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marque qui peut intéresser les lecteurs géométres; les propriétés
de I’étendue vectorielle en géométrie générale, telles que je les ai
exposées dans larticle précité, vont étre éclairées d’'un nouveau
jour par le théoreme d’Ampere-Stokes.

En effet,le vecteur tourbillon d'un vecteur donné, correspond a
une dlstrlbutlon continue et méme dérivable; or, les deux carac-
teres de dérivabilité et de continuité, dont le premier contient
d’ailleurs le second, ne sont pas essentiellement euclidiens. De la
I’extension du theoreme d’Ampére-Stokes en géométrie générale;
enfin, cette extension nous donne 1mmed1atement et d’'une ma-
niére intuitive le théoréme suivant :

I’espace euclidien est le seul dans lequel puisse exister un ré-
seau triple orthogonal avec conservation de la longueur des arcs
correspondants; en d’autres termes, le théoreme d’Ampere-Stokes
nous montre de suite que si I’ element linéaire ds d'un espace est
réductible a la forme :

(ds; (dx)* + (dy)? 4 (d=z)?

cet espace est nécessairement euclidien.

Ce rapprochement entre la méthode classique des (ds)? et ma mé-
thode vectorielle pour I'étude de la géométrie générale me parait
intéressant a signaler.

J. A.

L'IMPORTANCE DES
TRANSFORMATIONS LINEAIRES DES VECTEURS
DANS LE CALCUL VECTORIEL GENERAL

Une fois établi (et cela nous semble logique) que : « l'uni-
fication des notations vectorielles doit éire faite en tenant
compte des résultats auxquels conduira Uanalyse, compléte
et rationnelle, des entités géométriques et mécaniques, de leurs
opérations et de leurs fonctions, » nous croyons utile d’indi-
quer briévement I'élat actuel des recherches relatives a la
question, et quelles sont les entités qui doivent encore étre
étudiées par rapport a leur théorie générale et a leurs appli-
cations.

. M. R. MarcoronGgo et moi, nous avons étudié ! sous 'as-

1 Rendiconti del Circolo matematico di Palermo. Nota I, tomo XXIII {(1° sem. 1907) : Nota

II, t. XXIV; 20 sem. 1907): Nota III, t. XXIV : Nota IV, t. XXV (10 sem. 1908) Nota V-(ed
ultima), t. XXVI (20 sem. 1908). A
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pect historique, scientifique, logique et pratique, les systéemes
vectoriels qui sont employés actuellement. Avec les entités
nombre réel, point, vecteur, et les opérations et fonctions
somme (+), différence (—), produit par un nombre (symbole
sous-entendu), produit interne (><), produit vectoriel (\), ro-
tation dans un plan (€%), gradient (grad), divergence (div),
rotation (rot), nous avons obtenu le sYSTEME MINIMUM, qui,
les notations exclues, coincide avec le systéme de Gisss.
Par ce systéme nous avons déduit le calcul barycentrigue de
Mosius (Note II), les quaternions de HamiLron (Note III) et
les formations géoméiriques de Grassmann (NoteV): et ces
derniéres, sous une forme tres simple, analogue a celle
donnée par M. G. Peano, et suivie par M. CARVALLO et par
d’autres auteurs. Nous avons aussi fait observer (Note V) que
le systéme minimum estinsuffisant. Il doit étre complété par
les transformations linéaires des vecteurs, nécessaires pour
la résolution de plusieurs questions, et par les formations
géométriques de GRassMANN-PEANO, nécessaires lorsque les
droites, les plans, les systémes de forces appliquées a un
corps rigide, doivent-étre considérés comme des entités au-
tonomes. Les barycentres et les quaternions sont insuffisants
dans ce but.

L’interprétation erronée des concepts et des symboles de
Hamieton a donné naissance a certaines notations vecto-
rielles qui, sans l'usage systématique des quaternions, sont
inexactes, impropres et inopportunes. Nous avons taché de
démontrer cela, M. MarcoLoNGO et moi, dans la Note III.

J’al encore examiné la question des quaternions dans ma
Note ! « I Quaternioni di Hamirton e il calcolo vettoriale »
dans le but d’établir exactement quelle est la relation entre
les quaternions et les transformations linéaires, et de mon-
trer que le produit complet (détaché des orais quaternions)
ne posséde point la vertu magique que quelque auteur lui
attribuait. Jerappelle, ici, le principal résultat : les quater-
nions forment, il est vrai, un systéme a quatre dimensions,
mais ce systéme n’est pas linéaire, dans la compléte signifi-
cation du mot « linéaire ».

Y Atti dell’ Accademia delle scienze di Torino, 1908.
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Si nous observons que dans plusieurs questions de Physi-
que et de Mécanique on rencontre des graies transformations
linéaires ! qui ont 6 ou 9 ou 18 dimensions, il est bien aise
d’en déduire que les quaternions sont entiérement insuffi-
sants pour établir un calcul mécanique complet.

Les applications du systéme minimum que nous avons
données dans la Note IV, prouvent amplement comment,
aussi dans les questions qui ne réclament pas l'usage des
entités de GrassMaNN, il est bien plus simple de faire usage
des vecteurs que des quaternions. Mais les études que nous
venons d’'indiquer, ne montrent pas encore comment on
peut résoudre la question de la composition des rotations
autour d’axes qui ne sont point paralléles, avec un calcul for-
mal aussi simple que celui qui résout les autres questions. Il
est bien connu que le probléme est résolu parles quaternions
avec un symbole a joug. 1l est donc permis de douter que
I'on doive toujours dépendre de la théorie des quaternions
pour la résolution de ce probleme fort important en Géomé-
trie et en Mécanique. Mais ce doute n’est point légitime.
Pour les rotations, et en général pour tous mouvements des -
systemes rigides, on peut faire usage des transformations
linéaires des vecteurs en vecteurs, transformations nécessaires
et qui ont un algorlthme bien plus simple que celui des
quaternions. -

J’indique, ici, les principaux résultats en faisant usage des
notations que nous avons proposées.

1. — Une transformation linéaire de vecteurs en vecteurs
ou bien une homographie vectorielle s, est toujours décom-
posable, et d'une seule maniére, dans la somme de deux
homographies p, A, caractérisée par les conditions

XX py —yXpx=0, xXly4+yxx=0
vérifiées quels que soient les vecteurs x, y .
Nous appellerons dilatation de ¢, ou Do, ’homographie . ;

car . donne, dans les déformations des systémes, la dilata-
tion, ou vibration, et l'ellipsoide (de LamE) correspondent.

- 1 C. BuraArt-Forrti, 4¢8 Accad. Torino : Sopra alcune operazioni proiettive applicabili nella
Meccanica (1906) : Sulle omografie vettoriali (1907) : Funzioni vettoriali (1907).
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L’homographie X donne la rotation de la déformation. Pré-
cisément : il existe un vecteur u tel que, quel que soit le
vecteur X, |

X =u /\ x.

Le vecteur u sera appelé vecteur de ¢, ou Vo .
On a donc, identiquement,

¢ = Do 4 (Vo' A\ ou bien ox == Dox 4 (Vg} A x .

Si Dg est un nombre réel (la quadrique de dilatation est
une sphére) alors : I'homographie ¢, a laquelle on donne
comme champ d’application *le champ formé par les vecteurs
normaux au Vg, est précisément le quaternion dont Do est
le scalaire et Vo est le vecteur; mais cetle transformation
spéciale n’est pas une homographie.

Avec 'homographie ¢ il est important de considérer la
conjuguée de o, ou Ko , définie par

‘ Ko = Do — (Vo) A .
L’tnvariant troisiéme de ¢, ou inv,s, est le nombre réel

ou/\évxcw
u/\NvVvXXw

quels que soient les vecteurs, non complanaires, u, v, w.
Les invariants deuxiéme et premier de g, ou inv,e, inv,s,
sont définis par la relation

invg (x 4+ 6) = a® + (invqa) 2° 4 (invee) x 4 invyo

quel que soit le nombre réel x.
L’algorithme général deshomographies est fortintéressant;
nous citons seulement les formules suivantes 2
| X < oy — y x Kox
| c(x/\y):(invlro)x/\y—x/\Kay—{—y/\Kax
| | s | (Kox] A (Koy) | = Ko | (ox) A\ (oy) | = (invso x Ay .

1 Voir note p. 412.

2 M. MaARcOLONGO et moi, nous espérons publier prochainement une étude complcte de la
théorie des homographies vectorlelles et de leurs apphcatlons ala Physique et a la Méca-
nique.
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— Nous appellerons mouvements vectoriels?, les homo-
: . . i "
graphies ¢ qui ne changent pas la longuem des vecteurs,

(6x)* = x*.
Elles sont caractérisées par la condition

o (Ko) =1
et on a toujours
B a invgs = £ |

Si g, A sont des mouvem. vect., Ao, Ko, ¢, sont aussi des
mouvem. vect., et on a

¢ (Va) = = Vo selon que invzeg =1 ou invye = — |

Les propriétés suivantes sont fondamentales.

Si Vo == 0 etinvye = 1, alors ox est le vecteur qu’on obtient
en donnant aw vecteur X une rotation autour du vecteur Va,
d’'un angle ¢ tel que

‘ 1 . :
sin ¢ — mod Ve, cos ¢ = 5 (invye — 1);

ainsi les « mouvem. vect. » ¢ flels que Vo 7= 0 et invye =1,
sont des rotations autour du Ve.

Si Vo —= 0 alors ¢> =1 et le vecteur X 4+ oX a une direc-
tion fixe (qui ne dépend pas de x, mais varie avec ¢) ou est
parallele & une orientation fixe: les « mouvem. vect.» ¢ tels
que Vo =0, sont des symétries par rapport a une direction

ou a une orientation, selon que inv,c = 1 ou inv,e — — 1.
Cela justifie la dénomination mouvement vectoriel.
3. — Voici des applications.

Soient : 1, u des vecteurs unitaires ; « =— ang (i. u) ; o, A les
rotations autour de i et u des angles ¢, ¢ .

Un calcul direct, bien plus simple que le calcul corres-
pondant avec les quaternions, prouve que Ac est la rotation

A J’avais déja envoye cet article a L'Ens. Mathém. lorsque j’ai regu lintéressant mémoire
de M. Mario Pier1, La Geometria elementare istituita sulle nozioni di punto et sfera (Mem.
delle Soc. ital. delle Scienze, série 32, t. XV). Je pre{ere la nomenclature 'de M. Pieri a celle
dontJai fait usage  dans cette note. Au lieu de « mouv. vect. » il vaudra mieux dire « iso-
mérie vectorielle », et tout simplement « isomérie » au lieu de « mouv. géom. » (ne 4).
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autour du vecteur

’ )
singc %l—kcosgmn%u singsiu;—}i/\u,
de 'angle |
— 2 cos™! ; sin ¢ sin -1"—‘ oS & — €OS & cOS 1'—[)—
‘ 2 2 2 2
Sio= u — ¢, ¢’est-a-dire, si o, A sont les symetmes par

rapport a ietu, alors un calcul direct, fort simple, prouve
que Ao est la rotation autour dei A u de l'angle 2.

On parvient & ces résultats plus rapidement, comme on

sait, par des considérations géométriques?!, mais cela ne di-

minue 'importance du calcul direct qui, dans certains cas,
est nécessaire.

4. — Nous appellons mouvement géométrique, toute trans-
formation linéaire qui change une forme géométrique de
premier ordre de GrassmMaNN en une forme du méme ordre,
avec la condjtion de transformer points en points et vecteurs
en vecteurs de méme module? La forme générale d’un

mouy. géom., est
. <B,au, «v . aw>
6 —
A, u, v, w

ot A, B sont des points et ¢ est un mouv. vect.
Supposons par exemple, que Vo == 0 et invyg = 1. On a
identiquement, étant P un point quelconque,

P—=A 4+ (P — A)
et par conséquent,

1) 6P=B 4+ (P —A),P—P=B— A+ a(P—A) — (P —A);

mais o(P — A) et me projection sur une
droite parallele a Vo et la derniére formule donne

(6P — P) > Vo = (B — A) > Vo.

1 Voir, par ex., M. Pieri, loc. cit.

% Une transformation de points en points ne peut pas étre linéaire, car « la somme de
deux points » ou le produit d’'un point par un nombre n’est pas un point. Les transforma-
tions que nous venons de considérer conservent la masse des formes du premier ordre, et
la longueur des vecteurs.
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Si, donc, nous posons

(B—A) < Ve

V= Vo Va,

les points P, P — v, ou bien, P 4+ v, 6P, ont la méme pro-
jection sur une droite parallele a Vo.

Menons par le point A le plan y normal 4 Vg: le point
B — v est placé sur ce plan. Sur le plan y existe un point O,

et un seul, tel que
O+cA—-0=B—v;

mais d’aprés la premiére des formules (1), nous avons

P —v=B —v+o(P —A) =
—~—O0+o(A—0)+c(P—A)=0-+0(P—0),
P = O + ¢ (P — O) + v;

donc : le mouvement géométrigue 9 est un mouvement hélicoi-

dal dont Uaxe est paralléle a Vo et la iranslation est v,
(Théoréme de Mozz). '

Il est bien connu que : le produit de deux symétries par
rapport a deux axes est un mouvement hélicoidal, etc. —
La démonstration formale est fort simple. Soient: i, u vec-
teurs unitaires paralleles anx axes donnés; A, B les points
qui- donnent la moindre distance entre les deux axes (B — A
est parallele & 1 A u); o, A les mouv. vect., qui sont les sy-
métries par rapport aiet u. Si P est un point, le symétrique
de P par rapport a 'axe Ai est

et le symétrique de P, par rapport 4 'axe Bu est

. 9P =B + A (Pt —B)=B 4+ 3(A —B) + ¢ (P — A);
mais
A (A— B)=B — A = (hypothéses)

et donc

6P = A 4+ 2 (B — A) + o (P — A)
par laquelle résulte (n°®3) que : la droite A B est l'axe du
mouvement hélicoidal, 2 (B — A) en est la tr anslatw/z et 2 ang

(1, u) la rotation.
C. BuraLi-Fort (Turin). -
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