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bruit, mais je le recherchais. Ainsi je suis souvent monté en
omnibus, sans avoir de but déterminé, parce que la trépida-
tion bruyante, le brouhaha, venaient 2 mon aide pourachever
une solution. ’ |

C’est a cette faculté de m’abstraire au milieu du bruit que
se rattache I'utilité de la musique pour mon travail. Que de
fois suis-je allé au concert sans y percevoir le plus petit mor-
ceau de musique, mais j’y travaillais trés bien.

Voici a4 ce propos un souvenir absolument précis. Dés la
premiére année de mon professorat je n’ai voulu employer
dans mon enseignement que des démonstrations géométri-
ques; mais je ne trouvais pas celle concernant la trace de la
surface d’ombre d'une ellipse éclairée par un cercle.

Un jour, fatigué par cette recherche et désireux de changer
le cours de mes idées, jentrai au Théatre lyrique ou on
jouait la Traviata. Les premiéres mesures de l'orchestre
arriverent seules a mes oreilles et I’obsédante question me
reprit. En sortant du théatre, sans doute la musique aidant,
je possédais la solution désirée, mais je ne connaissais nulle-
ment la Traviata ! |

On voit par ce qui précede, que jai lout simplement tra-
vaillé selon ma nature. A ‘

Chacun agitde méme . . . aussi je doute beaucoup que ma
méthode de travail puisse modifier celle de n’importe qui.

UNE LECON DE THERMODYNAMIQUE

Sur LEs CycrLeEs REVERSIBLES.

La notion du cycle réversible fut particulierement féconde
pour la thermodynamique. Elle servit de point de départ
pour établir le principe de Carnot, appelé aussi le second
principe de la théorie de la chaleur. En raison d’une pareille
importance I'exposition du cycle réversible dans I'enseigne-
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ment doit nécessairement faire I'objet de beaucoup de soins,
et c'est a ce point de vue.que nous croyons utiles les déve-
loppements qui vont suivre. Nous y fitmes (‘ondmts au cours
de lecons sur la thermodynamique.

Ainsi que le fait déja observer Crausius!, chaque cycle
réversible est susceptible d’'une décomposition en une quan-
tité de cycles de Carnot infiniment étroits, que nous nom-
merons élémentaires, et qui sont toujours limités par deunx
portions d'isothermes comprises entre deux adiabatiques voi-
sines. Or cette décomposilion d’un cycle quelconque en cy-
cles élémentaires n’est pas la seule que 'on puisse imaginer ;
il y en a au contraire six différentes qui s’offrent a ’esprit,
comme nous allons tout de suite le rappeler. La raison qui
conduit a choisir le cycle de Carnot est que celui-ci jouit de
propriétés tout a fait spéciales, particulierement en ce qui
concerne le rendement, de propriétés, disons-nous, qui en
font le plus avantageux de tous les cycles élémentaires. Le
but que nous nous proposons ici est donc de passer en revue
les cycles élémentaires typiques et fondamentaux afin de re-
connaitre en quoi ils different entre eux, et de mettre par
cela méme bien en évidence la supériorité du cycle de Car-
not. Cette étude peut se faire par les procédés les plus élé-
mentaires de 'analyse mathématique. |

Les six cycles fondamentaux.

Nous désignerons par ¢, p, T, le volume, la pression et la
température absolue d’'un corps, par ¢, , ¢, ses deux chaleurs
spécifiques. Nous pouvons faire passer le corps de quatre
maniéres différentes, d’un état initial (indices 0)a un état final
(indices 1) ; rappelons ces transformations ainsi que les équa-
tions qui s’y rapportent, la lettre Q représentant la quantité
de chaleur mise en jeu dans chacune d’elles. Le lecteur ima-
ginera la représentation graphique de Clapeyron dans chaque
cas, exécutée avec le diagramme des volumes et des pres-
sions.

! CrLAustus, Die mechanische Wédarmetheorie, Vol. I, p. 92.
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. Transformation isochore : v = const., p et T variables.

ﬁ_%; Q= ¢, (Ty— Ty .
La ligne figurative est l’isochore, une droite paralléle a
axe des pressions supposée perpendiculaire.
2. Transformation isobare : p = const., v et T variables.
o T

= = ; — T, —T) .
. VO r[\ b Q Cp( 1 0)

La ligne figurative est l’zsobare, une droite parallele a
I’axe des volumes, imaginée horizontale.

3. Transformation isothermique : T = const., ¢ et p va-
riables.
2 — 2o (loi de Mariotte]; Q= RT log £9 = RT log 2* ,
Yo Pt P Yo

ou R désigne la constante individuelle du gaz, lorsqu’il s’agit
d’un corps a l'état gazeux. La courbe figurative est liso-
therme, une hyperbole équilatere avec les axes des volumes
et des pressions comme asymptotes. .

4. Transformation adiabatique : v, p et T sont variables et
la quantité de chaleur mise en jeu est nulle. On a ici les re-

lations de Poisson :
Coh—1

T F et AT
n=G) =@ 2=0)
ou % est le rapport entre les deux chaleurs spécifiques. La
courbe représentative est l‘adiabatique, sorte de courbe hy-
perbolique, comprenant I'isotherme a titre de cas particulier
lorsque £ = 1.
En combinant maintenant deux a deux ces quatre modes

de transformation pour en faire des cycles, on obtiendra les
- six cycles suivants :

Cycle I isotherme-adiabatique (Carnot).
Cycle II adiabatique-isochore.

Cycle III adiabatique-isobare.

Cycle IV isotherme-isochore.

Cycle V isotherme-isobare.

Cycle VI isobare-isochore.

- o




170 ‘ H. VEILLON

Les diagrammes figuratifs sont des quadrilatéres. Suivant
'angle auquel elles se rapportent, les valeurs de ﬁ, v, T, se-
ront affectées des indices 0, 1, 2, 3. Nous allons maintenant
démontrer qu’il existe entre ces douze quantités (pression,
volume et température a chaque angle) trois relations fort
simples et générales, applicables a chacun des six cycles
fondamentaux. :

On peut envisager avec ZEUNER'®les courbes isochores,
isobares, isothermes et adiabatiques comme cas particuliers
d’une courbe trés générale, nommée courbe polytropique du

type :
pv" = const.

m désignant un exposant arbitraire, et la constante étant dé-
terminée par les conditions initiales au départ. En particulier
m — o donne l'isochore, m — 0 l'isobare, m — 1 I'isotherme,
m =k 'adiabatique. Dans le cas ou £ > 1 I'adiabatique tombe
avec plus de rapidité que I’hyperbole équilatére ; c’est le cas
le plus commun. Chacun de nos cycles pourra donc étre con-
sidéré comme limité par deux courbes polytropiques possé-
dant 'exposant commun m et par deux autres avec un expo-
sant également commun, mais différent, n.

Supposons maintenant les points 0 et 2 connus, c’est-a-dire
Vo, Pos Y2, P2 donnés, nos quatre polytropiques pourront
s'écrire :

m n

py=py

pvn :Povn ’
0

m __ m

PV =P%

n __ n
pV — ])2&'2 *

Fig. 1.

1 WEYRAUCH, Grundriss der Wdrmetheorie, vol. I, p. 54,
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En combinant la premiére et la quatriéme de ces équations
nous obtiendrons les valeurs des inconnues v et p a 'angle 1,
soit ¢, et py. La combinaison des deux autres équations four-
nira les valeurs de ¢ et p a l'angle 3, soit vs et ps. Une fois
ces valeurs calculées formons les produits ¢,¢5 et pyp; on trou-
vera les intéressantes et fort simples relations :

"1"3 o "0 "’ . (1)

P1Ps = PoPa (2)

Passons maintenant aux températures et on verra que 1'on
peut établir une relation absolumentsemblable. Les équations
de Poisson fourniront, en y substituant m (oun) a & :

» ] —1
T, /v m T, /v m
11\0 —_— . ('—; s rlw, e ’Ta
En les multipliant terme par terme et en tenant compte
de (1) on trouve en effet : |

Ty Ty = ToTs . (3)

Nous exprimerons ce résultat en disant que dans tout cycle
élémentaire le produit des volumes, des pressions et des tem-
pératures absolues, suivant une diagonale, est constant.

Passons maintenant a I’étude des six cycles typiques fon-
damentaux. Nous les imaginerons toujours parcourus de telle
facon qu'un observateur, marchant sur le contour, ait la sur-
face a sa droile, les angles se succédant dans lordre 0, 1,
2, 3, 0. La chaleur empruntée a la source chaude sera alors
supérieure a celle cédée a la source froide et la machine
aura fournt un travail extérieur. Nous désignerons toujours
par T, la température la plus élevée, et par T, la plus basse
que 'on rencontre en parcourant le cycle, tandis que T, et
Ts, s’il y a lieu, seront les températures intermédiaires. En
outre Qi, Q:, Qs, Qs seront les quantités de chaleur mises en
jeu enire lescoins O et 1, 1 et 2, 2 et 3, 3 et 0 du diagramme.
Enfin Q sera le travail extérieur fourni par la machine, et
pour fixer les idées, nous supposerons cette derniére étre
formée par l'unité de masse de la substance, par exemple




172 \ H. VEILLON

par 1 gr. d’air. Nous considérerons comme quantités données
les températures extrémes, T, et T;, ainsi que le volume et
la pression dans 'angle correspondant a I’état initial. Or ces
quatre quantités données ne sufliront pas a la solution des
problémes, comme on verra, et il-faudra toujours avoir re-
cours au choix d’une cinquiéme que nous nommerons la
constante arbitraire. Lies inconnues a chercher se compose-
ront des volumes, pressions et températures aux autres
angles du diagramme, ainsi que de toutes les quantités de
chaleur mises en jeu et enfin du rendement. Nous appellerons
ce dernier H dans

ol
' le cycle de Carnot
ety dans les autres.
Cyclel,isotherme-
adiabatique. (Car-
not). — Donné :
()0 b} pO ) r-I~‘0 [} T2 L) ar-
bitraire ¢,. — Cher-
ché : o1, V5, D1,
/)2, p3 .
l Q v, p 1, Nous disposons
3 . , .
Fig. 2. de.s cinq équations
sutvantes :
. 12
isotherme : =il y
Yo P1
k—1
k—1 . -k -
D 1 1,
adiabatique : (‘-—1> = 2, (}iz> g
. Vs 10 ! ‘ Iy
générale : V1Vg == ¥o¥y, - P1Ps = Popa -
Le calcul donne les résultats suivants :
| 1 o i
o, F—1 | . T
i == V2 f) 3 == Vo T,
Angle 1. < Angle 3.
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; S
Angle 2. Py == roPo 1—'{
Vo 0
Q; = RT, log i , Q; = RT; log 1 ,
: f'o 1)

1

: o /T 1 ; T
Q = R(T, — Ty 1og[,—2<,—ﬁ> ] , H=1-—-22.
: vo \'To Ly

L’équation pour Q permet de constater, et cela est tres
important, que pour une valeur délerminée de l’arbitraire
¢, il ne résulte qu'une seule valeur pratiquement possible
du travail fourni Q, et que vice-versa pour une valeur pres-
crite de Q il n’existe qu'une solution pour v, .

L’équation pour H n’offre lieu a4 aucune remarque sinon
qu'elle exprime le fait bien connu que le rendement ne dé-
pend que des deux températures extrémes des sources. Nous
formulerons donc la régle: Une machine réversible évoluant
une fois suivant un cycle de Carnot entre les températures
Ty et Ty peut fournir n’importe quel travail extérieur avec un
rendement invariable ‘ne dépendant que de ces températures.

Les formules trouvées permettront en outre d’effectuer le
diagramme représentatif soit pour une valeur donnée de la
quantité arbitraire o, |

. v p T
soit pour wune valeur o Pl
prescrite de Q. 0T
- Cycle II, adiabatique- | adiabarg L
isochore. — Donné: v,, Q.
r . . —>
_Ppo, To, Ty, arbitraire : .
w
Ti. — Cherché: o, p:, §_ 2,
p2 . l)3 3 'I‘S . p %
Nous disposons des
. , i . v p T,
cinq équations  sui-
vantes :
% psz
Fig. 3
isochore : P2 — £3 ;
’ P1 Iy
k—1

k
\v k—‘ e 14 Bt
adiabatique : <_o> = ,1—1- , <]il> — ,11 3
'y Iy . Po ) Lo

_ gé.nér‘ale N p1p3 = Popz p '.Firl‘g b, TOT2 8
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Le calcul fournit les résultats suivants :

1
-

—

‘ (1‘o> T,
[ 35 [ o Da —— —
1 0 I, P Po 11
Angle 1. . Angle 3. . ”1‘
5 k—1 Pa ,0 >
.[‘1 rl
,. pl :PD ;—l“;

TR
Angle 2. Pr = po ———
k1
0

14 Al rgv "l‘ [4 b} L2 ABR gy ryy
QA-—CVHO——13)——(\»-:1:2“1—]2)i Qz——-—-c"(ll_lz)
1

rl‘l

— g
Fo

Q=co. —111—1 (To — Ty (Ty — Ty ¢ n=1
Ici les choses se passent tout différemment que dans le
cycle de Carnot. Pour une valeur donnée de 'arbitraire T, il
n’existe qu'une seule valeur du travail extérieur QQ, mais si
vice-versa nous prescrivons une valeur déterminée au travail
extérieur (Q il en résultera deux valeurs distinctes pour la
premiére température de passage T,, car 'expression pour
Q est du second degré en T,. Mettons-la sous la forme :

1 — (To + Ty — 9.> Ty ToTe =0 ;
Cy.
il en résulte immédiatement que les deux valeurs distinctes
de la premiére température de passage obéissent aux condi-

“ . . , ’ ”
tions suivantes, si nous les désignons par T, et-T,
TT =TT,
1 1 0 2

Ty s 40 58] Q
Lo+ =T+ T, — =

A chacune de ces températures de passage dans l'angle 1,
correspond une température de passage dans 'angle 3, nom-
mons-les T, et T, on trouvera pour celles-ci les conditions
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identiques, savoir :

’\, r\”____r\ mn ...
1 =T 4 T .

Cy

De ces deux syslémes il résulte :

V\,r\” — V\"\’I
»1111 - 1313 »
'V, "‘” __r\' r\”
41 =T, 4+ T, .
d’ou l'on tire immédiatement

'l" — ’1‘” , 2

1 3

r \,, r ‘\’

' =T . )
1 3

Reportons notre attention maintenant sur la formule qui
exprime le rendement. Celui-ci dépend de la température de
passage Ty, sera par conséquent dépendant de laquelle des
deux valeurs T, ou T, on choisit pour obtenir le-travail pres-
crit Q. Appelons 1’ et »” ces deux valeurs on verra sans
peine qu'elles satisfont a la condition fort élégante :

(1—a)(1 —un") =,

ou bien: |
M=)l —2")=1—H.

Rappelons enfin que le complément du rendement & I'unité
se nomme le coeflicient de perte et nous pourrons formuler
le résultat ainsi :

Une machine réversible parcourant un cycle du type Il
entre les températures extrémes T, et T. pourra fournir un
travail extérieur prescrit Q de deux maniéres différentes. Les
températures de passage Ty et Ts seront égales, mais interver-
ties dans les deux cas. Les rendements seront toujours infé-
rieurs a celut de Carnot mais le produit des coefficients de
perte dans les deux cas sera égal au coefficient de perte dans
le cycle de Carnot. C |

L’équation du second degré en T, permet d’approfondir
encore la différence entre le cycle qui nous occupe et celui
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de Carnot. On peut rechercher la valeur de T: rendant Q
maximum. A cet effet il suffit de poser :

aQ [T, B
a‘r—(T‘ '“1)‘0’

d’ou il résulte que letravail extérieur devient maximum pour
la valeur particuliére

Tl F— '1‘3 j— ‘/'1'0“[_‘2 .

Cette valeur de (Q est elle-méme :
Qmax p— CV(VTO - ‘/Tz)z *

Désignons enfin par z le rendement relatif a ce cas, on
trouve :

-;F ' F 4
z::l——-\/;rz ou bien: 1 —z =1 —H.
0 ,

Ce résultat peut s’énoncer ainsi: Le cycle du type II ne
peut fournir entre les températures extrémes 1, et T, qu’un
certain maximum de travail extérieur, et cela d’une seule
maniére. Les deux températures de passage T, et Ts sont
égales a la moyenne geométrique des températures extrémes.
Le rendement, toujours inférieur a celui de Carnot, est alors
tel que le coefficient de perte est égal a la racine carrée du
coefficient de perte de Carnot. ~

On peut enfin établir une intéressanterelation entre le dia-
gramme pour Q,,. et les deux diagrammes fournis par la
double solution du probléme lorsque Q est supposé affecter
une autre valeur (plus petite). |

En calculant les coordonnées des angles nous trouvons

pour Qu.: : -
'V ’ __T—' s e
T.\k—1 . Ty
\ — \/ <1_0> ‘ po = po \/ T

Angle 1« Angle 3.

i
T, \ £—1 o AT
Pr = Po \/<T2‘> Fo = ¢/ To'Ts
X
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Pour une autre valeur de Q les formules générales pour
les angles écrites au commencement de ce paragraphe four-
niront deux tableaux analogues. L’un s’obtiendra en rempla-

cant dans les formules générales T, etT; par T, et T,, Pautre
N r ” R
en remplacant ces mémes lettres par T, et T, . Supposons ces

deux tableaux écrits et désignons les V‘llelll‘s correspon-
dantes par :

! /4 ! 14 r /4
2 1)1’ 171 i ]')2’ ]]2 ! Ps' Ps

Nous trouverons tres aisément :

ST T
=/ =V

i:)OLlr les Angles 1. - pour les Angles 3. ¢
?]71: ‘/plp; ; 2 Iy = ‘/l

pour les Angles 2. 2= l/p;p: :

Et enfin pour la température de passage T, dans le cas de

Qm;x ’

! /4
T :l/""
1 11]1

c’est-a-dire : Les volumes, les pressions et les températures
dans les angles du diagramme pour Q.. sont les moyennes
géométriques des quantités correspondantes dans les angles
similaires des deuxr diagrammes pour toute autre valeur
de Q.

En poursuivant encore on trouvera que :

Il —z=¢y(1 —2)1—2"

c’est-a-dire : Le coefficient de perte pour Qe est la moyenne
géométrique entre les coefficients de perte dans les deux cas
de la solution correspondant a une autre valeur de Q.

Telles sont les considérations qu'il faut faire pour s’assu-
rer de la supériorité du cycle de Carnot sur celui du type II.
Bien qu’'un peu longues nous ne les croyons pas inutiles.

Cycle III, adiabatique-isobare. — Donné: o, p,, T,, T, ar-
bitraire : T.. — Cherché: o,, vz, 03, ps, Ts .

L’Enseignement mathém., 11¢ année; 1909. , 12
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Nous pouvons nous dispenser d’effectuer le calcul, tout
lQ‘ ‘ se passant comme
R dans le cycle II. En
particulier toutes les
conséquences restent
les mémes. Remar-
quons seulement que
latempérature la plus
élevée T, doit étre
appliquée a I'angle 1,
%P1, ng %RL  Ja plus basse T, a
Iangle 3.
On aura de nou-
veau cinq équations pour déterminer les inconnues, dans
les valeurs de Q., Q; et Q figurera ¢, au lieu de ¢, ; enfin

v R

isobare

Fig.

4
g. 4.

i

2

; T L
dans la formule du rendement - sera remplace par

I T,
Cycle IV, isotherme-isochore. -— (Principe de la machine a
régénérateur de Stirling). — Donné :-0,, p,, Ty, Tz ; arbi-
traire : v;. — Cherché: p., p:, ps.

Ce probleme n’offre que trois inconnues et on ne dispose
en effet que de trois équations : |

YRk
) 1,
tsochore : L el
P1 l0
) @’
isotherme : LG : 21 Q,
Vo Pl g —
P
générale :  pyps = pops .
- oypl
l Q” Y pszy
Fig. 5
Le calcul fournit les solutions :
0 - T,
Angle 1 :  pr = po o Angle 3 : ps = p, T
4 1

Poto Tg

g T,

Angle 2 ;' p, =
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Q; = RT, log :_1 L Q= o (Ty — Ty)
0

N

rey “1 rm r"/

Q3 —_— ng log “"" . Q2: CV(J-O—— 1;)
0

Q = R (Ty — Ty) log > .
o

Pour le travail extérieur le cycle IV est pareil a celui de
Carnot ; a chaque valeur de ¢, il ne correspond pratique-
ment qu’'une seule valeur de Q, et vice-versa une valeur quel-
conque prescrite de Q peut s’obtenir d’une maniére unique
par le choix convenable de ¢,. |

La différence d’avec le cyele de Carnot se trouve dans le
“rendement. Celui-ci serait théoriquement :

c’est-a-dire toujours inférieur a H. Mais les quantités Q. et
Q, sont égales entre elles; nous les avons désignées par g.
Or c'est ici que le régénérateur entre en fonction; apres la
moitié du parcours il a recu ¢ et a la fin du parcours en-
tier il a rendu ¢. Cette quantité ¢ n’entre donc pas effective-

ment dans le rendement, car elle n’est empruntée a aucune
des sources. Le rendement doit alors s’écrire

n ) o rlwz
== o u
Q:
Dans ces conditions on voit donc que le cycle IV peut four-
nir la méme chose que celui de Carnot, mais cela &4 la con-

dition expresse que l'on dispose d’un régénérateur parfait.
Notre but étant d’éta-

blir la comparaison o pQT“‘ lQl
entre tous les cycles,
nous avons été obli-
gés de relater ici ces Q
choses bien connues
du reste.

Cycle V, isotherme-
isobare. — (Principe -
delamachine d’Ericc- B | l Q

v p 1,

isobare

Fig. 6.
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son.) — Donné : o1, p,, Ty, Ts; arbitraire p,. — Cher-
ché :v,, va, vs. |

Ce cycle se comporte vis-a-vis du précédent exactement
comme le III par rapport au II, et cela nous dispensera de
tout nouveau commentaire. Dans les formules ¢, sera rem-
placé par c,.

Cycle VI, isobare-isochore. — Donné : Doy ¥ , To, T:; arbi-
traire T,. — Cherché: v, , pi, Ts. |

On dispose des relations :

» , T
isobare : L o P
t'o 11
. P1 Ty
isochore : s e
- Po Iy
générale : T, Ty = T, T, .
Solution du probléme :
T T
Angle 0 : Yo == ¥4 T: Angle 2 : Py = po Tj ,
T
44ng,l€ 3 .' ’1‘3 - .'L‘_ﬁ N
Iy
Q1:(,( '——‘[‘1), Q‘-—((11—‘12)
Qs = cp(la e Tl Q, = cv(To — Ty,
Q= (cp — ¢, (T — Ty + Ty — 1),
\3: 4 l Q. v,
isobare
o, zlQ,
— :5_ e
E
\6 Png 1 Q3 \g p1T3
Fig. 7
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Pour le rendement on trouvera facilement : !
(¢, — ¢,) (To — To) (Ty — Ty
To— T + ¢ (17 — Ty

1
= g —
1 c,P(

~ |

Ces expressions pour Q et n sont fort élégantes, mais la |
présence simultanée de ¢, et de ¢, en rend la discussion un |
peu compliquée. En premier lieu nous voulons démontrer %
que le rendement 5 est ici toujéurs inférieur a H du cycle de
Carnot. On y parvient en recherchant la valeur de la tempé-
rature arbitraire de passage qui rend » maximum et en cal-
culant ensuite ce maximum lui-méme. Ecrivons dans ce but : |

rJ—\ r1‘ . rl«.z L

A ) 0 1 1
P ¢ . er rlx
P 01

Lt + 1
- I'l"z Vl 2 5 fl‘ rl\
— + e, 1T Gt

et formons ensuite I'expression :

dn .
;{T’l T

Comme dans ce calcul nous n’aurons usage que du numé- ‘
rateur, nous nous bornerons a l'indiquer seul. On trouve :

numérateur = ¢, (1,1, — 2T, T, T, + T,71,)
— ¢, (TO ’l‘j — 2T0 T1 T2 -+ TO l:> ;
numérateur — cpTg(To — Ty — ¢, To(Ty — To?® .
En égalant a zéro cette expression, on trouve :
Ty — T4 - \/CVTO
T, =T, = Yo

équation linéaire en T, dont la solution fournit la vqleur
cherchée de T: qui rend » maximum :

[0\/(, Ty + T \/( lo
\/C 12 + \/ C 10 .
La température de passage dans I'angle opposé est alores :
Ta\/c, To 4 To}/c, T,
\/Cp To 4 \/CVT2

T, ¥ max =

T3, m max —
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Enfin paur le rendement lui-méme on trouvera 'expression

Tmax — — e Y
/p r11 CV r[\
c. —c¢ 0 + ¢c —¢c¢
1% v p

qui montre que le dénominateur est certainement > T,, d'ou
il résulte que:

'l‘o I '1‘2 .
Nax << T ou bien Ny << H .

Remarquons qu’on peut aussi reconnaitre que »___ est non
seulement inférieur a H, mais aussi a » de n'importe quel
autre cycle. i

Nous pouvons donc formuler: Le rendement du cycle VI
reste toujours inférieur a celui de U'un quelconque des autres
cycles. ,

Reste encore a calculer () pour le cas du maximum de »;
on trouve

(To — Ty)?

) — — ¢

R7')max (CP ¢) - Cp + ¢,

10 + & ‘/rlwovl\z + 7112
CpCv

Nous pourrions chercher a calculer les coordonnées des
angles du diagramme correspondant, mais nous voulons
nous en abstenir.

Revenons a la formule générale pour Q. Elle peut étre
envisagée comme étant la différence des deux expressions
correspondantes dans les cycles II et IIl. Les remarques
faites la-bas s’appliqueront immédiatement ici. Il doit exister
une valeur maxima de Q, elle est:

Quax = (¢, — ¢,) (V' To — ¢/ Ta)* |

et la température de passage T: obéit a la méme condition.
Pour une autre valeur prescrite de Q on retrouve deux solu-
tions, 'une avec les températures de passage T, et T,, 'autre
avec T et T, qui obéissent a des relations écrites sous Il et
I11, a cette différence prés, que (¢, — ¢,) remplace ¢, resp. c, .
Enfin ce qui a été dit sur la relation existant entre la solution
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Qumax et les deux solutions pour une valeur quelconque pres-
crite de Q reste la méme chose ici. Nous pouvons donc nous
dispenser de refaire les développements, mais nous remar-
querons pour terminer que le rendement relatif au cas Qumax
devient ici assez compliqué tout en étant susceptible d'une
forme assez ¢légante, il est : '

>

—c) VT — VT;_
_[7 [% CPVFE + CV‘/,1‘2 .

= =

Résumé. — 1. Les cycles I et VI occupent des places spé-
ciales et different essentiellement; les cycles 1I et III d'une
part, IV et V d’autre part forment deux groupes dont le
premier présente des analogies avec VI et le second avec I.

2. Les cycles I, IV, V permettent d’obtenir un travail ex-
térieur aussi grand que l'on veut, tandis que II, III, VI ne
permettent jamais de dépasser un certain maximum.

3. Une valeur prescrite du travail extérieur ne peut s’ob-
tenir que d’une seule maniere avec I, IV, V, mais de deux
manieres différentes avec I, I1I, VI.

4. Pour 11, 11, VI les solutions répondant au maximum
du travail sont en quelque sorte les moyennes géométriques
de chaque solution ambigué répondant a toute autre valeur
inférieure du travail. \

5. Le rendement de I est le plus élevé possible. Celui de
IV et Vlul est égal a condition de laisser hors cause la cha-
~leur circulant dans le régénérateur.

6. Les rendements de II, III, VI dépendent des valeurs
exigées pour le travail extérieur. Leurs maxima ne corres-
pondent cependant pas avec les maxima du travail.

7. De tous les cycles fondamentaux c’est done VI qui est
le moins favorable tandis que I présente les plus grands
avantages. Le role prépondérant du cycle de Carnot en ther-
modynamique se trouve ainsi parfaitement justifié.

Exemple numérique. — Nous nous bornerons a donner un
exemple pour les maxima du travail extérieur que l'on peut
obtenir avec les cycles fondamentaux. Supposons que le corps
destiné a évoluer selon chacun des cycles soit 1 gramme d’air
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atmosphérique dans les conditions initiales de 0° cenligrade
et 1 atmosphere de pression. Les températures extrémes
sont choisies é&tre 0° et 100° centigrade. On trouvera dans
le tableau ci-apres pour chaque opération les températures
aux quatre angles, indiquées en degrés centigrade (¢ au lieu
de T), le travail Q en grammes-calories et le rendement.
Nous avons commencé par calculer le maximum de Q pour
les cycles II, III et VI quisontseuls a en présenter. Le plus
élevé de ces maxima se trouve étre 1,8 cal. ; pour les cycles
n’ayant pas de maximum fini du travail, le calcul a été effec-
tué en supposant comme travail prescrit a effectuer cette
méme valeur de 1,8 cal. Remarquons enfin que pourle cycle
VI on a encore calculé le cas du maximum de rendement.

Cyecle. ty t A £ Travail. Rendement.

I Carnot. . . . . . .. 100°| — | 0° | — |1,8 0,27
II adiabatique-isochore [100°| 46°| 0° | 46°|1,3 (max) | 0,14
II[ adiabatique-isobare. {100°| 46°| 0° | 46°| 1,8 (max) |0,1%

IV isotherme-isochore . {100°| — | 0° | — [1,8 0,27
régénérateur . . . g = 16,9

V isotherme-isobare. ."|100°| — | 0° | — [1,8 - 0,27
régénérateur. . . q — 23.8 .

VI isochore-isobare . . [100°] 46°| 0° | 46°{0,534 (max)| 0,0259

‘ 100°| 42°{ 0° | 50°]0,530 0,0261 (max)

H. VeimLrox (Bale).

SUR UN CAS DE DISCONTINUITE

1. — M. Darboux a écrit, au début de son important mé-
moire sur les fonctions discontinues!: « Bien des points que
l’on regarderait comme évidents, ou que 'on accorderait dans
les applications de la Science aux fonctions usuelles, doivent

L Annales de V'Ecole Normale, 1875,
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