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point quelconque de la conique, les droites S a, S b, Se, couperont
les côtés correspondants de ABC en trois points en ligne droite.

Quand on suppose la droite L rejetée à l'infini, on obtient ainsi
le théorème II de M. Pleskot.

Si en outre les points S et D sont diamétralement opposés sur
la conique, on obtient le théorème 1.

P. de Lepiney (Buenos-Aires)

Sur la résolution des équations quadratiques et cubiques, à l'aide
des fonctions circulaires et hyperboliques1.

1. — Supposons connus les premiers éléments de la théorie des
fonctions d'un variable complexe, et notamment les équations
qui définissent les fonctions hyperboliques et circulaires, l'argument

étant réel.
Comme exercice, on se propose souvent de résoudre les équations

quadratiques et cubiques. Habituellement on opère sur les
formules de résolution elles-mêmes ; mais il nous semble tout
aussi intéressant de partir directement de l'équation donnée : c'est
ce point de vue que nous cherchons à développer, dans cette
petite note.

Afin d'abréger, nous désignons par s la quantité ± 1 ; nous
laissons de côté le cas des racines égales ; enfin, nous supposons
que les lettres a, b, c, q et r représentent des quantités essentiellement

positives, différentes de zéro.
2. — Equation quadratique. — Il suffit de considérer la

suivante :

ax2 — bx -f- se — 0

que nous écrivons ainsi :

C'est une équation réciproque de forme normale. Soit

une des racines : ^ sera nécessairement l'autre.

1 L'Enseign. mathém. a publié en nov. 1900 (t. II, p. 443-447) un intéressant article de
M. Barbarin sur les fonctions hyperboliques dans l'enseignement moyen contenant aussi la
résolution des équations quadratiques et cubiques. — Voir également Essai sur les fonctions

hyperboliques, de C.-A. Laisant.
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Trois.cas peuvent se présenter.
Premier cas. — Si s est négatif, nous sommes en droit de poser :

pi t — e 'oh a —
^ 2 [/ ac

et l'on a immédiatement :

Deuxième cas. — Si f 1 et le rapport —>- 1, il est permis
d'écrire

a - — a
a

e T- g è

2 2 j/ßc
d'où

Troisième cas. — Si ^ 1 et rapport ^~/—, 1? il faudra poser

: t
«i —at

e A- e b
cos a =r —

2 2 j/flc '

d'où

«V^"=vl (cos a + i sin a)

Dans le calcul des racines l'on pourrait — nous ne disons pas
que le procédé soit très pratique — déterminer l'argument réel a

et les exponentielles e±a, au moyen des tables. (Consulter, par
exemple, les « Tables des fonctions cosinus et sinus », par Dr
Cari Burrau).

3. — Equation cubique. — 11 suffît d'étudier la suivante :

z%

En posant, avec Hudde,

z * H- y >

on est conduit à la résolvante

ru-t^=0.
admettant x* et y3 comme racines.
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Cette réduite peut s'écrire sous la forme, plus commode, à notre
point de vue :

1

2

v/-V 27

Cette forme, nous l'avons étudiée ci-dessus. Ici encore, il
faudrait distinguer trois cas, et pour chacun de ces cas, nous
trouverions des résultats bien connus.

Ainsi, par exemple, quand 1, nous poserons
1

2 r
Sh (* + 2 km) ——

V 2
1
27

d'où
Cf 4- 2 k TT f

+ v/"3 e

(X- o, 1, 2)

r -y/f<
a -f 2 Ar TT t

<7

Afin que le produit soit réel, il faut prendre la même valeur
de k, simultanément dans ces deux relations.

Nous trouverons finalement

=v (f a 2 kn i

la racine réelle correspondant à k — 0

Louis Casteels (Louvain).

Sur leg formules fondamentales des Combinaisons.

Nous nous proposons de montrer dans cette Note que l'on peut
obtenir les formules fondamentales des combinaisons en les
envisageant comme cas particuliers d'une propriété générale.

A cet effet nous allons d'abord démontrer le théorème suivant

sans avoir recours aux expression S Pn Cm et A m •

1. Théorème. — Etant donnés p nombres n4, n2, np tels que
ni + n2 4" ••• + np m le produit

G"2 c"8 ..GnP

ni + n% rt±+»i+ns + + np
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