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LA SPHÉRIQUE NON-EUCLIDIENNE

Chacun sait aujourd'hui, comme faisant partie des connaissances

générales issues de la création de la Géométrie non-
euclidienne, que la Trigonométrie sphérique est entièrement

indépendante du postulat des parallèles. Nous nous
étonnons qu'on se soit attardé à donner une preuve de ce qui
nous est maintenant si évident.

Néanmoins, le paragraphe le plus difficile dans toutes les
Recherches géométriques sur la Théorie cles Parallèles, de

Lobatehefski, est-il peut-être le n° 35 qui conclut ainsi :

Donc la Trigonométrie sphérique est indépendante de ce que,
dans un triangle rectiligne, la somme des trois angles est ou
n'est pas égale à deux angles droits. »

C'est ainsi que se termine de même le chapitre XI de ses
Nouveaux Eléments : « Par conséquent, les équations des

triangles sphériques demeurent les mêmes, que l'angle de

parallélisme soit supposé constant ou variable. » Dans le
paragraphe 26 de la Science absolue de l'Espace de Bolyai,
la Trigonométrie sphérique est établie indépendamment du
postulat des parallèles.

Dans son espace non-euclidien, Bolyai a trouvé une surface

uniforme F dont la Géométrie propre est euclidienne ;

sa droite, (ou géodésique) est le cercle limite L. Lobatehefski
a trouvé la même surface, et donné à F le nom d'horis-

phère, à L celui d'horicycle.
Mais, pour si profond que fut leur génie, ils n'ont jamais

mis en doute cette assertion, que trois points collinéaires
étant donnés, un et un seul est toujours compris entre les
deux autres. Comme conséquence, la droite était pour eux
d'essence non fermée, et de longueur infinie. Ainsi, ils ne
placèrent pas la Géométrie caractéristique de la sphère au
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98 GEORGE-BRUCE HALSTED

même rang que celle de l'horisphère, et la Géométrie non-
euclidienne de l'espace fini demeura insoupçonnée d'eux.

Ni l'un ni l'autre n'eut la conception que l'espace entier
pouvait être fini; le cercle limite, de longueur infinie, était
bien considéré par eux comme la droite de Thorisphère,
mais le grand cercle fini ne leur apparaissait pas comme la

droite de la sphère.
Il était réservé à Riemann d'émettre cette idée que la ligne

droite, quoique illimitée, pouvait bien n'être pas nécessairement

infinie, et il en est résulté une nouvelle Géométrie
non-euclidienne, à laquelle nous donnons aujourd'hui son
nom.

Beltrami a montré que dans l'espace euclidien il peut exister

une surface dont une partie est capable de représenter
une partie du plan de Bolyai : c'est la surface à courbure
négative constante, la pseudosphère. A la vérité, il est impossible

de représenter le plan entier de Bolyai au moyen d'une
surface de Beltrami privée de points singuliers ; néanmoins, en

désignant sous le nom de pseudosphères les surfaces de
révolution qui ont pour méridienne une tractrice, ou courbe des

tangentes égales, nous pouvons dire que leur Géométrie
caractéristique est bolyaienne.

Récemment, cette manière de voir a été confirmée et
complétée par le beau Théorème de Barbarin : Chacun des

trois espaces euclidien, bolyaien, riemannien renferme des

surfaces à courbure-constante dont les lignes géodésiques ont
les propriétés métriques des droites des trois espaces. Ces
surfaces sont :

1° Les canaux ou surfaces équidistantes d'une droite;
quand l'équidistance devient infinie, ils se transforment en

horisphères : (Géométrie caractéristique, euclidienne).
2° les pseudosphères, (Géométrie caractéristique,

bolyaienne.)
3° les sphères (Géométrie caractéristique, riemannienne).
En 1879, Killing a rendu claire la distinction entre

l'espace riemannien et ce qu'il a appelé alors sa forme polaire,
aussi désignée pas Klein sous le nom A"espace simplement
elliptique. Cette forme, pense Killing, a entièrement échappé
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à Riemann, comme elle avait aussi échappé à Helmholtz, on le

sait, lorsque, aux environs de 1876, il reproduisait encore ce

vieux mais inexact théorème que, dans un espace à courbure

positive constante, deux lignes géodésiques qui se rencontrent

généralement doivent nécessairement avoir deux points
communs. Klein appelle sphérique un espace à courbure
positive qui jouit de cette propriété pour le distinguer, par
opposition, de l'espace simplement elliptique, dans lequel le

postulat de détermination de la droite par deux points ne
souffre aucune exception.

Killing est aussi le premier qui a montré que, en outre des

espaces euclidien, bolyaien et simplement elliptique, l'espace
sphérique ou anciennement riemannien est le seul qui puisse
dans son entier se mouvoir librement sur lui-même. 11 y a en
abondance des exemples où la libre mobilité des figures n'a
lieu qu'autant que les dimensions de ces figures ne dépassent
pas uncertain degré; il y a des séries d'espaces topologique-
ment discernables et qui en des parties limitées ou simplement
connexes sont euclidiens, bolyaiens, simplement elliptiques.
D'ailleurs il est prouvé aujourd'hui, en ce qui concerne les
surfaces à courbure positive constante, auxquelles la
Géométrie riemannienne s'applique, qu'à part la sphère, il
n'existe pas d'autre surface fermée de cette sorte. La sphère
est la seule surface fermée, à courbure positive constante,
et exempte de singularités1.

Tout cela accuse avec une grande intensité l'importance
de l'étude de la surface sphérique : Sphérique à deux dimensions,

Sphérique pure, Sphérique intrinsèque, Sphérique
riemannienne, Sphérique doublement elliptique, Sphérique
non-euclidienne. Heureusement, même dans l'éducation
générale, une place a été réservée à ce nouveau personnage.
Tous les théorèmes de ce qu'on nomme la « Géométrie
solide )> des Ecoles ayant trait seulement à la surface de la
sphère, tous ceux que l'on obtient par l'usage du postulat
des parallèles en tirant des lignes à travers le globe qui,

1 Voir par exemple Hilbert, Grundlagen der Geometrie, p. 172-175; Liebmann, Eine neue
Eigenschaft der Kugel, (Gott. Nachrichten) 1899, p. 44-54; Lütkemeyer, Ueber den analytischen
Charakter der Integrale, Gött., 1902; Holmgren, Sur les surfaces a courbure constante. Comptes
rendus, 1902, p. 840-843.
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clans la Géométrie euclidienne, est à l'intérieur de la sphère,
considérée en fait comme la couverture de ce globe, et par
conséquent comme entité géométrique à trois dimensions,
étendue d'une infinité de manières dans trois directions,
tous ces théorèmes, dis-je, ne sont en réalité que des
propositions se rapportant à cet être plus simple et diversement
fini qu'est la sphère, n'ayant aucune relation de dépendance
avec la droite, le plan, l'espace euclidiens. 11 est donc
parfaitement évident que ces théorèmes doivent être entièrement
développés au moyen des seuls axiomes qui caractérisent la

sphère.
D'ailleurs, il n'est pas tout à fait inutile d'avoir recours à

cette conception ordinaire qui consiste à faire de la sphère
une enveloppe; en effet, pour employer la terminologie de

notre intuition euclidienne, si nous détachons d'un globe la
surface qui le recouvre, tout autre surface sur laquelle nous
pouvons appliquer la première par flexion simple sans extension

est une surface doublement elliptique, une surface à

courbure positive constante, avec la même Géométrie propre,
et la notion vulgaire du libre mouvement des figures peut y
subsister; toutefois, cette surface n'est plus exempte de
singularités, car il lui en est née une quelque part.

Pour éclaircir en langage plus ordinaire le sens des
propriétés intrinsèques de la sphère, prenons le cercle, c'est-à-
dire la courbe fermée qui peut glisser et se mouvoir
entièrement le long d'elle-même. Elle apparaît sur le plan euclidien,

bolyaien, ou riemannien avec des propriétés intrinsèques
identiques; mais, à considérer son rayon, elle se différencie
sur chacun des trois plans. La circonférence du cercle est
égale, sur le plan euclidien, au produit du rayon par 2tt, ou
2îtR; sur la sphère elle est moindre que ce produit, et sur la

pseudosphère elle est plus grande. Or, ce sont précisément
les propriétés intrinsèques de la sphère que nous avons besoin
d'étudier. Puisqu'elles sont entièrement indépendantes du

postulat des parallèles, la Sphérique la plus simple doit être
non-euclidienne.

La notion familière que les étudiants ont de la sphère
comme enveloppe d'un globe, sous son vieil aspect eucli-
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dien, est aussi un avantage qui, d'accord avec tous les

besoins que nous avons d'introduire dans l'étude de la

Géométrie de nouvelles voies, décide en faveur de la Sphérique
intrinsèque à l'encontre d'une planimétrie simplement
elliptique, avec son plan unilatère sur lequel nous pouvons si

étrangement passer d'une face sur l'autre sans le traverser.
Dans la Sphérique, nous avons des matériaux familiers à

présenter sous un nouveau jour, avec de nouvelles méthodes

grâce auxquelles il sera acquis qu'on peut les obtenir aussi

comme conquêtes analogues faites dans des domaines moins
connus.

Quand, au lieu d'établir les théorèmes sur les angles polyèdres

et de les transporter par section dans la Géométrie
sphérique, nous cherchons à réaliser les théorèmes des angloïdes,
en les considérant comme découlant déjà des propriétés les

plus simples de la sphère, nous mettons cette théorie en
pratique. Combien est-il important, combien est-il instructif de

mettre en lumière les axiomes fondamentaux qui donnent
par la logique pure toutes les relations des figures sphéri-
ques, et d'en voir surgir dans son entier développement le
système familier des théorèmes qui constituent depuis si

longtemps la Géométrie sphérique
La vieille ligne droite, l'ancien grand cercle se dissipent,

s'évanouissent, et à leur place nous trouvons la rede l, à

laquelle s'applique maintenant l'ancienne définition de la

ligne droite, «une ligne traversant l'espace entier de sorte
qu'une partie quelconque de cet espace située le long d'une
portion de cette ligne puisse venir coïncider avec chacun
des côtés d'une autre partie quelconque. » En termes
vulgaires, la recte ne dévie ni à droite ni à gauche tant que l'on
ne quitte pas la sphère.

Mais le mouvement ne peut jamais être regardé comme
notion fondamentale, et ce sont en réalité les axiomes qui

1 Note du traducteur. M. Bruce Halsted a employé ici le terme de Straightest qui est le
superlatif grammatical de l'adjectif anglais Straight signifiant droit ou droite. Dans
l'impossibilité de trouver en français un mot équivalent à ce néologisme, nous avons pris la liberté
de le créer, ce dont nous nous excusons, en francisant le mot latin qui a la même signification.

Voir l'ouvrage de M. E. Halsted, Rational Geometry, chap. XV, Pure Spheries, p. 212
-et suiv.
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créent l'espace. Il y a une entité gométrique au-dessus même
de la recte, le point; c'est la relation entre la recte et le point
qui différencie la Sphérique de la Géométrie simplement
elliptique. « La droite,» dit Mansion, « est la ligne
déterminée par deux quelconques de ses points suffisamment
rapprochés. » Mais que signifient ces mots : « suffisamment
rapprochés »

Ce n'est que vers 1877 que j'ai pu résoudre ces difficultés,
en établissant le système de la Géométrie sphérique sur la
base d'axiomes qui n'expriment que les relations fondamentales

entre points et rectes. L'emploi du terme recte pour
désigner la droite sphérique est une garantie de clarté. Le
mot ligne a toujours été employé pour désigner le genre
dans lequel la courbe représente l'espèce, et depuis quelque
temps nous avons vu apparaître des courbes si déconcertantes

et des lignes si étonnamment compliquées que la
notion générale de ligne ne pourrait plus désormais trouver sa

place dans les Eléments. Points et rectes sont sciemment
acceptés comme éléments auxquels des postulats spécifiques
donnent la précision requise. Pour éviter d'avance toute
controverse, on ne doit réserver le mot définition que pour
exprimer une possibilité de substituer un terme ou un symbole

simple à des termes ou à des symboles plus compliqués.

Au lieu de la définition de Mansion, nous aurons alors ce

que je préfère appeler un axiome d'association :

Ii A chaque point de la sphère en correspond toujours un et

un seul qui avec le premier ne détermine pas une recte.
Nous appellerons ce second point l'opposé du premier.
Après trois nouveaux axiomes ajoutés au précédent1, nous

arrivons à une question vraiment fondamentale et très
complexe, c'est-à-dire à l'arrangement d'une sorte d'éléments
avec l'autre.

Le mot « ordre » est si commun que nous n'avons pas cons-

1 Ces trois axiomes sont développés dans l'ouvrage de M. Hat sted, Rational Geometry
p. 212-213 sous les énoncés suivants:

12 Toute recte qui passe par un point passe par so?i opposé.
13 Deux poinls non opposés d'une recte la déterminent complètement, et sur toute recte il y a

au moins deux points non opposés.
T* Il y a au moins trois points non situés sur une même recte.
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cicnce de sa complexité. Quelle différence y a-t-il entre AB
et BA Cette notion ne renferme-t-elle pas un troisième,
peut-être même un quatrième sens? De deux instants dans
la durée, l'un peul-il venir d'abord et l'autre ensuite sans que
nous concevions également l'idée d'un passé Peut-il y avoir
un présent et un futur sans la conception d'un passé Pour
atteindre le futur, ne faut-il pas traiter le présent comme un
passé ?oEn mettant de côté leur relation avec un segment ou
un vecteur, qui n'est en vérité que le temps même, existe-t-
il quelque différence entre le couple de points A, B et le couple

de points B, A Etant donnés non des éléments, mais
des points, et trois points seulement, peut-il y avoir entre
ces trois points une relation nommée «ordre»

Lorsque les trois points A, B et C appartiennent seuls à

uncertain parcours, on peut dire qu'ils ont un ordre ou n'en
ont pas selon que le parcours est ouvert ou fermé. Quand
ils ont un ordre, on peut avoir

ABC avec CBA
ou

ACB avec BCA
ou

BAC avec CAB

suivant la nature du parcours.
Or, il existe une Géométrie particulière, purement qualitative,

qui ne fait usage ni de la notion de droite ni de celle de
plan, mais seulement des notions de ligne et surface. On l'a
appelée Analysis situs. L'ordre y subsiste pourtant.

N'est-il donc pas possible que, sans rien perdre de sa
généralité, l'ordre soit subjectif à l'idée de droite? En ce cas, il
sera plus simple et plus certain, plus exact et plus commode
de nous dégager de l'idée générale d'ordre pour arriver à

une idée plus spécifique que nous entendons appliquer
uniquement aux points d une droite ou d'une recte. Nous exprimons

avantageusement cette idée par le terme nouveau de
situation entre (betweenness).

En 1899, Hilbert a mis en lumière l'importance .du mot
entre pour désigner l'arrangement des points d'une même
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droite1. Son argumentation a été extrêmement simplifiée par
mon élève R.-L. Moore qui a prouvé d'une façon élégante
que le dernier de ses axiomes était inutile et surabondant2.
Mais le problème des points d'une reete est beaucoup plus
difficile. Trois termes ne peuvent pas avoir un ordre circulaire,

et dire que de trois points d'un cercle chacun est entre
les deux autres, c'est dénaturer le sens du mot « entre. »

De là cette remarque inusitée, qu'un point quoique ne
partageant pas une recte en deux segments, en fait pourtant un
seul morceau sur lequel les points sont rangés dans un ordre
naturel, c'est-à-dire que les mots « suit, » « précède, » « se

trouve entre » leur sont applicables.
La grande valeur pratique de la « situation entre » est que,

dès qu'on sait qu'un point est entre deux points, il est par
cela même situé sur une recte particulière donnée. Mais si
nous acceptons le terme «entre » dans le sens dénaturé dont
il a été question plus haut, dire que B est entre A et C ne
signifiera absolument rien, puisque quand A et C sont
opposés, tout autre point de la sphère est avec eux sur
une même recte, et, dans le sens dénaturé, entre eux.

11 en résulte donc que les tout premiers de nos axiomes
de situation sur la sphère, pour spécifier comment on doit
appliquer le terme « entre » aux points d'une recte tracée
sur cette surface, doivent être les suivants :

Iii A uctin point a est entre deux opposés.
Ceci est complété par :

Ha A neun point n'est entre son opposé et un troisième point
quelconque.

IL Entre deux points quelconques non opposés il y a
toujours un troisième point.

En poussant ce système jusqu'au bout, nous avons une
«situation entre» dont on peut faire emploi, par exemple,
dans la définition suivante :

Deux points A et B non opposés sur une recte a forment
ce que nous appelerons un segment, désigné par AB ou BA.
Les points situés entre A et B sont dits points du segment

1 Fondements de la Géométrie, axiomes de l'ordre.
2 Voir: Rational Geometry, appendix I, p. 253-256.
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AB ou situés à C intérieur du segment AB. Les autres points
de la recte a sont dits situés hors du segment. Les points
A et B sont les extrémités du segment.

Les axiomes du groupe suivant concernent la congruence.
Les géomètres inexpérimentés croient que Ton peut épuiser

brièvement ce sujet de la manière que voici :

Définition : Les figures géométriques qui peuvent être

transportées l'une sur l'autre par mouvement sans déformation

sont dites congruentes
Théorème. Un segment est congruent à lui-même retourné.
Démonstration. Le point A peut-être appliqué sur le point

B, et la direction AB appliquée sur la direction BA; alors le

point B tombe sur le point A, car s'il en était autrement, la

partie serait congru ente au tout.
Mais ce raisonnement est entièrement inadmissible. Définir

la congruence par le mouvement rigide est faux et trompeur,
car la notion de mouvement rigide enveloppe, renferme et
emploie l'idée de congruence. Nous devons, au contraire
baser le concept de mouvement sur l'idée de congruence,
asseoir la notion du mouvement sur les axiomes de

congruence.

Un homme dont on a dit : « Ce fut de beaucoup le plus
eminent Américain de la période coloniale, soit que nous
considérions l'influence de ses travaux et de ses opinions sur
ses contemporains dans son propre pays, et leur lointaine
diffusion dans les autres, soit que nous ayons égard à la
survivance de prestige et d'autorité qui perpétue encore son
nom et sa mémoire, » Jonathan Edwards, qui mourut président

de Princeton, s'exprime ainsi :

« Le mouvement est l'ensemble des positions successives
d'un corps dans toutes les parties immédiatement contigues
d'une distance quelconque, sans que ce corps continue à

demeurer pendant un temps quelconque dans aucune d'entre
elles. »

Le substratum géométrique du mouvement est ainsi la
préexistence d'une série de figures congruentes. Donc, le
mouvement d'un corps rigide suppose préalablement la
congruence.
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De plus nous ne devons pas employer l'idée importune de

«direction.» Sur le plan, cette idée même suppose la théorie
entière des parallèles. Sur la sphère, deux rectes n'ont
jamais la même direction puisqu'elles ne sont point parallèles,
et pourtant elles ont toutes deux la même direction
puisqu'elles joignent un même point à un même point. On ne
gagne rien en convenant d'appeler direction un rayon. De telle
sorte que la congruence, dont l'idée va être précisée par des
axiomes, doit précéder le mouvement. Mais justement ici
l'on peut faire une simplification inattendue et encore
insoupçonnée.

Dans son premier axiome de congruence, (Uli) Hilbert
énonce explicitement ceci : Tout segment est congruent à lui-
même, cest-à-dire que l'on a AB AB. Cet axiome est aujourd'hui

superflu, ainsi que l'était l'axiome HU de Hilbert. C'est
une proposition démontrable. La démonstration suivante est
due à R.-L. Moore.

Axiomes de congruence.
III 1. Si A diffère de B et A' diffère de C il y a sur le

rayon A' C un point et un seul B' tel que AB A!Bf
III 2. Si AB A' B' et A' B' A" B" on a AB A" B"
III 3. Si B est entre A et C et B' entre A' et C et que

AB A' B', BC B7 C on a AC A'C
Lemme. — Si B et C sont sur le rayon AD Br et C sur le

rayon A' D' et que AB A' B' et AC A! C B étant
différent de C B' est différent de C

Démonstration. D'après l'axiome de situation, l'un des

points B ou C doit être entre A et l'autre point ; admettons

que ce soit B Alors il y a en vertu de III 1 un point C" tel
que B7 se trouve entre A' et C" et que l'on a BC — B'C"
Mais, de III 3 on tire également AC A'C77 et comme
par hypothèse AC A'C7 il en résulte d'après III 1 que CI est
confondu avec C" Puisque B' est entre A! et C" C" diffère
de B7 ; clone C' diffère de B'

Théorème. — AB est congruent a AB
Démonstration. Si AB est un segment quelconque, il y a

d'après III 1 un point B7 du rayon AB tel que AB AB7

et un point B" du même rayon tel que AB7 AB77 De
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AB AB' et de AB' AB" nous déduisons donc, en vertu
de III 2 AB AB" Il en résulte, d'après III 1, que B"
est confondu avecB'.

Puisque AB' AB" nous avons alors AB' AB' en
même temps que AB AB' et comme d'après le lemme,
si B' différait de B B' différerait de B' ce qui est impossible,
B' coïncide avec B Donc enfin AB est congruent à AB

Cette démonstration est extrêmement instructive; elle fait
voir jusqu'à quel point est justifié le bannissement du mot
axiome de la Géométrie rationnelle. Ce n'est qu'en raisonnant

de la sorte que l'on parvient à établir entièrement ce

qu'est en réalité une preuve géométrique, et que l'on arrive
à une compréhension parfaitement précise de ce que les
axiomes contiennent actuellement. Il vaudrait toutefois
mieux, dans un Traité didactique élémentaire, écarter
quelques-unes de ces très délicates et laborieuses démonstrations,

et en exprimer les résultats sous forme de postulats
non nécessaires, mais commodes.

Nous définissons maintenant l'angle comme l'ensemble de
deux rayons issus d'un point commun; nous posons alors
l'axiome :

III* D'un côté donné d'un rayon donné il y a un et un
seul angle congruent à un angle donné.

Ensuite, au lieu de formuler comme axiomes de congruence
les deux propositions que voici,

llla Deux angles congruents à un même angle le sont
Vun à l'autre, et,

III* (Euclide I, 4)

Nous prouvons ces axiomes comme des théorèmes en
définissant la congruence des angles dans les mêmes ternies
que celle des segments et admettant :

III5. (Euclide, I, 8) Si A,B et C ne sont pas sur une même
droite, ainsi que A', B' et C, si C est entre B et D et C entre
B' et D' et que l'on ait AB Af B' BC B' C' CA C'A'
et BD je B' Dr, on a aussi AD A'D'

Eh lui-même, un couple de points est non seidement dénué
d'ordre, mais même ne possède aucun sens. Au contraire,
un couple de points pris sur une recte, c'est-à-dire un seg-
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ment de cette reete a un sens, et la congruence Aß ~ BAdoit
être démontrée ou admise comme axiome. On peut l'admettre
sans introduire aucune divergence entre le vieux concept de

superposition et le concept plus fondamental de congruence.
AB se superpose à BA par une demi-rotation autour de leur
point milieu commun.

Sur la sphère, un angle ou la figure formée par deux rayons
issus du même point initial, a un sens ; mais au moins
maintenant devons-nous faire une distinction entre les mots
congruent et superposable.

Le mouvement analogue de la demi-révolution d un
segment autour de son milieu est la demi-révolution d'un angle
autour de son rayon bissecteur. Quand deux figures du plan
sont symétriques vis-à-vis d'un centre, chacune peut être
amenée en coïncidence avec l'autre par une rotation de 180

degrés effectuée dans le plan autour de ce centre. Ceci
subsiste lorsqu'au lieu de « plan » on dit « sphère ; » un segment
de recte AB et son inverse BA sont de telles figures, elles
sont symétriques par rapport à leur commun milieu.

Quand deux figures sont symétriques par rapport à un
axe dans le plan, on peut les faire coïncider en pliant le plan
suivant l'axe, mais non plus par un glissement quelconque le
long de ce plan. Pour les amener en superposition, il faut
faire tourner l'une autour de l'axe de symétrie en effectuant
une demi-révolution du plan. C'est dire que pour cette
opération, il faut employer la troisième dimension de l'espace;
la congruence de ces figures est donc basée sur la propriété
qui fait que les deux côtés du plan sont également indiscernables,

et qu'un plan est entièrement superposable à lui-même
après retournement. Cette opération, qui consiste à plier le

long d'une ligne, ne peut trouver de place dans une Géométrie

strictement à deux dimensions ; et, puisque nous sommes

en Sphérique, c'est-à-dire en Géométrie à trois dimensions,

nous devrons dire que la surface externe de la sphère
étant convexe, tandis que la vface interne est concave, une
partie de cette surface, après avoir été retournée, ne viendra

pas se superposer à sa symétrique, mais seulement la
toucher en un point unique.
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Ainsi, deux figures qui sur ia sphère sont symétriques

par rapport à un axe ne peuvent pas être amenées à coïncider

: appelons-les désormais symétriques tout court, et

désignons-les par la notation |

Un angle sphérique et son inverse <!) (A, A) et <) (A, A) ne

sont pas symétriques par rapport à un centre et ne peuvent
être superposés.

Nous adopterons cette définition : Un angle est dit symétrique

d'un autre quand il est congruent à l'inverse de ce

dernier ; soit <) (A, A) | <) (c,u;) quand <) (A, /U <) (m, c).
Alors, de <3 (A, A) (A, A) il résulte <) (A, A) I <) (A,A)

Mais ces deux derniers angles ne sont pas su p er po sable s et

ne peuvent coïncider.
Pour ceux qui ont fait de la superposition idéale la base et

le critérium de la congruence, le fait qu'un angle sphérique
ne peut d'aucune manière être superposé à son inverse crée
une différence radicale entre leur conception de la Géométrie
sphérique et la conception familière de la Géométrie plane.

Un axiome de continuité pourrait nous aider à prouver la

proposition suivante : A Vintérieur de l'angle <i) (A, A) il y a

un rayon l et un seul tel que (A, A) (7, A; ; mais il
resterait à identifier ce rayon avec le rayon l! tel que <i) (A, t)
<5 (A,A). On pourrait décomposer quelques théorèmes, par
exemple celui-ci :

Théorème. Deux angles droits sont à la fois congruent s.

et symétriques.
Mais, puisque la congruence ne dépend en aucune façon

du concept subséquent de mouvement, rien de plus simple
que d'admettre <) (A, A) (A, A)

Les trois points qui déterminent un triangle n'ont ni ordre
ni situation entre, dans le sens spécifique, car il pourrait se
faire que deux d'entre eux eûssent un caractère propre et le
troisième un caractère différent; mais, en tant que triade de

segments, un triangle possède un Umlaufssinn, ou un sens
de permutation individuel.

Si la congruence des segments est liée à celle des angles
par un axiome des triangles, c'est-à-dire si elle est restreinte
aux triangles qui ont le même sens de permutation, cela ne
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nous donne pas la congruence des angles à la base dans le

triangle isocèle; pour y parvenir, il est nécessaire, en ce cas,
d'y ajoindre un ou deux axiomes de continuité.

Nous voyons ainsi qu'en outre de la symétrie d'espace à

une dimension impliquée par la congruence des segments
et des angles avec leurs inverses, il y a une symétrie totalement

différente d'espace à deux dimensions. Ceci n'est pas
généralement admis dans l'étude ordinaire de la Géométrie
plane, puisqu'un triangle peut avoir son tour de permutation
changé quand on le retourne sur lui-même dans l'espace à

trois dimensions. En Sphérique, ce retournement est impossible,

si bien que, quoique cette symétrie d'espace à deux
dimensions soit implicitement renfermée dans la non-indication

d'un sens de circulation pour les triangles, il est pourtant

d'usage de la signaler expressément en distiguant entre
les triangles congruents et les triangles symétriques.

Si cette distinction avait été faite plus haut nommément
pour les angles, nous aurions pu l'employer dans la définition

que voici : Deux triangles sont appelés symétriques
quand leurs côtés correspondants sont congruents et leurs
angles correspondants sont symétriques. Mais on obtient une
définition peut-être plus désirable en faisant prévaloir la

différence entre le côté droit et le côté gauche d'un angle.
Après les axiomes de congruence, nous n'avons plus besoin

des axiomes métriques, et, en fait de définition ou d'axiome,
nous voici bien débarrassés de cette phrase ambiguë : « La
ligne droite est le plus court chemin entre deux points ». A ce

sujet, voyez George Hamel : Ueber die Geometrien in deren
die Geraden die kürzesten sind. (Math. Annalen, Bd. 57,
1903).

Maintenant, pour ce qui est de la continuité, il semble
plus nécessaire de faire appel à cet axiome en Sphérique qu'en
Planimétrie ; en effet, par exemple, on peut facilement dans
le plan partager un segment en un nombre quelconque
demandé de parties; sur la sphère, au contraire, nous ne
pouvons nous passer d'un axiome de continuité même pour
démontrer qu'un segment donné admet un tiers, c'est-à-dire
que le tiers d'un segment donné existe.
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La question de la continuité demeure néanmoins épineuse,
et Hilbert lui-même n'a pas réussi à la traiter simplement.
Son Axiom der Vollständigkeit et son Axiom der Nachbarschaft

sont des morceaux grossiers dans sa belle et fine
mosaïque. Russell dit, (Principles of mathematics, p. 440) :

« Que l'axiome de continuité soit vrai au point de vue de

notre espace actuel, c'est une question que je ne vois aucun
moyen de résoudre. Car un tel problème doit être empirique,

et il serait tout à fait impossible de distinguer
empiriquement ce qui peut être appelé espace rationnel d'un espace
continu. »

Dans ma Rational Geometry j'ai traité la Sphérique non-
euclidienne sans l'aide d'aucun axiome quelconque de
continuité.

George-Bruce Halsted, Ecole Normale
de Greeley, Colorado.

Traduction de M. P. Barbarin, (Bordeaux).

CONSTRUCTIONS SYNTHÉTIQUES
RELATIVES A CERTAINES COURBES DU 3e DEGRÉ

ET DE LA 3e CLASSE

Dans divers articles antérieurs1 nous avons établi la géné-
ration des courbes provenant des formations synthétiques
que nous avions désignées sur le nom de :

Groupes du (n + l)c et du (n + p)e et

Groupes de la (n + l)e ede la (n + p)e classe.

Nous nous proposons actuellement de développer la
construction des tangentes, des points de tangence et des points
de coupe relatifs à ces courbes. Ces constructions dépendent

J>.\o7-U9B190T C R '11''"inet2 ''uillet 1906- ~ p. 455-462, 1906 et
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