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marque qui peut intéresser les lecteurs géomètres ; les propriétés
de l'étendue vectorielle en géométrie générale, telles que je les ai

exposées dans l'article précité, vont être éclairées d'un nouveau
jour par le théorème d'Ampère-Stokes.

En effet, le vecteur tourbillon d'un vecteur donné, correspond à

une distribution continue et même dérivable; or, les deux caractères

de dérivabilité et de continuité, dont le premier contient
d'ailleurs le second, ne sont pas essentiellement euclidiens. De là
l'extension du théorème d'Ampère-Stokes en géométrie générale;
enfin, cette extension nous donne immédiatement et d'une
manière intuitive le théorème suivant :

L'espace euclidien est le seul dans lequel puisse exister un
réseau triple orthogonal avec conservation de la longueur des arcs
correspondants; en d'autres termes, le théorème d'Ampère-Stokes
nous montre de suite que si l'élément linéaire ds d'un espace est
réductible à la forme :

[dsf — (dx)2 -j- (dr)2 -f- (dz)'2

cet espace est nécessairement euclidien.
Ce rapprochement entre la méthode classique des (ds)2 et ma

méthode vectorielle pour l'étude de la géométrie générale me paraît
intéressant à signaler.

J. A.

L'IMPORTANCE DES
TRANSFORMATIONS LINÉAIRES DES VECTEURS

DANS LE CALCUL VECTORIEL GÉNÉRAL

Une fois établi (et cela nous semble logique) que : «

l'unification des notations vectorielles doit être faite en tenant
compte des résultats auxquels conduira l'analyse, complète
et rationnelle, des entités géométriques et mécaniques, cle leurs
opérations et de leurs fonctions, » nous croyons utile d'indiquer

brièvement Félat actuel des recherches relatives à la
question, et quelles sont les entités qui doivent encore être
étudiées par rapport à leur théorie générale et à leurs
applications.

M. R. Marcolongo et moi, nous avons étudié 1 sous l'as-
1 Rendiconti del Circolo matematico di Palermo. Nota I, tomo XXIII (1° sem. 1907) : Nota

II, t. XXIV; 2o sem. 1907): Nota III, t. XXIV : Nota IV, t. XXV (1« sem. 1908) : Nota V (ed
ultima), t. XXVI (2° sem. 1908).
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pect historique, scientifique, logique et pratique, les systèmes
vectoriels qui sont employés actuellement. Avec les entités
nombre réel, point, vecteur, et les opérations et fonctions
somme (+), différence (—), produit par un nombre (symbole
sous-entendu), produit interne (x), produit vectoriel (/\), r<9-

tation dans un plan (e£V), gradient (grad), divergence (div),
rotation (rot), nous avons obtenu le système minimum, qui,
les notations exclues, coïncide avec le système de Gibbs.
Par ce système nous avons déduit le calcul barycentrique de
Möbius (Note II), les quaternions de Hamilton (Note III) et
les formations géométriques de Gbassmann (NoteV); et ces
dernières, sous une forme très simple, analogue à celle
donnée par M. G. Peano, et suivie par M. Carvallo et par
d'autres auteurs. Nous avons aussi fait observer (Note Y) que
le système minimum est insuffisant. Il doit être complété par
les transformations linéaires des vecteurs, nécessaires pour
la résolution de plusieurs questions, et par les formations
géométriques de Grassmann-Peano, nécessaires lorsque les
droites, les plans, les systèmes de forces appliquées à un

corps rigide, doivent-être considérés comme des entités
autonomes. Les baryce'ntres et les quaternions sont insuffisants
dans ce but.

L'interprétation erronée des concepts et des symboles de

Hamilton a donné naissance à certaines notations
vectorielles qui, sans l'usage systématique des quaternions, sont
inexactes, impropres et inopportunes. Nous avons tâché de

démontrer cela, M. Marcolongo et moi, dans la Note III.
J'ai encore examiné la question des quaternions dans ma

Note 1 « I Quaternioni di Hamilton e il caleolo vettoriale »

dans le but d'établir exactement quelle est la relation entre
les quaternions et les transformations linéaires, et de montrer

que le produit complet (détaché des vrais quaternions)
ne possède point la vertu magique que quelque auteur lui
attribuait. Je rappelle, ici, le principal résultat : les quaternions

forment, il est vrai, un système à quatre dimensions,
mais ce système nest pas linéaire, dans la complète signification

du mot « linéaire ».

1 Atti delVAccademia delle scienze di Torino, 1908.
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Si nous observons que dans plusieurs questions de Physique

et de Mécanique on rencontre des vraies transformations
linéaires 1 qui ont 6 ou 9 ou 18 dimensions, il est bien aise
d'en déduire que les quaternions sont entièrement insuffisants

pour établir un calcul mécanique complet.
Les applications du système minimum que nous avons

données dans la Note IV, prouvent amplement comment,
aussi dans les questions qui ne réclament pas l'usage des
entités de Grassmann, il est bien plus simple de faire usage
des vecteurs que des quaternions. Mais les études que nous
venons d'indiquer, ne montrent pas encore comment on

peut résoudre la question de la composition des rotations
autour d'axes qui ne sont point parallèles, avec un calcul for-
mal aussi simple que celui qui résout les autres questions. Il
est bien connu que le problème est résolu parles quaternions
avec un symbole h joug. Il est donc permis de douter que
l'on doive toujours dépendre de la théorie des quaternions
pour la résolution de ce problème fort important en Géométrie

et en Mécanique. Mais ce doute n'est point légitime.
Pour les rotations, et en général pour tous mouvements des

systèmes rigides, on peut faire usage des transformations
linéaires des vecteurs en vecteurs, transformations nécessaires
et qui ont un algorithme bien plus simple que celui des
quaternions.

J'indique, ici, les principaux résultats en faisant usage des
notations que nous avons proposées.

1. — Une transformation linéaire de vecteurs en vecteurs
ou bien une homographie vectorielle g, est toujours décom-
posable, et d'une seule manière, dans la somme de deux
homographies p, A, caractérisée par les conditions

x x y-y — yx^x 0, x x >.y + y x >x 0

vérifiées quels que soient les vecteurs x y
Nous appellerons dilatation de cr, ou Do-, l'homographie y. ;

car p. donne, dans les déformations des systèmes, la dilatation,

ou vibration, et l'ellipsoïde (de Lamé) correspondent.

1 C. Buram-Forti, Atti Accad. Torino : Sopra alcune operazioni proiettive applicabili nella
Meccanica (1906) : Sulle omografie vettoriali (1907) : Funzioni vettoriali (1907).
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L'homographie \ donne la rotation de la déformation.

Précisément : il existe un vecteur u tel que, quel que soit le

vecteur x,
>x — u A x •

Le vecteur u sera appelé vecteur de a% ou Va
On a donc, identiquement,

a — Da 4- (Ver /\ ou bien <jx ~ Dcrx -f- ÇVa) A x •

Si Do- est un nombre réel (la quadrique de dilatation est

une sphère) alors : Vhomographie a, à laquelle on donne
comme champ d'application 1 le champ formé par les vecteurs
normaux au Va, est précisément le quaternion dont Da est
le scalaire et Va est le vecteur ; mais cette transformation
spéciale n'est pas une homographie.

Avec l'homographie a il est important de considérer la

conjuguée de a9 ou Ko- définie par

K<x D<7 — (Yes) A •

L'invariant troisième de a, ou inv3o-, est le nombre réel

5u A x t

u A v x w

quels que soient les vecteurs, non complanaires, u, V, w.
Les invariants deuxième et premier cle a, ou inv2a, invjo-,

sont définis par la relation

inv8 (x -{- cr) — x3 -j- (inv-tO-) x2 -(- (iiivaor) x -}- inv3<7

quel que soit le nombre réel x.
L'algorithme général des homographies est fort intéressant ;

nous citons seulement les formules suivantes 2
:

x x ffy y x K ax

* (x A y) — (»"v*) x a y — x A K(yy + y A K(Jx

* | (Kax) A (K°y) } K(J {(ffX) A («y)} fi^cn x a y •

1 Voir note p. 412.
2 M. Marcolongo et moi, nous espérons publier prochainement une étude complète de la

théorie des homographies vectorielles et de leurs applications à la Physique et à la
Mécanique.
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2. — Nous appellerons mouvements vectoriels\ les

homographies (7 qui ne changent pas la longueur des vecteurs,

(<TX)2 X2

Elles sont caractérisées par la condition

d (Kff) '1

et on a toujours
inv8a ~ H- 1

Si (j, X sont des mouvem. vect., As, Ko-, o-"1, sont aussi des

mouvem. vect., et on a

d (Vd) — + Vd selon que inv8d —' 1 ou inv8d — — 1

Les propriétés suivantes sont fondamentales.
Si Va 7^ 0 et inv3s 1, alors o-x est le vecteur qu'on obtient

en donnant au vecteur x une rotation autour du vecteur Y<7,

d'un angle 9 tel que

sin 9 uz mod Vd cos 9 rn ^ (invjd — 1) ;

ainsi les « mouvem. vect. » a tels que Va- 7^ 0 et inv3cr 1,

sont des rotations autour du Va*.

Si Ver 0 alors o-2 .1 et le vecteur x + o-x a une direction

fixe (qui ne dépend pas de x, mais varie avec a) ou est
parallèle à une orientation fixe : les « mouvem. vect. » <7 tels
que V<7 0 sont des symétries par rapport à une direction
ou à une orientation, selon que inv3s 1 ou inv3o- — 1.

Cela justifie la dénomination mouvement vectoriel.
3. — Voici des applications.
Soient : i, u des vecteurs unitaires ; a ang (i. u) ; a-, A les

rotations autour de i et u des angles 9, <p

Un calcul direct, bien plus simple que le calcul
correspondant avec les quaternions, prouve que As est la rotation

1 J'avais déjà envoyé cet article à L'Eus. Mathém. lorsque j'ai reçu l'intéressant mémoire
de M. Mario Pieri, La Geometria elementare istituita sulle nozioni di pun to et sfera {Mem.
delle Soc. ital. delle Seienze, série 3a, t. XV). Je préfère la nomenclature'|de M. Pieri à celle
dont j'ai lait usage dans cette note. Au lieu de « mouv. vect. » il vaudra mieux dire «
isomeric vectorielle », et tout simplement « isomerie » au lieu de « mouv. gèom. » (n° 4).
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autour du vecteur

<p y iL çp iL
sin L cos Z. i _[_ cos I sin l u — sin ^ sin | i /\ u

de l'angle
i © iL Q> iL

— 2 cos-1 j sin £ sm ^ cos a — cos ^ cos — > •

Si a> tp n c'est-à-dire, si <7 X sont les symétries par
rapport à i et u, alors un calcul direct, fort simple, prouve
que 1er est la rotation autour de i A U de l'angle 2«

On parvient à ces résultats plus rapidement, comme on
sait, par des considérations géométriques1, mais cela ne
diminue l'importance du calcul direct qui, dans certains cas,
est nécessaire.

4. — Nous appelions mouvement géométrique, toute
transformation linéaire qui change une forme géométrique de

premier ordre de Grassmann en une forme du même ordre,
avec la condition de transformer points en points et vecteurs
en vecteurs de même module 2. La forme générale d'un
mouv. géom., est

g- /B au «v aw\
\A u v w/

où A, B sont des points et ar est un mouv. vect.

Supposons par exemple, que V(7^ 0 et inv3a 1. On a

identiquement, étant P un point quelconque,

P A + (P — A)

et par conséquent,

(1) ep B + a (P — A) 0P — P m B - A + a (P — A) — (P — A) ;

mais <x(P — A) et P — A ont la même projection sur une
droite parallèle à Va et la dernière formule donne

(6P — P) X Va (B — A) x V<j

1 Voir, par ex., M. Pieri, loc. cit.
8 Une transformation de points en points ne peut pas être linéaire, car « la somme de

deux points » ou le produit d'un point par un nombre n'est pas un point. Les transformations

que nous venons de considérer conservent la masse des formes du premier ordre, et
la longueur des vecteurs.
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Si, donc, nous posons
(B — A) x V» v"=—m—Vt'

les points 0P, P — v ou bien, P + v 0P, ont la même
projection sur une droite parallèle à Y<7.

Menons par le point A le plan y normal à Vo* : le point
B — v est placé sur ce plan. Sur le plan y existe un point Ü,
et un seul, tel que

O -j- <7 (A — 0)r=B — v;

mais d'après la première des formules (1), nous avons

GP — v B — v-f-ff(P — A)
O + (7 (A — O) + (7 (P — A) O + a (P — O)

ÔP O -f- <7 (P — O) + v ;

donc : le mouvement géométrique 9 est un mouvement hélicoïdal

dont l'axe est parallèle à Ya et la translation est v.
(Théorème de Mozzi).

Il est bien connu que : le produit de deux symétries par
rapport et deux axes est un mouvement hélicoïdal, etc. —
La démonstration formale est fort simple. Soient: i, u
vecteurs unitaires parallèles aux axes donnés; A, B les points
qui donnent la moindre distance entre les deux axes (B — A
est parallèle à i A u) ; er, A les mouv. vect., qui sont les
symétries par rapport à i et u. Si P est un point, le symétrique
de P par rapport à l'axe Ai est

P, A + * (P - A)

et le symétrique de Pi par rapport à Taxe Bu est

GP B + X (P, — B) B + (A — B) + X<7 (P — A) ;

mais
X (A — B) B — A (hypothèses)

e t do nu
GP A + 2 (B — A) + >(7 (P — A)

par laquelle résulte (n° 3) que : la droite A B est l'axe du
mouvement hélicoïdal, 2 (B — A) en est la translation et 2 ang
(i, u) la rotation.

C. Burali-Forti (Turin).
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