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GÉOMÉTRIE NATURELLE 405

Or des égalités précédentes on déduit :

A + B + C 6dr — (a' + 4- c')
c'est-à-dire :

A B + C > 6dr — 4dr ou 2dl*

Nous retrouvons ainsi l'existence de l'excès sphérique,
comme propriété corrélative du théorème du parapluie.
(Chap. III.)

Cherchons de même un théorème corrélatif du théorème
qui montre toute face d'un trièdre plus petite que la somme
des deux autres ; soit a! la plus grande face du trièdre T on a :

a' < b' + c'

ou en vertu des égalités précédentes :

2 — A<2 — B-j-2 — C OU A + 2 > B + C

Ainsi : dans un angle trièdre le plus petit dièdre augmenté
de deux droits dépasse la somme des deux autres dièdres.

Remarque. — Le théorème sur l'excès sphérique peut
encore s'énoncer ainsi :

Dans un triangle sphérique, un angle extérieur est plus
petit que la somme des angles intérieurs qui n'ont pas même
sommet que lui.

II. — Le problème du dallage de la sphère.

Nous appelons polygone sphérique convexe une portion
delà sphère, limitée par des arcs de grand cercle, mais située
tout entière dans une même hémisphère bornée par chaque
côté du polygone prolongé en circonférence entière de grand
cercle.

On voit sans peine que si on considère un polygone
convexe régulier, c'est-à-dire ayant ses angles égaux entre eux
et ses côtés égaux entre eux, les sommets de ce polygone
seront tous situés sur un même petit cercle dont le pôle sera
dit un pôle du polygone.

Problème. — Quels sont les polygones réguliers sphériques
convexes que l'on peut reproduire et réunir, contigus par
côtés et par sommets, de manière à recouvrir toute la sur-
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406 ANDR ADE

face de la sphère, sans répétition nilacune? en d'autres termes
quels sont les polygones réguliers convexes aptes à daller la
surface de la sphère Désignons par x le nombre des
polygones réunis autour d'un même sommet ou nœud du réseau
de dallage, x angles contigus formant 4 angles droits, chaque

angle du polygone vaut ^ droits. D'autre part, soit y le

nombre des côtés de chaque polygone, ou dalle. Du
pôle de chaque dalle, on verra chaque côté de la dalle

sous un angle sphérique égal à j droits ; le triangle isocèle

qui a pour sommet ce pôle et pour base un côté de la dalle a

un excès sphérique égal à ^ ~ — 2 droits.

Ce nombre mesure la surface sphérique de la yme partie de
la dalle quand on prend comme unité le triangle trirectangle

qui vaut le
^

de la sphère; avec cette unité l'aire d'une dalle

est donc (^'+ y — 2^) y \ dès lors, si nous nommons £ le

nombre des dalles dont l'ensemble recouvre la sphère, on
aura entre les trois nombres entiers x, y et z la relation :

4 4 \-+ 2 J3 y S

x y

que nous pourrons écrire ainsi :

1,112f1) • x + r ~ 2 - Ty
;

le problème du dallage sphérique revient donc à trouver
tous les nombres entiers x, y, z unis par cette relation, ou

comme on dit encore à résoudre l'équation (1) en nombres
entiers.

Ce problème d'arithmétique est d'ailleurs très facile ; nous
nous contenterons ici d'en énoncer les solutions, qui sont
au nombre de cinq, savoir :

lre solution : as 3, J 3, sr: 4

2me solution : x — 3, y~ 4, # 6

Sme solution : ^ 3, y — 5, z — \1
4me solution : x—k, y 3, ^ — 8

5me solution : x 5, y—3, s —20.
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Ces cinq modes de dallages sphériques font évidemment
connaître aussi cinq solides, limités par des polygones réguliers

qui sont réunis par leurs côtés et assemblés par angles
polyèdres réguliers ; ces solides, nommés polyèdres réguliers
convexes, ont tous leurs sommets situés sur la surface sphé-
rique que l'on a envisagée.

III. — Triangles sphériques et rotations successives d'un solide.

Glissement sphérique. — Quand un corps solide reste cloué
par un point fixe 0 et qu'il se meut, ce mouvement se nomme
un mouvement de pivotement; une portion du solide qui est
à un instant sur une surface sphérique ayant le point 0 comme
centre demeurera sans cesse sur la surface de cette même
sphère. Comme trois points définissent un solide, on peut
dire que le mouvement de pivotement équivaut au glissement
d'une figure sphérique sur sa sphère.

1° Effet de deux rotations successives. Soient marqués sur
la sphère considérée les pôles de deux rotations successives;
sans doute, pour chaque rotation on pourrait hésiter entre
deux pôles, mais nous adopterons le
pôle sur lequel un observateur
marchant sur la sphère, étant posé tête
hors la sphère, verrait s'accomplir
la rotation considérée dans un sens
déterminé par rapport à sa gauche et
à sa droite; A (fig. 72) est le point de la sphère fixe qui va
être le pôle de la première rotation; B est le point de la
sphère fixe qui va être le pôle de la deuxième rotation.

On peut même supposer que ces rotations soient chacune
moindre qu'un demi-tour, soit alors u la rotation sur A vue
par l'observateur posé sur le pôle A dans le sens des aiguilles
d une montre, soit de même v la rotation également orientée
sur le pôle B.

Nous nous proposons de construire un point de la figure
sphérique entraînée qui finalement n'aura pas bougé; à cet
effet joignons le premier pôle A au second par un arc de
grand cercle AB moindre qu'une demi-circonférence.
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