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MÉLANGES ET CORRESPONDANCE

Sur les projections des droites perpendiculaires.

Extrait d'une lettre de M. Y. Martinetti (Messine)
à M. G. Loria (Gênes).

L'Enseignement mathématique a publié récemment trois Notes,
de MM. Lehr (T. IX, p. 119), Majcen (Id., p. 460) et Loria (T. X,
p. 141), sur la condition d'orthogonalité de deux droites
représentées par la méthode de Monge. A ces trois manières de
formuler la condition, on en peut ajouter une quatrième, qui, à ce

que je crois, est nouvelle; son énoncé simple et d'une application
facile. Elle peut être considérée comme la traduction graphique
de celte propriété bien connue : « lorsque deux droites sont
perpendiculaires entre elles, on peut par l'une d'elles mener un plan
normal à l'autre, et réciproquement ». En effet de cette proposition

on tire :

Etant données les projections orthogonales de deux droites, la
condition nécessaire et suffisante pour que deux droites soient
perpendiculaires entre elles est que les normales menées par les traces
de l'une d'entre elles (supposées déterminées, à distance fnie et
extérieures cl la ligne de terre) aux projections du même nom de
Vautre (supposées non perpendiculaires à la ligne de terre) se
coupent sur la ligne de terre.

Si l'une des droites considérées se trouve dans une position
générale, tandis que l'autre, sans être un rayon projetant, est parallèle

à un plan de projection ou située dans un tel plan, la condition

que je viens d'énoncer se traduit dans une autre généralement
connue. Dans les cas où cette condition cesse d'être applicable
il est aisé de la remplacer par un critère ad hoc particulier à

chaque cas ; si par exemple une des, droites est normale au
premier (second) plan de projection, l'autre droite devra être parallèle
au deuxième (premier) ou appartenir à ce plan ; si au contraire les
deux droites sont perpendiculaires à la ligne de terre, pour
qu'elles soient perpendiculaires entre elles, il faut que celle-ci
arrive par leurs projections sur le plan de profil. Si les deux
droites rencontraient la ligne de terre il faudrait mettre à la place
d'une d'elles une droite qui lui soit parallèle et appliquer ensuite
le théorème général.
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Etant données deux droites qui ne sont pas parallèles entre
elles, les droites qui sont perpendiculaires à toutes les deux passent

toutes par un point situé à l'infini. Leurs traces sur les plans
de projection se correspondent, par conséquent, dans une affinité
Si dont l'axe est la ligne de terre; le point correspondant dans Si
à un point quelconque P peut s'obtenir sans peine en appliquant

la condition exposée ci-dessus par le procédé suivant : si

a #2), b [bi7 b9) sont les droites données, on mène par P
les normales à ax, bx ; tie leurs points de rencontre avec la ligne
de terre on mène les normales à a2, &2 ; le point où elles se
coupent est le point cherché.

Je remarque en finissant que la plus petite distance entre les
droites a, b aura comme traces S1, S2 deux points correspondants
dans l'homologie Si ; et les droites qui projetant de S4, S2 les
traces du même nom de la droite a (ou b), se coupant sur la ligne
de terre, seront également des droites correspondantes en Si.
Cette remarque donne une construction, probablement nouvelle
et qui n'est pas plus longue que celle que l'on connaît, du
problème ayant pour but la recherche de la plus petite distance
entre deux droites a [ax, a3), b b3) (voyez la figure).
On trouve les traces S/ et S2' de a et les traces S/', S/ de b;
l'homologie Si relative aux droites a,b donne les points P',
P" correspondants de S/ et S/' et on les unit respectivement à
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S./ et S/ ; le point où se coupent ces droites est la seconde trace
S2 de la droite cherchée, tandis que la première est le point qui
correspond à S2 en 42 ~l

; ayant de la sorte les traces de la droite
cherchée, les projections s'ensuivent immédiatement.

30 juillet 1908.

A propos d'un article de M. Laisant sur les Propriétés d'un système

de deux triangles ou de deux tétraèdres.

Les élégantes propriétés étudiées par M. Laisant dans YEnseign.
Math. du 15 janvier 1908, me suggèrent le problème ci-après :

Etant donnés deux triangles ABC, DEF symétriquement
semblables,, ayant m : n comme rapport de similitude, trouver le centre

Menez ka parallèle à DF et la bissectrice AMN de l'angle akC.
Menez DM perpendiculaire à AMN. Prenez sur DM un point L tel
que LM : DL ~ m \ n et sur AMN un point N tel que

NA : NM m : h

Complétez le rectangle LMNO. 0 sera le centre et OL,ON les
axes de similitude.

En effet,
DL : LO — ON : N'A ;
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