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47% C. CAILLLER

comme le point culminant des mathématiques a 1'école. Mais il y
a un fort courant, aujourd’hui, en faveur d’'un usage précoce de
ce calcul. On n’a pas encore précisé a quel moment 1l peut étre
commencé, mais il est prouvé qu'une connaissance minime de dif-
férentiation et dintégration simplifie et généralise 1'étude de la
Géomeétrie analytique et de la Cinématique, sujets auxquels la tra-
dition assigne un rang antérieur.

C. Goorrey {Osborne,.

SUR LES CONGRUENCES DU TROISIEME DEGRE

§ 1. A propos d’un livre récent de M. G. ArNouxl
M. D. MiriManoFF? a présenté aux lecteurs de ce journal
quelques observations sur les congruences du troisiéme
degré et les conditions de leur résolubilité. On sait que la
détermination effective. des racines d’une congruence binome
s’effectue le plus souvent en calculant, dans la série des
puissances de la base, un terme dont le rang est assigné par
les propositions les plus simples de la théorie des nombres.
Comme on peut, par une transformation linéaire, ramener
I'équation du troisieme degré a la forme cubique pure, on
doit présumer que cette méme méthode, convenablement
~modifiée, permetira non-seulement de discerner les cas de
résolubilité de la congruence cubique, mais encore d’en
trouver les racines au moins dans la majeure partie des cas.
En développant cette idée, on reconnait aisément que la
théorie des congruences du troisieme degré peut étre ratta-
chée a celle des suites récurrentes du second ordre a échelle
de relation constante: la résolution se fait alors suivant une
marche de tout point comparable a celle donnée par Gauss
pour les congruences du deuxieme degré.

Un ancien mémoire de G. OLTRAMARE® conlient dans cetle

- Y Arithmeétique graphique. Introduction a Uétude des fonctions arithmétiques. Paris, 1906.
2 L’Enseign. Math., 1907, p. 381-384.
3 Journ. de Crelle, 1853, t. 45, p..316.




CONGRUENCES DU TROISIEME DEGRE 475

direction d’intéressants essais et un grand nombre de résul-
tats parliculiers. Mais cet auteur ne me semble pas avoir porté
laméthode au degré de précision et de simplicité qu’elle doit
recevoir pour devenir vraiment applicable, et ses théoréemes
sont restés peu connus. On me permetira donc de revenir
sur cette question aprés l'article de M. Mirimanoft auquel
celui-ci servira de complément. Les résultats précédemment
énoncés se présenteront d’ailleurs a nous d’'une maniere toute
naturelle. |

§ 2. — Commencons par rappeler succinctement les prin-
cipales propriétés algébriques etnumériques des récurrences
du second ordre. ,

Soient 7 et s deux nombres entiers premiers entre eux, «
..et b les racines de I'équation w? — /o — s = 0 donnant

a+b—=r, et ab— —s.
Nous supposons « et b inégaux, ou le discriminant
24 bs = (a — b)?£0.

La récurrence est définie par les termes initiaux uy, uy,
et par la loi de formation des suivants

Uyqoq == 11U, + su, 4 -

Onsaitquetoutes les solutions de celte équation aux diffé-
rences sont linéairement composées avec deux quelconques
d’entre elles; nous choisirons pour celles-ci les suivantes

’ n n
. .n Cn . . a — b
Tp=al AT, et gy = e

correspondantaux valeurs initiales.x, = 2, x, = r, et y, =0,
Yy, = 1. La seconde nous servira presque seule; la récur-
rencse corresp{?r;éda.nte 0.1, r,r% 4 s, ... Sera souvent repreé-
sentée par la «.’gﬁatlon [rys]. La premiére solution se raméne

y . . \:o fodre 5 .
d’ailleurs imniédiatement a la seconde a cause de la rela-
tion xn{yn = Yo .

L’identité

(am-i-1 5 l)m-{—l) ((Z”' - /)") — abh (“m o ['m) (an—-l . /}n——-l) _

(@ — b {am—|~u T l)ni-{—n) ’
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donne la propriété fondamentale

Ymdn = Ym+1Yn — a/)‘)‘m Yn—1, (1)
—YmYnt1 — alﬂ'n Ym—1. ‘ (2)
En y faisant m — 2. on retrouve la récurrence de défi-
nition |
J'n+2 = (a + bjyn—]-l - abyn ’
de méme, si l'on pose m = n ou m = n -+ 1, on aura les

formules de duplication

Yon =X (2‘7‘11—}—! - (a + {))yn) ’ , (3)
2 2 '
Yontr = Y41 — aby;, (3)

dont la premiére s’écrit aussi
Xp = Ypt1 — al)yn—l :

Par la méme voie on obtiendra les formules de triplication
qu’il convient de remarquer a cause de leur rapport avec
¢
les congruences du troisiéme degré; ce sont

Ve, = (@ 4 ab 4 By —B(a + b))y, + 3,0y )
Yang1 = yi-}-l — 3abyn+1yi + ab(a + b)yi ) (6)

2.3 12 = : -
-7‘311—{—-2 — azbz)‘n Oabyn-y:)z-{—! + (a + b)yjz—}—l T (’)

Observons enfin que 'ensemble des quantités z, = Yputq,
ou p et ¢ désignent des parametres fixes, tandis que n par-
court toute la série des valeurs entiéres 0, 1, 2, ... , autre-
ment dit la suite des quantités y prises de p en p a partir de
Yq, forme une nouvelle récurrence du second ordre dans
laquelle les quantités af et b” jouent le role assigné précé-
demment 4 « et & eux-mémes. En particulier, la série

Yo, ¥p - -"2;9 y e .Tnp 3 e

dont tous les termes sont divisibles par y,, a pour terme gé-

néral
a'? — b gp e gt P
| — —

a— b a— b a? — Lr

:.".p w o
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Cette suite Y,, Y, , ... avec les valeurs initiales Y, = 0,

Y, == 1, n'est autre que la récurrence & + b*, — a”0"].
~ Si D est le discriminant de cette récurrence, d celm de la
suite primitive [@ + b, — ab], on a

D — (af — bP)? d = (a — b)?*,

et par conséquent

: 2
D = dyp
§ 3. — Passons maintenant aux propriétés arithmétiques
des quantités y,, et rappelons que les nombres r =a + 0,
et s — — ab, ont été supposés premiers entre eux.

Dans cette hypothése tous les y, sont premiers avec ab.
Car x,_1 étanl entier, on voit par I’équation

Xy 4 =Jn " abyn——}

que tout facteur commun & y, et ab diviserait aussi 2,_1. Or
. — an——1 L bn—-—l — (a -+ b)n—-l — abE
n—1 — i — !

E désignant un entier. Le facteur commun supposé ne
saurait donc étre premier avec (@4 b), ce qui implique con-
tradiction. '
En second lieu, deux y, consecutlfs tels que ¥,, Ynt1, sont
premlers entre eux.
Car, puisque
Fnaa = (@ + by, — aby, .

tout facteur commun a ces deux quantités, étant premier
avec ab, devrait diviser y,_,, et ainsi de suite en retrogradant
Jusqu ay,=1.

Grace a cette double propriété la détermination des divi-
seurs communs a deux nombres ¥,,, ¥, n’offre aucune diffi-
culté ; nous allons voir que, ¢ désignant le plus grand com-
mun diviseur entre m et n, y, sera celui de y,, et y,.

En effet, en vertu des egalltes

Imdn — Ynt1Tm — abynym—‘l ’

Ym —— ym—-n—}-lyn - ab.rm——-nyn——l ’

U’Enseignement mathém., 10 année ; 1908. ‘ 32
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on voit que tout facteur commun a y,, et y, divisera ¥, et
Ym—n, dODC aussi Ymanp . « et 8 étant deux arbitraires. On sait
que ces derniéres peuvent étre choisies de maniére que
ma — nfs =¢. En outre y, est diviseur de y, et de y.; c’est
donc bien le plus grand commun diviseur cherché.

Déterminons, en troisiéme lieu, la forme des facteurs pre-
miers [ des y,. Observons que \/'d = a — b est, en général,
une irrationnelle algébrique qui disparait de la formule

I
Tn = %

—a" Va2 fab” 0 (8

Rien n’empéche dés lors, quand on cherche le reste de y,
selon le module /, de supprimer dans les expressions a” ou
b™ les termes, méme irrationnels, qui contiennent le module
en facteur. En d’autres termes, si @ et @’ sont deux entiers algé-
briques du domaine \/'d, quand @’ = a, on a aussi a'* = a™.

Distinguons plusieurs cas et remarquons qu’aucun des
facteurs / cherchés ne peut diviser b, comme on a vu plus
haut; ainsi‘aucun des nombres a et b ne peut étre divisible
par L.

. . e . . . r -
1° Si [ est diviseur du discriminant,onaa = b = 3 ; par

suite, le second membre de 'équation (8) donne
y, =0, (mod I)
et de méme, comme on voit aisément,

3'1" =0 et yl” =90. (mod Iv)

20 Si d est résidurquadrat‘ique de [, a et b sont réels
(mod /), différents entre eux, et tous deux différents de zéro.

On a donc
a1l = -l =1
par suite ,
¥ =0. (mod l)‘

3° Si d est non-résidu quadratique, @ et 6 sont des imagi-
naires de Galois dans le domaine /' N, N désignant un non-
résidu quelconque. Comme a et b sont conjugués

a-:m—f—n-t/w‘ b—=m—nN.




CONGRUENCES DU TROISIEME DEGRE 479
on aura ’
I—1
alEml+nll 2 t/N__—_‘b

et de méme 0 = a. Done a't! = b'+! = ab, par suite

Y =0. (mod )

De la résultent deux propriétés fondamentales.

Si M est un module quelconque, premier avec ab, et dé-
‘composé en ses facteurs premiers sous la forme

M=

il existera toujours des 7, admettant M comme diviseur.

On aura par exemple 7, = 0 (mod M), si n = ¢ (M), avec

W, |
(M) = A (I 4 e (I +¢)...;

on pose ¢ = 0, — 1, ou 4 1 selon que d est multiple de ¢,
résidu quadratique, ou non-résidu de ¢ ; autrement dit

—=(9)

Le fait a été déja établi plus haut pour e=0, puisque dans ce
cas (M) est divisible par [ et 1, aussi. Si e = == 1, on po-
sera ¢(M) = (= 1) M/, et ¥, = yi=1 Yo . Or le discriminant
Dde la récurrence Yy, étant égal a dyi_,, sera divisible par Z,
puisque y; est divisible : donc Y, sera divisible par‘ 1,
comme on vient de le voir, et y, le sera par /*. On prouve-
rait de méme la divisibilité par /%, "%,

St on nomme, en second lieu, diviseurs propres de y, ceux
qui n’appartiennent & aucun nombre ¥,  d’indice inférieur a n,
il est facile de constater que tous les facteurs premiers pro-
pres de y, sont contenus dans la formule

l=np £ 1 : (9)

le signe étant 4 ou — selon que d est ou n’est pas.résidu
quadratique de /. | S
En effet on a, par supposition, y, = 0 (mod /), mais aussi
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Yiz1 =0, et si [ 5= 1 n’était pas divisible par n, on aurait
Yy = 0, pour un nombre s < n, a savoirle plus grand
commun diviseur de n et / 7= 1. La démonstration n’est évi-
demment pas valable pour les facteurs premiers diviseurs
du discriminant ; un tel nombre / est diviseur propre de y,.
J'ajoute qu’on pourra, dans la recherche des facteurs
premiers, limiter souvent les essais exigés par la formule
9). Si, par exemple, 'indice n est impair, la formule de
P P
duplication '
. 2 by
-72/71—}-1 '—‘Jm+1 — @ om

montre que les facteurs cherchés admettent ab comme résidu
quadratique ; on exclura tous ceux qui ne vérifieraient pas
cette condition supplémentaire.

Observons enfin que si on a y, =0 (mod /), on aura a cause
de (2)

Yputq = Yn410q
et par conséquent
Ypntq * Yputg =g Vg - mod i

§ 4. — Aprés ces préliminaires, qui ne sont pas indispen-
sables mais jettent une vive clarté sur ce qui suit, venons a
la congruence du troisiéme degré

a* 4+ px+49g=0. ‘ (mod I > 3).

Nous adopterons, pour la résoudre, une marche analogue
a celle qui donne en Algébre la racine de I'équation cubique
et conduit a la formule de Cardan. Parmi les différentes
maniéres d’obtenir cette derniére, prenons la suivante.
J'écris la proposée sous la forme

2* — 3abx + abla + b) =0 , mod ) (40)

en déterminant a et b par la résolvante

~ P
2 _..1 e £
z + y4

dont il est aisé de trouver la relation avec les fonctions
cycliques. Si x,, x,, x, représentent trois racines hypothé-

0, (mod I) (11)
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tiques de (10), et « une racine de a* + « + 1 = 0 (mod /), on
trouve en effet facilement |

(2o + Y + «x5)® . 12
9

'z =

Les relations: entre les- racines et les coefficients de (11)

donnent encore , | ’
, . g |

abz—é—), a—-l—bE—Fq, (@ — b)? =

ip* + 2747
e a
Nous exclurons le cas ou la proposée serait binome, ou
p divisible par l. Si 4p® 4 27¢% = A était divisible par /, on
voit que a et b seraient congrus entre eux, chacun d’eux

3q . . )
valant — T, (mod /). Mais alors la congruence proposée ad-

mettrait cette méme racine, car on a,

I

a® 4+ pa + g = a? _ 3a’h 4+ ab(a + b) = ala — b)?
b® + pb + g = b® — 3b%a 4 ab(a 4 b) = b(a — b)®

11

0,
0.

La dite racine fonctionne, en outre, comme racine double,
et ce cas est le seul ot la congruence puisse posséder une
racine multiple, ainsi qu’on le démontre immédiatement.

Nous le laisserons encore de coté; il ne reste dés lors plus
que deux éventualités. Si 3A est résidu quadratique de /, a
et b sont réels et distincts ; si 3A est non-résidu, ce sont des
imaginaires congruentielles dans le domaine }/'N; dans ce
dernier cas nous élargissons le probléme en essayant de ré-
soudre la congruence dans le méme domaine de rationalité.
Remarquons que, quelle que soit la nature de a et b, les
P
3 2
supposées entiéres el sans facteurs communs, pufs’que, rets
étanl deux de leurs valeurs (mod /), la suite linéaire r» 4+ ml,
. qui est I'expression générale de la premiére d’entre elles,
contient une infinité de nombres premiers. Nous admettrons
donc constamment que 7 et s sont premiers entre eux.

Cela posé, et = désignant toujours une racine de (10), qui
ne saurait étre ni @ ni b, posons

. : 3 ‘
quantités @ + b ou — ?;I, ab ou — %, peuvent toujours étre

r—a -Ou x—‘-a——_ b')
x—0b"’ :1—“—’)”

Il

y
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substitution qui transforme la proposée en
| 0+ B+ 9y +9=0,
avec les valeurs suivantes des coefficients
= — (5 + pb+ q) = — bla — b)?,
— a® 4+ pa + q = ala — b)®

o

J :

7 = — 34®b + 3ab(b + 2a) — 3ab(a + b) =
g = 3al? — 3ab(a + 2b) + 3ab(a + b).

l l

La transformée est donc simplement

’ (mod l)

-]

i

SR

y
et sa résolution formelle donne pour x la valeur
x = — (ab)”® (a"* + by, (mod 1)

dans laquelle on reconnait la formule de Cardan. Il est, du
reste, préférable de prendre pour la solution 'ensemble des
formules

|l

a
7
; - a o
Nous poserons, pour abréger, A ==, et nous distingue-
rons maintenant quatre cas.

Premier cas. — Le module  est de la forme 3m — 1, 3A en
est résidu quadratique, A est réel. Alors, de la condition

ySm——? — 1 et de la congruence y‘°’ =

e [) m—1
=

puis, pour la seule racine de la proposée,

, on tire

SR

R L .
= S m—1 — :
a — b ym—-l
La suite auxiliaire y,, y,. ... est formée avec 1'échelle de
relation [@ + b, — ab]; on le voit, pour résoudre (10), il sera

inutile de calculer @ et 6. La formule de triplication (6) per-
met d’ailleurs de vérifier 1mmed1atement le résultat qu'on
vient d’obtenir. '
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Soit, comme exemple, & résoudre la congruence
2 —8x +8=0. (mod 521)

5

Onaici(a—b)2:5et<5——21

) — 1; ainsi la congruence n’a

qu’une racine, qui vautx =7, la récurrence ayant comme

Yis
— Ysss

échelle de relation [3, — 1]. On peut écrire aussi x =

les y étant calculés maintenant suivant la récurrence de
Fibonacci [1, 1]. Dans cette derniére supposition, on a,
comme on voit aisément, y,. = 0 (mod 521), et en employant
la réduction mentionnée a la fin du § 3, on obtient

Comme second exemple, considérons la congruence
2+ 3x —p=10; ~ (mod ! = 3m — 1)

: (P14 __
on suppose tou]ours< 7—)=1, et on a

ab = — 1 at+b=p (ae—b)zgp?—]-!f‘,

d’ou 'on conclut, m étant pairet m — 1 impair,

a3m _ ,)3m — (am . bm)3 + 3(am . bm) ’

a3m—3 . b3m——3 = ( m—1 bm—1)3 o 3(am-—1 . bm—l) ’

a
ou
Yam = (a - b)zyfn + 3-7.m ’

_ 2 3
Yam—z = (@ — by, 4 — 35,4 -

Mais, par suite des propriétés de divisibilité, ys,_s = 1,

: Y, :
Ysm—2 = 0, ysm—1 =1, y3» = p et enfin x = ~—=. On obtient
v m—1

ainsi le théoréme que voici.
Si p est un entier tel que p? + 4 soit résidu d’un nombre
premier [ — 3m — 1, chacune des congruences

x»¥4+3x—p=0,
(PP + 4" +3y —p=0,
(p* + 4)2* — 3z —1. =0,




484 | C. CAILLER

admet -une seuleracine (mod /), etl'onaenire ces trois racines
la relation ¥y = xz. On prouvera, au reste, facilement que ces
trois congruences se transforment!'une dans Pautre par sub-
stitution linéaire.

Deuxiéme cas. — Le module [ est de la forme 3m 4 1, et 3A

, . . 3A
en est résidu quadl*allqtle,(T) = 1: a et b sont de nouveau

réels ainsi que leur quotient A. Ce dernier devant étre résidu
cubique, la congruence ne sera résoluble que si A” =1, au-
trement dit si le nombre y, de la récurrence auxiliaire
[@a + b, — ab] est = 0.Quand cette condition est satisfaite, y
a trois valeurs qui se suivent cycliquement, et la proposée
aura trois racines.

Supposons que m ne soit pas divisible par 3, ou plus géné-
ralement, que I'indice n auquel appartient A (mod /) soit de
I'une des deux formes n = 3u == 1, 'identité

A%

-

—A ou A =2

¢

montre qu'une des valeurs de y sera, selon le cas,

- fa b\u
G el

Quant a x, une des trois valeurs qu’il peut prendre, sera
en conséquence

Y. Y,
n—3u—1. anbpl— o

’

y
n=—3u+ 1 x = e+l

Les deux autres racines ne s’expriment pas par la suite y,.
Soit, par exemple, la congruence

P Bx 4+ 3=0 ~ (mod 3001).

L’échelle de relation de la suite auxiliaire est [3, — 1], et
la condition de possibilité est y,,,, = 0 (mod 3001). Si on
substitue 4 [3, — 1], la récurrence [1, 1]. la condition devient
Yoo = 0, et elle est satisfaite, car on trouve déja y,, = 0.
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L’une des racines cherchées se présente en suite sous la forme

Si n était de la forme 3*(3y. 4= 1), et, par suite, / de la forme
34'm 4+ 1, les racines de la proposée ne pourraient plus s’ex-
primer en fonction de la récurrence auxiliaire: maison pour-
rait encore tirer avantage dela réduction ala forme monome.
En effet les racines 3 1!iemes o I'unité existent ici, et en dé-
signant par « 'une d’entre elles, différente de ['unité, on
conclut de A" = 1 l'identité A*¥=+! = &® et, par conséquent,
pour une des valeurs de ¥y

p— aA—‘u ou y = aﬂlAF ,
selon le cas.
Troisiéme cas. — Le module [ est de la forme 3m 4+ 1, 3A
. . 3
en est non-résidu quadratique, et <TA> — —1; a et b sont

des imaginaires de Galois de la forme r 4= s}/N; A est une
imaginaire de la méme forme. Nous avons démontré que
dans’la. récurrence auxiliaire [@ + b, — abj, le terme Yama
est divisible par /; ainsi on a

A3m+-2 =1 ou <£z->‘3m +3

Il
> R

b

m--1
Une valeur de y est donc y = <%> i ; elle donne pour x

la solution réelle

x = ab Im o Jam

)

ym—}-l o y2m+1

qu’on vérifiera facilement sur les formules de triplication (6)
et (7). '

Quant aux autres racines, elles sont nécessairement ima-
ginaires. En effet dans le cas présent les racines cubiques
de l'unité sont réelles; si donc x,, x,, x, étaient, la résol-
vante aurait deux solutions réelles a et b, ainsi que le dé-
montre 1'égalité (12).
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Prenons, comme exemple, la congruence

a8 4+ 3x—1=0 (mod 67).

La condition <T> — — 1 est satisfaite ; la récurrence auxi-

liaire est [1, 1]. On a donc, pour unique racine

=12 = 140 (mod 67).
e
Quatrieme cas. —- Le module / est de la forme 3m — 1, 3\
, - . 3 . .
est non-résidu quadrathue, ou (TA> — —1: a et b sont 1c1

encore des imaginaires congruentielles. Comme les racines
cubiques de l'unité font partie du domaine /N, il est clair
‘que y, et par suite x, a dans ce domaine trois racines ou
aucune. |

St x admet trois valeurs, une est réelle, puisque l'exis-
tence d'une racine imaginaire enlraine celle de sa conju-
guée; je dis que les deux autresracines serontaussi réelles.
Car six, désigne la racine réelle et x,, x, deux racines conju-
guées, et que « et «® soient de méme les racines conjuguées
de a® = 1, les quantités

X, + wxy + «’x, et o + ax, + oiay

seraient réelles, ainsi que a et b, en vertu de (12), ce qui
, . L /38 .
contredit ’hypotheése <T> = — 1.

La condition nécessaire et suffisante pour l'existence de

ces racines est donc que A soit résidu cubique (mod /) ou
21 : :

3 .. v, 3m2—32
que A — 1. Cette condilion s'écrit encore A>" " =1 ou

A" = AT Mais la récurrence auxiliaire donne Y
=0, ou A*”=1: donc enfin la condition de possibilité
prend la forme simple A™ = 1, soit ,, = 0 (mod /).

Une fois reconnue la possibilité de la solution, on procé-
dera pour trouver les racines comme il a été expliqué a l'oc-
casion du deuxiéme cas. Ainsi, si le nombre m, ou plus gé-
néralement, si l'indice auquel appartient A (mod /) est
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de la forme 3y == 1, on aura, pour 'une des valeurs de x

y Fotn
xE—ﬂ,’ ou x_:_al)y'.l__:_‘w .
Yu T Yeu 1

i

Toutes ces propriétés peuvent étre facilement controlées
au moyen des formules de triplication (6) et (7) et des théo-
rémes de divisibilité énoncés §§ 3. ’

Soit, comme exemple, a résoudre la congruence

-x3+3x—-1;—_‘_0. : (mod 47)

La récurrence auxiliaire est toujours [1, 1], et son discri-
minant 5 est non-résidn de 47. De plus y,, = 987 = 21 >< 47.
La congruence proposée a donc trois racines ; 'une d’elles
sera ‘

les autres sont 41 et 42.

C. CaLLer (Geneve).
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PREMIERE PARTIE.

1. — L’article intitulé « Parallélisme et translation recti-
ligne », publié dans le numéro du 15 septembre 1907 de la
Revue L’Enseignement mathématique (pp. 367-381), impose
de nouvelles définitions pour le parallélisme de droites et de
plans et par suite un nouveau procédé de démonstration des
propriétés qui les concernent. Nous nous bornerons a énon-
cer simplement les propositions dont la démonstration est
devenue tlassique et surtout celles qui sont relatives a la
perpendicularité d’une droite et d’un plan.

On est convenu d’appeler surface plane ou plan une sur-




	SUR LES CONGRUENCES DU TROISIÈME DEGRÉ

