on le
fasse découler d'un principe de minimum. Mais il y a pourtant

une raison d'un ordre divers qui rend quelquefois
préférable qu'on suive le premier chemin, et que Ton s'attarde
à rechercher si, parmi les systèmes de postulats définissant
la moyenne arithmétique, il n'y en a qui, pour l'évidence et
la presque-nécessité pratique des principes dont il résulte,
nous semble imposer, pour ainsi dire, le choix d'une telle
moyenne de préférence à toute autre, au moins dans
certains domaines d'application.

Le système que tout récemment M. G. Schiaparellt
proposait dans les Rendiconti del R. Istituto Lombarde* di Scienze
e Lettere et dans les Astronomische Nachrichten atteint
certainement au plus haut degré un tel but : nous saurions
bien difficilement renoncer aux propositions, dont il résulte,
exception faite peut-être d'une seule proposition, qui est la
suivante :

2n observations de même précision de deux grandeurs
inconnues x et y nous ont fourni les valeurs

Xt X% x de x et xt -j- a ,r2 -f* a » • • • > xn + a J î

nous admettons que, si F (x) est la valeur moyenne des x et
F (y) la valeur moyenne cles y, on doit avoir

F (j) — F (x) a

Pourtant un géodésien saurait bien difficilement se passer
d'elle! •

L'étude de M. Schiaparelli se fonde sur cette proposition,
et sur les postulats, bien intuitifs, admettant que si les ob-
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servations sont également précises elles entrent toutes et

indépendamment de Tordre dans lequel on les a faites dans
la détermination de la moyenne et que le passage d'une
unité de mesure m à une autre m'— km, déterminant le

passage d'un système de valeurs observées xx xn à un autre
k k xn, détermine aussi le passage de la valeur
moyenne F(.r) à l'autre k F(x).

Nous nous proposons de reprendre ici le problème, non
pour en modifier les prémisses, mais pour indiquer un mode
de déduction purement analytique et peut-être menant plus
rapidement au but, que celui proposé par l'illustre astronome
italien.

II. — La traduction en langage algébrique des conditions
énoncées et l'adjonction d'une condition nouvelle, destinée
-à rendre possible l'étude analytique de la question, nous
fournit le système de postulats, définissant la valeur moyenne

F(«î xn) — F

de a observations d'égale précision :

1. F est une fonction symétrique de ses n variables ;

2. les dérivées partielles i ^ sont assignables et1 dart dx2 dx 0
finies ;

3. on a F(kxi kx2 kx/t) k F(xi ,r2 xn)1 ;

4. on a F{xA -j- <x\ xn -f- a) — F(x^ x2 xn) ~b oc

c'est-à-dire pour 2 :

öF öF öF

to1 + ^ + -^ 1 («)

Il suit de même des postulats 3 et 4 :

F (0. 0, 0) 0 et F (a a) a

11 s'agit de démontrer, que

F F(*! x, i i 1 j Xl + x2 + + xa l
n

1 Ce que nous exprimons en disant que F est une fonction homogène du degré un M Bolz \
iVorlesungem übcr Variationsrechnung, 1908, p. 194) appelle « positive Homogenität » l'homogénéité

restreinte, dont il est question ici.
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III. :— On a le lemme suivant :

Une fonction da degré d'homogénéité un, et solution de-

lééquation aux dérivées partielles (a), est une fonction entière..
Soit pour abréger

f—f\.xltx%,...xn)

et supposons que l'on ait

^ xJ}) ^ ^f ~ ••• Xn) z

où ip est du degré de homogénéité p et % du degré p — t
On aura

I;,+-+&n

Z" \ ö'rl àxn 0^! bxr

X + + Ü _/-(ô2C + + M

îi + + M -xc\rx
1 1

<\r A

^ + 52. J- _]_

Le numérateur est ici nue fonction homogène du degré
p— i, le dénominateur une fonction du degré p —2. On
est donc toujours ramené au cas p — 1

IV. — Soit p — p (xx xn) une solution linéaire et homogène

de (a), et

~ | -Ti + -f Xn | — p\Xt Xn) $(Xi X^ z=z <î>

La fonction | ~xt + + xn | + a <t> (où a est un entier

quelconque) satisfait bien évidemment aux postulats 2, 3, 4 :

s'il est possible de définir une fonction <î> symétrique par
rapport à ses n variables, on pourra admettre aussi que

#+... + x + a
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Il est aisé de démontrer qu'une telle fonction <ï> est

identiquement nulle.
L'intégrale la plus générale de l'équation aux dérivées

partielles
?<Î> 0$

|

Ö1>
Q

bx± ô,r2 àx;t

dont elle est une solution, est

<p(axi -f- bx% + -f- lxm + m)

où (f est une fonction arbitraire, avec a -f- b + + l — 0 *

Il dérive donc de la définition de <ï> (différence de deux fonctions

linéaires et homogènes), que

4* cixi -f- bx2 -}- • • • I-Xji

et, pour la condition de symétrie,

a b .,.*=5 l 0

On a donc <Ê> 0

f i | |.

C. Q. F. D. Ugo Brocgi (Rome).

LE THÉORÈME FONDAMENTAL DE LA THÉORIE
DES ÉQUATIONS ALGÉBRIQUES

ET LA THÉORIE DES ASYMPTOTES

Le Théorème fondamental de la théorie, des équations
algébriques s'énonce ainsi :

Toute équation algébrique entière à coefficients réels ou
imaginaires admet au moins une racine de la forme : a + h\/— 1,

a et b étant des nombres réels, pouvant être nuls.
Nous allons d'abord démontrer ce Théorème à l'aide de la

Théorie des asymptotes, dans le cas où tous les coefficients

L'Enseignement mathém., 11e année; 1909 2
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