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474 C. CAILLER

comme le point culminant cles mathématiques à l'école. Mais il y
a un fort courant, aujourd'hui, en faveur d'un usage précoce de
ce calcul. On n'a pas encore précisé à quel moment il peut être
commencé, mais il est prouvé qu'une connaissance minime de
differentiation et d'intégration simplifie et généralise l'étude de la
Géométrie analytique et de la Cinématique, sujets auxquels la
tradition assigne un rang antérieur.

C. Godfrey (Osborne).

SUR LES CONGRUENCES DU TROISIÈME DEGRÉ

§ 1. — A propos d'un livre récent de M. G. Arnoux1,
M. D. Mirimanoff2 a présenté aux lecteurs de ce journal
quelques observations sur les congruences du troisième
degré et Les conditions de leur résolubilité. On sait que la

détermination effective des racines d'une congruence binôme
s'effectue le plus souvent en calculant, dans la série des

puissances de la base, un terme dont le rang est assigné par
les propositions les plus simples de la théorie des nombres.
Comme on peut, par une transformation linéaire, ramener
l'équation du troisième degré à la forme cubique pure, on
doit présumer que cette même méthode, convenablement
modifiée, permettra non-seulement de discerner les cas de

résolubilité de la congruence cubique, mais encore d'en
trouver les racines au moins dans la majeure partie des cas.
En développant cette idée, on reconnaît aisément que la
théorie des congruences du troisième degré peut être rattachée

à celle des suites récurrentes du second ordre à échelle
de relation constante; la résolution se fait alors suivant une
marche de tout point comparable à celle donnée par Gauss

pour les congruences du deuxième degré.
Un ancien mémoire de G. Oltramare3 contient dans cette

1 Arithmétique graphique. Introduction à l'étude des fonctions arithmétiques. Paris, 1906.
8 L'Enseign. Math., 1907, p. 381-384.
8 Journ. de Crelle, 1853, t. 45, p. 316.
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direction d'intéressants essais et un grand nombre de résultats

particuliers. Mais cet auteur ne me semble pas avoir porté
la méthode au degré de précision et de simplicité qu'elle doit
recevoir pour devenir vraiment applicable, et ses théorèmes
sont restés peu connus. On me permettra donc de revenir
sur cette question après l'article de M. Mirimanoff auquel
celui-ci servira de complément. Les résultats précédemment
énoncés se présenteront d'ailleurs à nous d'une manière toute
naturelle.

§ 2. — Commençons par rappeler succinctement les
principales propriétés algébriques et numériques des récurrences
du second ordre.

Soient r et s deux nombres entiers premiers entre eux, ci

et b les racines de l'équation w2 — /&j — s 0 donnant

a. h — r et ab — — s

Nous supposons a el b inégaux, ou le discriminant

r2 + 4s (a — b)2 0

La récurrence est définie par les termes initiaux u{), ux,
et par la loi de formation des suivants

11

,i-H ~ run + SUn— 1 '

On sait que toutes les solutions de cette équation aux
différences sont linéairement composées avec deux quelconques
d'entre elles; nous choisirons pour celles-ci les suivantes

correspondant aux valeurs initiales. x0 — 2 r, et y0 0,

yt— 1. La seconde nous servira presque seule; la récurrence

correspondante 0, 1, r, r2 + s, sera souvent
représentée par la notation [r,s]. La première solution se ramène
d'ailleurs immédiatement È» la seconde à cause de la relation

xnyn y%n

L'identité

(«"<+' _ b"'+1, [(ln_,)U) _ ah [a,n __ (ö„_! _ _
I« — Al («'"+"
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donne la propriété fondamentale

y m-\-n J"1 - n m »—1 » ^
ymyn + \ ~ ah'nïm-l. (2)

En y faisant m 2, on retrouve la récurrence de
définition

J„4_2 (« + ft)y/l+1 — abyn ;

de même, si Ton pose m a ou m n -fi 1, on aura les
formules de duplication

j2» rw<2r«+! — + Ojj ' <3)

r2»+i =Jn+i — > (4)

dont la première s'écrit aussi

Xn ~ rw+i — ah'n-1 •

Par la même voie on obtiendra les formules de triplication
qu'il convient de remarquer à cause de leur rapport avec
les congruences du troisième degré; ce sont

y3n — (a2 + ah + ^ y'i ~~ 3(a + + 3J»Jre+l ' (5)

J3«+i r»+i — 3<%„+iy* + (» + 6bf». (6>

r3«+a aV/Xi— 3ah'njl+<+ (a + (7)

Observons enfin que l'ensemble des quantités zn yPn+q,
où p et q désignent des paramètres fixes, tandis cpie n
parcourt toute la série des valeurs entières 0, 1, 2, autrement

dit la suite des quantités y prises de p en p à partir de

yq, forme une nouvelle récurrence du second ordre dans

laquelle les quantités ap et br jouent le rôle assigné
précédemment à a et b eux-mêmes. En particulier, la série

Jo, rp y\p y'np •) —
dont tous les termes sont divisibles par yp, a pour terme
général

a»P _ b»P
__

aP _ f,P a»P _ f/'P _y"p~ a-h~a-b a'- ~ '
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Cette suite Y0, Yd avec les valeurs initiales Y0 0,

Yi — 1, n'est autre que la récurrence [ap + bp, — ap bp].

Si D est le discriminant de cette récurrence, d celui de la

suite primitive [a + b — ab], on a

D z=5 (aP — bP)2 d (a — h)2 y

et par conséquent
' D dJ'P •

§ 3. — Passons maintenant aux propriétés arithmétiques
des quantités yn, et rappelons que les nombres r a + b,

et s — ab, ont été supposés premiers entre eux.
Dans cette hypothèse tous les yn sont premiers avec ab.

Car étant entier, on voit par l'équation

— Jn - ah'n-2

que tout facteur commun à yn et ab diviserait aussi xn—i' Or

Xn_x — an~x + b11-1 (a + b)71-1 — abE

E désignant un entier. Le facteur commun supposé ne
saurait donc être premier avec (a-\-b), ce qui implique
contradiction.

En second lieu, deux yn consécutifs tels que yni yn+1, sont
premiers entre eux.

Car, puisque
rB+l — 0 + b)ïn — ah'n~l '

tout facteur commun à ces deux quantités, étant premier
avec ab, devrait diviser yn~i, et ainsi de suite en rétrogradant
jusqu'à y, 1.

Grâce à cette double propriété la détermination des
diviseurs communs à deux nombres ym, yn n'offre aucune
difficulté ; nous allons voir que,4 0 désignant le plus grand commun

diviseur entre m et n, yQ sera celui de ym et yn.
En effet, en vertu des égalités

7m-\-n yn-\-\ym rûm—1 '

y m ym—71+17/1 $ by m—tû n—1 '

L'Enseignement mathém., 10e année; 1908. 32



478 C. CAILLER

on voit que tout facteur commun à ym et yn divisera ym+n et

ym—ni donc aussi ymQL_np a et ß étant deux arbitraires. On sait

que ces dernières peuvent être choisies de manière que
ma — niS e. En outre y est diviseur de ym et de yn\ c'est
donc bien le plus grand commun diviseur cherché.

Déterminons, en troisième lieu, la forme des facteurs
premiers Z des yn. Observons que \/d a — b est, en général,
une irrationnelle algébrique qui disparaît de la formule

r» * + ••+ «'2 + >'n~x (8)

Rien n'empêche dès lors, quand on cherche le reste de yn
selon le module Z, de supprimer dans les expressions an ou
bn les termes, même irrationnels, qui contiennent le module
en facteur. En d'autres termes, si a et a' sont deux entiers
algébriques du domaine \/d, quand a! e on a aussi a'n ee an.

Distinguons plusieurs cas et remarquons qu'aucun des
facteurs Z cherchés ne peut diviser ab, comme on a vu plus
haut; ainsi'aucun des nombres a et b ne peut être divisible
par L

1° Si l est diviseur du discriminant, on a a b ~ ; par
suite, le second membre de l'équation (8) donne

1-^ 0, (mod l)

et de même, comme on voit aisément,

jp 0 et 0- (mod V)

2° Si d est résidu quadratique de Z, a et b sont réels
(mod Z), différents entre eux, et tous deux différents de zéro.

On a donc
ai-1 ^ bi-1 ^ f

par suite
y'i-i s 0 • (mod i)

3° Si d est non-résidu quadratique, a et b sont des imaginaires

de Galois dans le domaine \/ N N désignant un non-
résidu quelconque. Comme a et b sont conjugués

a rcr m -j- n {/ N b — m — n (/ N
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on aura
i—i

a1 ~ m1 + nl N 2 |/N h

et de même bl a. Done al+x bl+x ab, par suite

J/4-1 S 0 (mod l)

De là résultent deux propriétés fondamentales.
Si M est un module quelconque, premier avec ab, et

décomposé en ses facteurs premiers sous la forme

M — ili'yrr...,
il existera toujours des'yn admettant M comme diviseur.

On aura par exemple yn 0 (mod M), si n & (M), avec

(M) + t) (V + O ;

on pose s 0, — 1, ou -f- 1 selon que d est multiple de Z,

résidu quadratique, ou non-résidu de Z ; autrement dit

Le fait a été déjà établi plus haut pour £ 0, puisque dans ce
cas est divisible par ft et yn aussi. Si £ =j= 1, on
posera <J/(M) (Z =F 1) M', et yn ylZF[ YM>. Or le discriminant
Dde la récurrence YM/, étant égal à dy\^x, sera divisible par Z,

puisque y^i est divisible ; donc YM> sera divisible par
comme on vient de le voir, et yn le sera par ft. On prouverait

de même la divisibilité par Z/V, l"y'...
Si on nomme, en second lieu, diviseurs propres de yn ceux

qui n'appartiennent à aucun nombre ynt d'indice inférieur à /?,

il est facile de constater que tous les facteurs premiers propres

de yn sont contenus dans la formule

l np ± 1 (9)

le signe étant + ou — selon que d est ou n'est pas. résidu
quadratique de l.

En effet on a, par supposition, yn 0 (mod Z), mais aussi
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yi+\ 0, et si / =F 1 n'était pas divisible par /z, on aurait
z/9 0, pour un nombre ô < zz, à savoir le plus grand
commun diviseur de n et l + 1. La démonstration n'est
évidemment pas valable pour les facteurs premiers diviseurs
du discriminant ; un tel nombre l est diviseur propre de yt.

J'ajoute qu'on pourra, dans la recherche des facteurs
premiers, limiter souvent les essais exigés par la formule
(9). Si, par exemple, l'indice n est impair, la formule de

duplication
^ Itn -J— 1 3 m-\-1 m '

montre que les facteurs cherchés admettent ab comme résidu
quadratique; on exclura tous ceux qui ne vérifieraient pas
cette condition supplémentaire.

Observons enfin que si on a yn 0 (mod /), on aura à cause
de (2)

3pn-{-q — Lj-f-l •L' '

et par conséquent
3pn-\-q ' 1pn-\-q' — 5*q * 1q' ' (mod /).

§ 4.— Après ces préliminaires, qui ne sont pas indispensables

mais jettent une vive clarté sur ce qui suit, venons à

la congruence du troisième degré

x* -f- px + <7 0. (mod / + 3).

Nous adopterons, pour la résoudre, une marche analogue
à celle qui donne en Algèbre la racine de l'équation cubique
et conduit à la formule de Cardan. Parmi les différentes
manières d'obtenir cette dernière, prenons la suivante.

J'écris la proposée sous la forme

x3 — 3abx + cib (a + b) EE 0 (mod I) (10)

en déterminant a et b par la résolvante

s2 + — * — £ 0 (mod /) (11)
p 6

dont il est aisé de trouver la relation avec les fonctions
cycliques. Si x0, xi, x2 représentent trois racines hypothé-
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tiques de (10), et a une racine de -)- -f~ 1 =5 0 (mod on

trouve en effet facilement
(a-o + <xxt + u2x,

Z
9p

* (12)

Les relations entre les-racines et les coefficients de (11)

donnent encore
P

' 3o Ix, _V8 + 27^2
ah=~l' a + b==-j> (fl_fc)=__ •

Nous exclurons le cas où la proposée serait binôme, ou

p divisible par Z. Si 4pz + 27q2 — A était divisible par Z, on
voit que a et b seraient congrus entre eux, chacun d'eux

valant —^ (mod Z). Mais alors la congruence proposée

admettrait cette même racine, car on a,

a& -J- pa -f- q a3 — 3a2b ab (a + h) a (a — b)2 0

bs -|- pb + q bz — 3b2a ab (a + b) b(a — b)2 0

La dite racine fonctionne, en outre, comme racine double,
et ce cas est le seul où la congruence puisse posséder une
racine multiple, ainsi qu'on le démontre immédiatement.

Nous le laisserons encore de côté; il ne reste dès lors plus
que deux éventualités. Si 3A est résidu quadratique de Z, a
et b sont réels et distincts; si 3A est non-résidu, ce sont des

imaginaires congruentielles dans le domaine \/N; dans ce
dernier cas nous élargissons le problème en essayant de
résoudre la congruence dans le même domaine de rationalité.
Remarquons que, quelle que soit la nature de a et b, les

quantités a + b ou — ab ou — peuvent toujours être

supposées entières et sans facteurs communs, puisque, /* et s
étant deux de leurs valeurs (mod Z), la suite linéaire r -f ml,
qui est l'expression générale de la première d'entre elles,
contient une infinité de nombres premiers. Nous admettrons
donc constamment que r et s sont premiers entre eux.

Gela posé, et % désignant toujours une racine de (10), qui
ne saurait être ni a ni b, posons

— a — h"
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substitution qui transforme la proposée en

«J8 4- h2 + 7T + 8 0

avec les valeurs suivantes des coefficients

a~ — (/>8 -j- pb q) — — b(a — b)2

<? as + pa + q a (a — bf
7 — 3a2b -f- 3ab(b + 2a) — 3a&(« -j- b) — 0

ß 3ab2 — Sab (a r(- 2b) -f- Sab (a -|- b) =r 0

La transformée est donc simplement

J8 J (mod /)

et sa résolution formelle donne pour x la valeur

x — (ab)i/z (a1/s + b1/s) (mod l)

dans laquelle on reconnaît la formule de Cardan. Il est, du
reste, préférable de prendre pour la solution l'ensemble des
formules

° — h' x i a
x l et f -t — y

J b

Nous poserons, pour abréger, A |, et nous distinguerons

maintenant quatre cas.

Premier cas. — Le module l est de la forme 3m — 1, 3A en
est résidu quadratique, A est réel. Alors, de la condition
yZm—2 1 et de la congruence y* p on tire

puis, pour la seule racine de la proposée,

am — bm ym
X ~ am~~l - bm~l ~~ ym-A

'

La suite auxiliaire y0, yx, est formée avec l'échelle de
relation [a + 6, — ab] ; on le voit, pour résoudre (10), il sera
inutile de calculer a et b. La formule de triplication (6) permet

d'ailleurs de vérifier immédiatement le résultat qu'on
vient d'obtenir. *
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Soit, comme exemple, à résoudre la congruence

Xs — 3# -f- 3 0 (mod 521)

On a ici (a — b)2 5 et ^ ; ainsi la congruence n'a

qu'une racine, qui vaut x=r±\ la récurrence ayant comme
ym

échelle de relation [3, — 1], On peut écrire aussi x ~
les y étant calculés maintenant suivant la récurrence de
Fibonacci [1, 1]. Dans cette dernière supposition, on a,
comme on voit aisément, ?/26 0 (mod 521), et en employant
la réduction mentionnée à la fin du § 3, on obtient

Gomme second exemple, considérons la congruence
x3 -|- Sx — p EE 0 ; (mod I 37n — 1)

on suppose toujours — 1, et on a

ab EE — 1 a + b p (a — bf p2 4

d'où l'on conclut, m étant pair et m — 1 impair,

adm - b3m (am — bmf + 3 (am — bm)

a3m-3 _ h3m-3 _ (flm-1 __ bm-1^3 _ 3 ^m-1 _ bm-l} ^

OU

13m (Ä — ^)2jL + %Vn '

.r3m_3 (« - - 3rm-i •

Mais, par suite des propriétés de divisibilité, y^m—3 1,
y

ysm-2 0, 2/3/tz-i 1, 2/3/72 p et enfin x On obtient
ainsi le théorème que voici.

Si p est un entier tel que p2 + 4 soit résidu d'un nombre
premier 1 3m —- 1, chacune des congruences

xs -(- 3x — p ~ 0

(p2 -J- 4)js + 3y —p 0

(p2 -j- 4) s8— 3*—1=0,
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admet une seule racine (mod /), et l'on a enlre ces trois racines
la relation?/ s xz. On prouvera, au reste, facilement que ces
trois congruences se transforment l'une dans l'autre par
substitution linéaire.

Deuxième cas. — Le module l est de la forme 3m -j- 1, et 3A

en est résidu quadratique, (jj^j 1 ; a et b sont de nouveau

réels ainsi que leur quotient A. Ce dernier devant être résidu
cubique, la congruence ne sera résoluble que si Am 1,

autrement dit si le nombre ym de la récurrence auxiliaire
[a -j- è, — ab] est — 0. Quand cette condition est satisfaite, y
a trois valeurs qui se suivent cycliquement, et la proposée
aura trois racines.

Supposons que m ne soit pas divisible par 3, ou plus
généralement, que Tindice n auquel appartient A (mod l) soit de
l'une des deux formes n 3^ =F 1, l'identité

ASfi A ou A~3fi=A

montre qu'une des valeurs de y sera, selon le cas,

" {Q-\p
y \-b ou y=,_

Quant à x, une des trois valeurs qu'il peut prendre, sera
en conséquence

ri =r 3 a — 1 X EE o b X—

n — 3 p. -f- 1

fx—1

1

fy+i
;

fp

Les deux autres racines ne s'expriment pas par la suite yn.
Soit, par exemple, la congruence

— 3# + 3 — 0 (mod 3001).

L'échelle de relation de la suite auxiliaire est [3, — t], et
la condition de possibilité est 2/1000 0 (mod 3001). Si on
substitue à [3, — 1], la récurrence [1, 1], la condition devient
2/2000 0, et elle est satisfaite, car on trouve déjà y25 0.
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L'une des racines cherchées se présente ensuite sous la forme

Si n était de la forme 3*(3^ ± 1), et, par suite, l de la forme
3^+1/72 + 1, les racines de la proposée ne pourraient plus
s'exprimer en fonction de la récurrence auxiliaire; maison pourrait

encore tirer avantage delà réduction à la forme monôme.
En effet les racines 3^~l iémes de l'unité existent ici, et en
désignant par a l'une d'entre elles, différente de l'unité, on
conclut de An 1 l'identité A3^1 a3 et, par conséquent,
pour une des valeurs de y

— A-** — —1
y — g.\ ou y — a A

selon le cas.

Troisième cas. — Le module l est de la forme 3m + 1, 3A

en est non-résidu quadratique, et — 1 ; a et b sont
% l,

des imaginaires de Galois de la forme r ± s y/N ; A est une
imaginaire de la même forme. Nous avons démontré que
dans la récurrence auxiliaire [a + ô, — ab], le terme 2/3/n+2
est divisible par l ; ainsi on a

' a \ 3m-|-3 a
~b ~ J?

a3am+2 t

Une valeur de y est donc y
+

; elle donne pour x
la solution réelle

y m y 2m 4- î
x EE ab —

1 m-\- L y 2rn 1

qu'on vérifiera facilement sur les formules de triplication (6)
et (7).

Quant aux autres racines, elles sont nécessairement
imaginaires. En effet dans le cas présent les racines cubiques
de l'unité sont réelles; si donc #0, xin x2 l'étaient, la résolvante

aurait deux solutions réelles a et 6, ainsi que le
démontre l'égalité (12).
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Prenons, comme exemple, la congruence

.x8 -j- 3x — 1=0 (mod 67).

La condition 1 est satisfaite ; la récurrence
auxiliaire est [1, i]. On a donc, pour unique racine

x —• —2 40 (mod 67).
ys»

Quatrième cas. -- Le module l est de la forme 3/« — 1, 3A

(3
À \
y J — — 1 ; a, et b sont ici

encore des imaginaires congruentielles. Comme les racines
cubiques de l'unité font partie du domaine \/JN, il est clair
que y, et par suite x, a dans ce domaine trois racines ou
aucune.

Si x admet trois valeurs, une est réelle, puisque l'existence

d'une racine imaginaire entraîne celle de sa conjuguée;

je dis que les deux autres racines seront aussi réelles.
Car sij70 désigne la racine réelle .r2 deux racines
conjuguées, et que oc et a,2 soient de même les racines conjuguées
de öl3 ~ 1, les quantités

x0 + ux± -y- u2x2 et x0 -j- u.x2 + a2Xi

seraient réelles, ainsi que a et b, en vertu de (12), ce qui
contredit l'hypothèse — 1

•

La condition nécessaire et suffisante pour l'existence de

ces racines est donc que A soit résidu cubique (môd l) ou
p—i

que A 3
1. Cette condition s'écrit encore A32-2'" \ OLl

Am A~'3m2+3m. Mais la récurrence auxiliaire donne yZm
0, ou AZm 1 ; donc enfin la condition de possibilité

prend la forme simple Am 1, soit ym 0 (mod l).
Une fois reconnue la possibilité de la solution, on procédera

pour trouver les racines comme il a été expliqué à

l'occasion du deuxième cas. Ainsi, si le nombre m, ou plus
généralement, si l'indice auquel appartient A (mod l) est
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de la forme 3p ± 1, on aura, pour l'une des valeurs de x

X —— ou X — ab — •

y^ y?u.—i

Toutes ces propriétés peuvent être facilement contrôlées

au moyen des formules de triplication (6) et (7) et des

théorèmes de divisibilité énoncés §§ 3.

Soit, comme exemple, à résoudre la congruence

4- Sx — 1 0. • (mod 47)

La récurrence auxiliaire est toujours [1, 1], et son
discriminant 5 est non-résidu de 47. De plus yi6 987 21 X 47.

La congruence proposée a donc trois racines ; l'une d elles

sera
'* £=£ 1=11;

les autres sont 41 et 42.

C. Cailler (Genève).
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Première partie.

1. — L'article intitulé « Parallélisme et translation recti-
ligne », publié dans le numéro du 15 septembre 1907 de la
Revue L'Enseignement mathématique (pp. 367-381), impose
de nouvelles définitions pour le parallélisme de droites et de

plans et par suite un nouveau procédé de démonstration des

propriétés qui les concernent. Nous nous bornerons à énoncer

simplement les propositions dont la démonstration est
devenue classique et surtout celles qui sont relatives à la

perpendicularité d'une droite et d'un plan.
On est convenu d'appeler surface plane ou plan une sur-
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