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bruit, mais je le recherchais. Ainsi je suis souvent monté en
omnibus, sans avoir de but déterminé, parce.que la trépidation

bruyante, le brouhaha, venaient à mon aide pour achever
une solution.

C'est à cette faculté de m'abstraire au milieu du bruit que
se rattache futilité de la musique pour mon travail. Que de

fois suis-je allé au concert sans y percevoir le plus petit morceau

de musique, mais j'y travaillais très bien.
Voici à ce propos un souvenir absolument précis. Dès la

première année de mon professorat je n'ai voulu employer
dans mon enseignement que des démonstrations géométriques;

mais je ne trouvais pas celle concernant la trace de la
surface d'ombre d'une ellipse éclairée par un cercle.

Un jour, fatigué par cette recherche et désireux de changer
le cours de mes idées, j'entrai au Théâtre lyrique où on
jouait la Traviata. Les premières mesures de l'orchestre
arrivèrent seules à mes oreilles et l'obsédante question me
reprit. En sortant du théâtre, sans doute la musique aidant,
je possédais la solution désirée, mais je ne connaissais nullement

la Traviata
On voit par ce qui précède, que j'ai tout simplement

travaillé selon ma nature.
Chacun agit de même aussi je doute beaucoup que ma

méthode de travail puisse modifier celle de n'importe qui.

UNE LEÇON DE THERMODYNAMIQUE
Sur les Cycles Réversibles.

La notion du cycle réversible fut particulièrement féconde
pour la thermodynamique/Elle servit de point de départ
pour établir le principe de Carnot, appelé aussi le second
principe de la théorie de la chaleur. En raison d'une pareille
importance l'exposition du cycle réversible dans l'enseigne-



168 //. VEILLON

ment doit nécessairement faire l'objet de beaucoup de soins,
et c'est à ce point de vue.que nous croyons utiles les
développements qui vont suivre. Nous y fûmes conduits au cours
de leçons sur la thermodynamique.

Ainsi que le fait déjà observer Clausius *, chaque cycle
réversible est susceptible d'une décomposition en une quantité

de cycles de Carnot infiniment étroits, que nous
nommerons élémentaires, et qui sont toujours limités par deux
portions d'isothermes comprises entre deux adiabatiques
voisines. Or cette décomposition d'un cycle quelconque en
cycles élémentaires n'est pas la seule que l'on puisse imaginer ;

il y en a au contraire six différentes qui s'offrent à l'esprit,
comme nous allons tout de suite le rappeler. La raison qui
conduit à choisir le cycle de Carnot est que celui-ci jouit de

propriétés tout à fait spéciales, particulièrement en ce qui
concerne le rendement, de propriétés, disons-nous, qui en
font le plus avantageux de tous les cycles élémentaires. Le
but que nous nous proposons iciest donc de passer en revue
les cycles élémentaires typiques et fondamentaux afin de
reconnaître en quoi ils diffèrent entre eux, et de mettre par
cela même bien en évidence la supériorité du cycle de Carnot.

Cette étude peut se faire par les procédés les plus
élémentaires de l'analyse mathématique.

Les six cycles fondamentaux.

Nous désignerons par c, /?, T, le volume, la pression et la

température absolue d'un corps, par cv c^ses deux chaleurs
spécifiques. Nous pouvons faire passer le corps de quatre
manières différentes, d'un état initial (indices 0) à un état final
(indices 1) ; rappelons ces transformations ainsi que les équations

qui s'y rapportent, la lettre Q représentant la quantité
de chaleur mise en jeu dans chacune d'elles. Le lecteur ima-

\ ginera la représentation graphique de Clapeyron dans chaque
cas, exécutée avec le diagramme des volumes et des
pressions.

1 Clausius, Die mechanische Wärmetheorie, Vol. I, p. 92.



THERMODYNAMIQUE 169

1. Transformation isochore : coast., et T variables.

f y•- To> •

r o
A

o

La ligne figurative est l'isochore, une droite parallèle à

l'axe des pressions supposée perpendiculaire.
2. Transformation isobare : p — const., v et T variables.

^ Q C(Ti-T0).
V

0
1

0

La ligne figurative est l'isobare; une droite parallèle à

l'axe des volumes, imaginée horizontale.
3. Transformation isotherinique : T const., v et p

variables.

~ (loi de Mariotte) ; Q RT log —0 — RT log —

p± Pl

où R désigne la constante individuelle du gaz, lorsqu'il s'agit
d'un corps à l'état gazeux. La courbe figurative est
l'isotherme, une hyperbole équilatère avec les axes des volumes
et des pressions comme asymptotes.

4. Transformation adiabatique : c, p et T sont variables et
la quantité de chaleur mise en jeu est nulle. On a ici les
relations de Poisson :

k-A

Tt /M r -M*-1 Pi-Kk
To W W '

Po

où k est le rapport entre les deux chaleurs spécifiques. La
courbe représentative est l'adiabatique, sorte de courbe
hyperbolique, comprenant l'isotherme à titre de cas particulier
lorsque k 1.

En combinant maintenant deux à deux ces quatre modes
de transformation pour en faire des cycles, on obtiendra les
six cycles suivants :

Cycle I isotherme-adiabatique (Carnot).
Cycle II adiabatique-isochore.
Cycle III adiabatique-isobare.
Cycle IV isotherme-isochore.
Cycle Y isotherme-isobare.
Cycle VI isobare-isochore.
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Les diagrammes figuratifs sont des quadrilatères. Suivant

l'angle auquel elles se rapportent, les valeurs de p, c, T,
seront affectées des indices 0, 1, 2, 3. Nous allons maintenant
démontrer qu'il existe entre ces douze quantités (pression,
volume et température à chaque angle) trois relations fort
simples et générales, applicables à chacun des six cycles
fondamentaux.

On peut envisager avec Zeuner 1 les courbes isochores,
isobares, isothermes et adiabatiques comme cas particuliers
d'une courbe très générale, nommée courbe polytropique du

type :

pvm — const.

m désignant un exposant arbitraire, et la constante étant
déterminée par les conditions initiales au départ. En particulier
m oc donne l'isochore, m 0 l'isobare, m 1 l'isotherme,'
m k l'adiabatique. Dans le cas où k > 1 l'adiabatique tombe
avec plus de rapidité que l'hyperbole équilatère ; c'est le cas
le plus commun. Chacun de nos cycles pourra donc être
considéré comme limité par deux courbes polytropiques possédant

l'exposant commun m et par deux autres avec un exposant

également commun, mais différent, n.
Supposons maintenant les points 0 et 2 connus, c'est-à-dire

Co, p0, v2, p% donnés, nos quatre polytropiques pourront
s'écrire :

P

V

Fig. 1.

1 Weyrauch, Grundriss der Wärmetheorie, vol. I, p. 54.
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En combinant la première et la quatrième de ces équations

nous obtiendrons les valeurs des inconnues e et p à Tangle 1,

soit Ci et pi. La combinaison des deux autres équations fournira

les valeurs de v et p à l'angle 3, soit cs et p3. Une fois

ces valeurs calculées formons les produits V\V3 etpip3 on trouvera

les intéressantes et fort simples relations :

Passons maintenant aux températures et on verra que l'on

peut établir une relation absolument semblable. Les équations
de Poisson fourniront, en y substituant m (ou n) à k :

En les multipliant terme par ternie et en tenant compte
de (1) on trouve en effet :

Nous exprimerons ce résultat en disant que clans tout cycle
élémentaire le produit des volumes, des pressions et des

températures absolues, suivant une diagonale, est constant.
Passons maintenant à l'étude des six cycles typiques

fondamentaux. Nous les imaginerons toujours parcourus de telle
façon qu'un observateur, marchant sur le contour, ait la surface

à sa droite, les angles se succédant dans l'ordre 0, t,
2, 3, 0. La chaleur empruntée à la source chaude sera alors
supérieure à celle cédée à la source froide et la machine
aura fourni un travail extérieur. Nous désignerons toujours
par T0 la température la plus élevée, et par T2 la plus basse

que Ton rencontre en parcourant le cycle, tandis que Ti et
Ts, s'il y a lieu, seront les températures intermédiaires. En
outre Qi, Q2, Qs, Q4 seront les quantités de chaleur mises en
jeu entre les coins 0 et 1, 1 et 2, 2 et 3, 3 et 0 du diagramme.
Enfin Q sera le travail extérieur fourni par la machine, et

pour fixer les idées, nous supposerons cette dernière être
formée par l'unité de masse de la substance, par exemple

P^P* PoP*

(1)

(2)

m— 1

lyr, m T0T,
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par 1 gr. d'air. Nous considérerons comme quantités données
les températures extrêmes, T0 et T2, ainsi que le volume et
la pression dans l'angle correspondant à l'état initial. Or ces

quatre quantités données ne suffiront pas à la solution des

problèmes, comme on verra, et iL faudra toujours avoir
recours au choix d'une cinquième que nous nommerons la

constante arbitraire. Les inconnues à chercher se composeront

des volumes, pressions et températures aux autres
angles du diagramme, ainsi que de toutes les quantités de
chaleur mises enjeu et enfin du rendement. Nous appellerons

ce dernier H dans
le cycle de Carnot
et y? dans les autres.

Cycle I,isotherme-
adiabatique. (Carnot).

— Donné:
Co, p0 To T2,
arbitraire c2. — Cherché

: Ci c3 pi
P2 />3

Nous disposons
des cinq équations
suivantes :

W*

Fig. 2.

isotherme :

adiabatique

générale :

b1 — &
% Pi

k—1 T,
Tn

k-~1
k

: *V'a > PiPz — PoP*

Le calcul donne les résultats suivants

Angle 1.

T N
A 2

Pl—
YOPO fo

r2 \T.

i
k—i

Angle 3.

V / 1

p-{
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Angle 2.

*T

S'oPo L
p> ^

Q= R

Qi RT0 log '3- Q3 — RT2 log -*'o ^0

T,_ts:], H I-Iv
L'équation pour Q permet de constater, et cela est très

important, que pour une valeur déterminée de l'arbitraire
e2 il ne résulte qu'une seule valeur pratiquement possible
du travail fourni Q, et que vice-versa pour une valeur prescrite

de Q il n'existe qu'une solution pour v2.

L'équation pour H n'offre lieu à aucune remarque sinon
qu'elle exprime le fait bien connu que le rendement ne
dépend que des deux températures extrêmes des sources. Nous
formulerons donc la règle: Une machine réversible évoluant
une fois suivant un cycle cle Carnot entre les températures
T0 et T2 peut fournir n'importe quel travail extérieur avec un
rendement invariable ne dépendant que de ces températures.

Les formules trouvées permettront en outre d'effectuer le
diagramme représentatif soit pour une valeur donnée de la

quantité arbitraire v2,
soit pour une valeur
prescrite de Q.

Cycle II, adiabatique-
isochore. — Donné : v0,

.p0, T0, T2, arbitraire :

Ti — Cherché:
/?2 > Pz Ts •

Nous disposons des

cinq équations
suivantes :

sochore : tit 2

L

adiabalique
k-1 II

To

rig. 3.

k— 1

k L
T0

générale : p±p2 p0p2 r[\l\ T0T2
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Le calcul fournit les résultats suivants :

Angle î. Angle 3.

Angle 2. p% p0 k
,k—1t;

Ici les choses se passent tout différemment que dans le
cycle de Garnot. Pour une valeur donnée de l'arbitraire Ti il
n'existe qu'une seule valeur du travail extérieur Q, mais si
vice-versa nous prescrivons une valeur déterminée au travail
extérieur Q il en résultera deux valeurs distinctes pour la
première température de passage Ti, car l'expression pour
Q est du second degré en Ti Mettons-la sous la forme :

il en résulte immédiatement que les deux valeurs distinctes
de la première température de passage obéissent aux conditions

suivantes, si nous les désignons par T[ et T"

A chacune de ces températures de passage dans l'angle 1,

correspond une température de passage dans l'angle 3,
nommons-les et Tg on trouvera pour celles-ci les conditions
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identiques, savoir :

TX Vs •

+ '< T0 + Ts - I •

De ces deux systèmes il résulte :

T; + t; T; + <. j

d'où Ton tire immédialement

T t"

t" t'
1 S

Reportons notre attention maintenant sur la formule qui
exprime le rendement. Celui-ci dépend de la température de

passage Ti, sera par conséquent dépendant de laquelle des

deux valeurs T[ ou T" on choisit pour obtenir le travail prescrit

Q. Appelons y/ et yf ces deux valeurs on verra sans

peine qu'elles satisfont à la condition fort élégante :

(1 -»')(!-»",= Y1 0

ou bien :

-(1 — V) (1 — */') ~ 1 — H

Rappelons enfin que le complément du rendement à l'unité
se nomme le coefficient de perte et nous pourrons formuler
le résultat ainsi :

Une machine réversible parcourant un cycle du type II
entre les températures extrêmes T0 et T2 pourra fournir un
travail extérieur prescrit Q de deux manières différentes. Les

températures de passage Tx et T* seront égales, mais interverties

dans les deux cas. Les rendements seront toujours
inférieurs à celui de Carnot mais le produit des coefficients de

perte dans les deux cas sera égal au coefficient de perte dans
le cycle de Carnot.

L'équation du second degré en Ti permet d'approfondir
encore la différence entre le cycle qui nous occupe et celui
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de Carnot. On peut rechercher la valeur de Ti rendant Q
maximum. A cet effet il suffît de poser :

dQ _ /T0T2 \ A
dr, -cv (yy - y -0 '

d'où il résulte que le travail extérieur devient maximum pour
la valeur particulière

\\ — T3 j/Tylg •

Cette valeur de Q est elle-même :

Qmax CV((/T0 — t/T,)2

Désignons enfin par 2 le rendement relatif à ce cas, on
trouve :

z — i — y/~2 ou bien : 1 — z ~ y 1 — H

Ce résultat peut s'énoncer ainsi : Le cycle du type 11 ne

peut fournir entre les températures extrêmes et T2 qu'un
certain maximum de travail extérieur, et cela d'une seule
manière. Les deux températures de passage 7i et Ts sont
égales à la moyenne géométrique des températures extrêmes.
Le rendement, toujours inférieur à celui de Carnot, est alors
tel que le coefficient de perte est égal à la racine carrée du
coefficient de perte de Carnot.

On peut enfin établir une intéressante relation entre le

diagramme pour Qmax et les deux diagrammes fournis par la
double solution du problème lorsque Q est supposé affecter
une autre valeur (plus petite).

En calculant les coordonnées des angles nous trouvons
pour Qmax :

\«=-V(sf • S--VI
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Pour une autre valeur de Q les formules générales pour
les angles écrites au commencement de ce paragraphe
fourniront deux tableaux analogues. L'un s'obtiendra en remplaçant

dans les formules générales Tx etT3 par Tt et Ts, l'autre

en remplaçant ces mêmes lettres par T" et Supposons ces

deux tableaux écrits et désignons les valeurs correspondantes

par :

i ' y < i\ ' A ' ' pI • h • pi •

Nous trouverons très aisément :

U |/>'V\ j p*=-\/p'tp", -

pour les Angles 1. pour les Angles 3. \

Ip1 (/p^p" ; |ts=|/t1'Ç;

pour les Angles 2. p2 '= j/•
Et enfin pour la température de passage T1 dans le cas de

Qm*x i

•j\ f/ip7;

c'est-à-dire : Les volumes, les pressions et les températures
dans les angles du diagramme pour Qmax sont les moyennes
géométriques des quantités correspondantes dans les angles
similaires des deux diagrammes pour toute autre valeur
de Q.

En poursuivant encore on trouvera que :

i — s (/(l - 7) (t — v'7}

c'est-à-dire : Le coefficient de perte pour Qmax est la moyenne
géométrique entre les coefficients de perte dans les deux cas
de la solution correspondant à une autre valeur de Q.

Telles sont les considérations qu'il faut faire pour s'assurer

de la supériorité du cycle de Carnot sur celui du type II.
Bien qu'un peu longues nous ne les croyons pas inutiles.

Cycle III, adiabatique-isobare. — Donné : vx, p0, T0, T2,
arbitraire : Ti. — Cherché : v0, v2, cy, p2, Ts

L'Enseignement mathém., 11e année; 1909. 12
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Nous pouvons nous dispenser d'effectuer le calcul, tout

isobare

V3 pj2

se passant comme
dans le cycle II. En
particulier toutes les

conséquences restent
les mêmes. Remarquons

seulement que
la température la plus
élevée T0 doit être
appliquée à l'angle 1,

T3 la plus basse T2 à

l'angle 3.

On aura de nouveau

cinq équations pour déterminer les inconnues, dans
les valeurs de Qi, Q8 et Q figurera cp au lieu de cv\ enfin

dans la formule du rendement sera remplacé par ^lo il
Cycle IV, isotherme-isochore. — (Principe de la machine à

régénérateur de Stirling). — Donné : e0, /?0, T0, T2 ;

arbitraire : Ci. — Cherché : px, p2, pz.
Ce problème n'offre que trois inconnues et on ne dispose

en effet que de trois équations :

Fig. 4.

isoehore pa _..Ta

pi
~~

T0

isotherme : — .Fo

générale : ptpz pQp2
v pT0 '3 r

Le calcul fournit les solutions

Angle 1 : Pi — po ~ : Angle 3 : ps :

'i
j i Po *'o 1s

Angle 2 : p2
L

vrr •

ri 1
o

P 0 rFAo
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Qi RT0 log - Q4 cv (T0 — T2)
r° \y <i >

Qs RT, log -1 Q2 (T„ — TV)
(,o

Q R (T0 — T2) log —
Vo

Pour le travail extérieur le cycle IV est pareil à celui de

Garnot ; à chaque valeur de Ci il ne correspond pratiquement

qu'une seule valeur de Q, et vice-versa une valeur
quelconque prescrite de Q peut s'obtenir d'une manière unique
parle choix convenable de Ci.

La différence d'avec le cycle de Carnot se trouve dans le
rendement. Celui-ci serait théoriquement :

_ Q
* Qi + v

'

c'est-à-dire toujours inférieur à H. Mais les quantités Q* et
Q2 sont égales entre elles; nous les avons désignées par q.
Or c'est ici que le régénérateur entre en fonction ; après la
moitié du parcours il a reçu q et à la fin du parcours
entier il a rendu q. Cette quantité q n'entre donc pas effectivement

dans le rendement, car elle n'est empruntée à aucune
des sources. Le rendement doit alors s'écrire :

Q
4

T* Rri — ou n — 1 — — — H
Jo

Dans ces conditions on voit donc que le cycle IV peut fournir

la même chose que celui de Carnot, mais cela à la
condition expresse que l'on dispose d'un régénérateur parfait.
Notre but étant d'éta- q

v«PoT2 N;P„T„

isobare
blir la comparaison 0 11 * vi Pq

entre tous les cycles,
nous avons été obligés

de relater ici ces ^
choses bien connues
du reste.

Cycle V, isotherme-
isobare. — (Principe y T
delà machine d'Ericc- 3 Ps 2 l ^

Fis:. 6.
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son.) — Donné : vx, T0, T2 ; arbitraire /?2 — Cherché

: e0, e2, e8

Ce cycle se comporte vis-à-vis du précédent exactement
comme le III par rapport au II, et cela nous dispensera de

tout nouveau commentaire. Dans les formules cv sera
remplacé par cp

Cycle VI, isobare-isochore. — Donné : pQ, vt, T0, T2 ;

arbitraire Tt — Cherché : c0, /?i Ts.
On dispose des relations :

*1 to
isobare : — — — ;

o tj
isochore : — — j.? ;

Po *1

générale : TiT8 zz T0 \\

Solution du problème :

Angle 0 : e0 — ^ ~ Angle 2 : px ~ pQ —
A0 11

Angle 3 : Tg -s —i2
:

Al

Qi cp(T0 - Tj) Q4 - Ta)

Q3 t 3 t g) Q2 ^ tg)

Q — (cp — cç) (T0 — 1\ + t2 — i3)

vo PoT,
1 Q"1

\ PJo

isobare

0^
cr/
O
n
O
Oi

IP.1.

ou bien en éliminant Ts :

Fig. 7.

vi PIT3

Q — (cp ~~ cé y ~
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Pour le rendement on trouvera facilement :

1 (cn — C'J (To — Ti) fL — T.)

f| Cp
^

0 L) + Cv tl I2)

Ces expressions pour Q et n sont fort élégantes, mais la

présence simultanée de cp et de cv en rend la discussion un
peu compliquée. En premier lieu nous voulons démontrer
que le rendement y? est ici toujours inférieur à H du cycle de
Garnot. On y parvient en recherchant la valeur de la température

arbitraire de passage qui rend y3 maximum et en
calculant ensuite ce maximum lui-même. Ecrivons dans ce but :

T T — T — T T 4- T T01 1 0 2
1 12

O'.T. +p 01 p

eOormons ensuite l'expression :

È=°-d[t

Comme dans ce calcul nous n'aurons usage que du
numérateur, nous nous bornerons à l'indiquer seul. On trouve :

numérateur rrr c„(T*T — 2T T T 4- T*T
P\ 02 0 1 2

1 12/

_ c (T f — 2T T T + T T8) ;
0 1 0 1 2

1 02/'
numérateur c^T2(T0 — Tj)2 — cyT0(Ti — T.2r

En égalant à zéro cette expression, on trouve :

j_o — li l/6v G

G G \/cp 12

équation linéaire en Ti dont la solution fournit la valeur
cherchée de Ti qui rend y? maximum :

y max uz — —
\/Cp G + \/ c/1.0

La température de passage dans l'angle opposé est alors :

rL\//cp t0 -f- loi/cvT2
T3 m max r —

\A/r* + lA/L
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Enfin pour le rendement lui-même on trouvera l'expression

1
o t 2

qui montre que le dénominateur est certainement > T0, d'où
il résulte que :

^ r0 — i2 uVax < —f ' OU bien ^max < H *

1 o

Remarquons qu'on peut aussi reconnaître que yjmax est non
seulement inférieur à H, mais aussi à n de n'importe quel
autre cycle.

Nous pouvons donc formuler : Le rendement du cycle VI
reste toujours inférieur à celui de l'un quelconque des autres
cycles.

Reste encore à calculer Q pour le cas du maximum de y? ;

on trouve
(T0 - T.)*

O
«max ~ [ P V c + c„ __1

o ~h y : |/ 1 o 12 -f- t2

Nous pourrions chercher à calculer les coordonnées des

angles du diagramme correspondant, mais nous voulons
nous en abstenir.

Revenons à la formule générale pour Q. Elle peut être
envisagée comme étant la différence des deux expressions
correspondantes dans les cycles II et [III. Les remarques
faites là-bas s'appliqueront immédiatement ici. Il doit exister
une valeur maxima de Q, elle est :

Qmax — (cp— Cv) {\/%— j/Tâ)2

et la température de passage Ti obéit à la même condition.
Pour une autre valeur prescrite de Q on retrouve deux
solutions, l'une avec les températures de passage T[ et Tg, l'autre
avec Tj et Tg qui obéissent à des relations écrites sous II et
III, à cette différence près, que (cp — cv) remplace cp resp. cv.
Enfin ce qui a été dit sur la relation existant entre la solution
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Qmax et les deux solutions pour une valeur quelconque prescrite

de Q reste la même chose ici. Nous pouvons donc nous

dispenser de refaire les développements, mais nous
remarquerons pour terminer que le rendement relatif au cas Qmax

devient ici assez compliqué tout en étant susceptible d'une
forme assez élégante, il est :

_ _ S/% - /%
F '

Cp \/T° + Cv/

Résumé. — 1. Les cycles I et VI occupent des places
spéciales et diffèrent essentiellement; les cycles II et III d'une

part, IV et V d'autre part forment deux groupes dont le

premier présente des analogies avec VI et le second avec I.
2. Les cycles I, IV, V permettent d'obtenir un travail

extérieur aussi grand que l'on veut, tandis que II, III, VI ne

permettent jamais de dépasser un certain maximum.
3. Une valeur prescrite du travail extérieur ne peut

s'obtenir que d'une seule manière avec I, IV, V, mais de deux
manières différentes avec II, III, VI.

4. Pour II, III, VI les solutions répondant au maximum
du travail sont en quelque sorte les moyennes géométriques
de chaque solution ambiguë répondant à toute autre valeur
inférieure du travail.

5. Le rendement de I est le plus élevé possible. Celui de

IV et V lui est égal à condition de laisser hors cause la chaleur

circulant dans le régénérateur.
6. Les rendements de II, III, VI dépendent des valeurs

exigées pour le travail extérieur. Leurs maxima ne
correspondent cependant pas avec les maxima du travail.

7. De tous les cycles fondamentaux c'est donc VI qui est
le moins favorable tandis que I présente les plus grands
avantages. Le rôle prépondérant du cycle de Carnot en
thermodynamique se trouve ainsi parfaitement justifié.

Exemple numérique. — Nous nous bornerons à donner un
exemple pour les maxima du travail extérieur que l'on peut
obtenir avec les cycles fondamentaux. Supposons que le corps
destiné à évoluer selon chacun des cycles soit 1 gramme d'air
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atmosphérique dans les conditions initiales de 0° centigrade
et 1 atmosphère de pression. Les températures extrêmes
sont choisies être 0° et 100° centigrade. On trouvera dans
le tableau ci-après pour chaque opération les températures
aux quatre angles, indiquées en degrés centigrade (t au lieu
de T), le travail Q en grammes-calories et le rendement.
Nous avons commencé par calculer le maximum de Q pour
les cycles II, III et VI qui sont seuls à en présenter. Le plus
élevé de ces maxima se trouve être 1,8 cal. ; pour les cycles
n'ayant pas de maximum fini du travail, le calcul a été effectué

en supposant comme travail prescrit à effectuer cette
même valeur de 1,8 cal. Remarquons enfin que pour le cycle
VI on a encore calculé le cas du maximum de rendement.

Cycle. 4) % Travail. Rendement.

I Ca mot 100° 0° 1,8 0,27

II adiabatique-isochore o o o 46° 0° 46° 1,3 (max) 0,14

III adiabatique-isobare. 100° 46° 0° 46° 1,8 (max) 0,14 <

IV isotherme-isochore 100° — 0° __ 1,8 0,27

régénérateur. q 16,9
Y isotherme-isobare. oo o — 0° — 1,8 0,27

régénérateur. q — 23,8

VI isochore-isobare 100° 46° 0° 46° 0,534 (max) 0,0259
100° 42° 0° 50° 0,530 0,0261 (max)

11. Veïllon (Baie).

SUR UN CAS DE DISCONTINUITÉ

1. — M. Darboux a écrit, au début de son important
mémoire sur les fonctions discontinues1 : « Bien des points que
l'on regarderait comme évidents, ou que l'on accorderait dans
les applications de la Science aux fonctions usuelles, doivent

1 Annales de l'Ecole Normale, 1875.
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