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TRANSFORMATIONS LINÉAIRE S DES VECTEURS 411

marque qui peut intéresser les lecteurs géomètres ; les propriétés
de l'étendue vectorielle en géométrie générale, telles que je les ai

exposées dans l'article précité, vont être éclairées d'un nouveau
jour par le théorème d'Ampère-Stokes.

En effet, le vecteur tourbillon d'un vecteur donné, correspond à

une distribution continue et même dérivable; or, les deux caractères

de dérivabilité et de continuité, dont le premier contient
d'ailleurs le second, ne sont pas essentiellement euclidiens. De là
l'extension du théorème d'Ampère-Stokes en géométrie générale;
enfin, cette extension nous donne immédiatement et d'une
manière intuitive le théorème suivant :

L'espace euclidien est le seul dans lequel puisse exister un
réseau triple orthogonal avec conservation de la longueur des arcs
correspondants; en d'autres termes, le théorème d'Ampère-Stokes
nous montre de suite que si l'élément linéaire ds d'un espace est
réductible à la forme :

[dsf — (dx)2 -j- (dr)2 -f- (dz)'2

cet espace est nécessairement euclidien.
Ce rapprochement entre la méthode classique des (ds)2 et ma

méthode vectorielle pour l'étude de la géométrie générale me paraît
intéressant à signaler.

J. A.

L'IMPORTANCE DES
TRANSFORMATIONS LINÉAIRES DES VECTEURS

DANS LE CALCUL VECTORIEL GÉNÉRAL

Une fois établi (et cela nous semble logique) que : «

l'unification des notations vectorielles doit être faite en tenant
compte des résultats auxquels conduira l'analyse, complète
et rationnelle, des entités géométriques et mécaniques, cle leurs
opérations et de leurs fonctions, » nous croyons utile d'indiquer

brièvement Félat actuel des recherches relatives à la
question, et quelles sont les entités qui doivent encore être
étudiées par rapport à leur théorie générale et à leurs
applications.

M. R. Marcolongo et moi, nous avons étudié 1 sous l'as-
1 Rendiconti del Circolo matematico di Palermo. Nota I, tomo XXIII (1° sem. 1907) : Nota

II, t. XXIV; 2o sem. 1907): Nota III, t. XXIV : Nota IV, t. XXV (1« sem. 1908) : Nota V (ed
ultima), t. XXVI (2° sem. 1908).



402 AN DR ADE

vaut le fuseau A moins le triangle AGB; le triangle (3) vaut
le fuseau G moins le symétrique A'C'B' du triangle AGB,
d'ailleurs équivalent à ce dernier ; chaque fuseau étant
mesuré par 2 fois son angle mesuré lui-même avec l'angle
droit, nous aurons, par la décomposition de l'hémisphère
ci-dessus définie,

(2A — aire ACB) -f- (2B — aire ACB) -J- (2C — aire ABC) -j- aire ACB =: 4

d'où :

aire ABC — (A -J- B -j- C — 2) droits.

c'est-à-dire :

Théorème. — L'aire d'un triangle sphérique est mesurée

par l'excès sur deux droits de la somme de ses angles ; c'est
ce qu'on nomme l'excès sphérique du triangle.

CHAPITRE VI

Géométrie qualitative de la sphère. — Déplacements de

pivotement d'un corps solide.

Ou s'arrête la géométrie qualitative Ou commence la géométrie
métrique P

I. — Triangles sphériques supplémentaires et trièdres associés.

En comparant les" aires des triangles sphériques situés
sur une même surface sphérique, nous avons reconnu que
la somme des trois angles d'un triangle sphérique surpasse
deux angles droits par un excès dont la valeur est
proportionnelle à l'aire du triangle ; cet excès est ce qu'on appelle
l'excès sphérique du triangle.

On peut se proposer d'établir directement l'existence de
cet excès sphérique soit sur le triangle sphérique, mais sans

passer par la notion d'aire, soit sur l'angle trièdre dont le
triangle est l'image.

C'est cette dernière méthode que nous suivrons.
Nous allons définir d'abord les trièdres réciproques ou
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associés, dont les images sphériques seront deux triangles
dits polaires ou supplémentaires.

Envisageons (fig- 69) un trièdre de sommet S et dont les

arêtes sont les trois demi-droites SA, SB, SC. Par S élevons

une droite perpendiculaire à la

face BSC du trièdre, et nous
aurons soin de la tirer du même côté
de cette face que celui où se trouve
l'arête SA, nous obtenons ainsi la
demi-droite SA'; en répétant cette
construction pour chaque face,

nous formons un nouveau trièdre
de sommet S et dont les arêtes
sont SA', SB', SC'.

Ces deux trièdres sont dans une
corrélation telle que toute face de l'un orientée par rapport à

l'arête opposée, engendre une arête correspondante du
second trièdre; on les appelle deux trièdres associés ou
réciproques ou encore : deux trièdres supplémentaires ; ces
désignations se rattachent à des propriétés aussi simples que
remarquables que nous allons maintenant établir.

1° Le mode d'association des deux trièdres est réciproque.
Faisons d'abord la remarque suivante qui est une vérité de
la Palice : considérons un assemblage de deux demi-droites

(fig. 70) tirées par un point O d'un plan P,
et dont l'une D est perpendiculaire à ce

plan; ces demi-droites seront d'un même
côté du plan P ou bien de part et d'autre
de ce plan suivant que l'angle de ces
de mi-droite s sera aigu ou obtus ; la

remarque se justifie immédiatement en
considérant l'intersection OU du plan P

avec le plan passant par les droites données.
Dès lors, revenons à nos deux trièdres associés (fig. 69).

L'arête SB' a été conduite perpendiculaire au plan ASC ;

l'arête SC' a été menée perpendiculaire au plan ASB ; en
particulier SB' et SC sont l'une et l'autre, perpendiculaires
à SA ; SA est donc une droite perpendiculaire à la face B'SC'



404 ANDRADE

et comme l'angle A'SA est aigu, SA sera perpendiculaire à

la face B'SC' et du même côté de cette face que SA'.
Ainsi le premier trièdre dérive du second trièdre, comme

le second dérivait du premier.
2° Dans le trièdre d'arêtes SA, SB, SC, considérons le

dièdre d'arête SC; et (fig. 71) soient tracées : la droite SA'
perpendiculaire orientée à la face CSB et la droite SB'
perpendiculaire orientée à la face CSA de ce dièdre. Soit XSY
l'angle rectiligne de ce dièdre ayant S pour sommet. Pour
fixer les idées supposons XSY aigu, en ce cas :

c /\ /\ /\ldr — A'SY — XSY + A'SX ;

et de même :

/\ /\ /\ldr — B'SX XSY -f Y SB7 ;

ces égalités se lisent dans le plan
du rectiligne du dièdre; ajoutons
ces égalités membre à membre, on
aura :

/\ /x /\ /\2dr XSY + (A'SX + XSY -f Y SB')

Fig. 7i. XSY -f- A^SB'

Ainsi une face du trièdre associé est le supplément de

l'angle dièdre correspondant qui a pour arête l'arête du trièdre

primitif associée à cette face du second trièdre.
Nouvelles propriétés- des trièdres déduites de la notion des

trièdres associés. — Soient : a, è, c, les faces et A, B, G, les
dièdres d'un trièdre T, opposés à ces faces; soient : a\b\ c\
les faces et A',B\C\ les dièdres du trièdre T' associés à T ;

d'après la propriété déjà établie, et d'après la réciprocité de
l'association des deux trièdres on a :

90.a 2° - A',
b 2Ö —B',

c 2Ô — C',

Or dans le trièdre T' on a :

A 2Ô — a',

B 2Ô — y,
C 2Ö —

a' + b' + c' < 4dr :
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Or des égalités précédentes on déduit :

A + B + C 6dr — (a' + 4- c')
c'est-à-dire :

A B + C > 6dr — 4dr ou 2dl*

Nous retrouvons ainsi l'existence de l'excès sphérique,
comme propriété corrélative du théorème du parapluie.
(Chap. III.)

Cherchons de même un théorème corrélatif du théorème
qui montre toute face d'un trièdre plus petite que la somme
des deux autres ; soit a! la plus grande face du trièdre T on a :

a' < b' + c'

ou en vertu des égalités précédentes :

2 — A<2 — B-j-2 — C OU A + 2 > B + C

Ainsi : dans un angle trièdre le plus petit dièdre augmenté
de deux droits dépasse la somme des deux autres dièdres.

Remarque. — Le théorème sur l'excès sphérique peut
encore s'énoncer ainsi :

Dans un triangle sphérique, un angle extérieur est plus
petit que la somme des angles intérieurs qui n'ont pas même
sommet que lui.

II. — Le problème du dallage de la sphère.

Nous appelons polygone sphérique convexe une portion
delà sphère, limitée par des arcs de grand cercle, mais située
tout entière dans une même hémisphère bornée par chaque
côté du polygone prolongé en circonférence entière de grand
cercle.

On voit sans peine que si on considère un polygone
convexe régulier, c'est-à-dire ayant ses angles égaux entre eux
et ses côtés égaux entre eux, les sommets de ce polygone
seront tous situés sur un même petit cercle dont le pôle sera
dit un pôle du polygone.

Problème. — Quels sont les polygones réguliers sphériques
convexes que l'on peut reproduire et réunir, contigus par
côtés et par sommets, de manière à recouvrir toute la sur-

L'Enseignement mathém., 10e année; 1908 27
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face de la sphère, sans répétition nilacune? en d'autres termes
quels sont les polygones réguliers convexes aptes à daller la
surface de la sphère Désignons par x le nombre des
polygones réunis autour d'un même sommet ou nœud du réseau
de dallage, x angles contigus formant 4 angles droits, chaque

angle du polygone vaut ^ droits. D'autre part, soit y le

nombre des côtés de chaque polygone, ou dalle. Du
pôle de chaque dalle, on verra chaque côté de la dalle

sous un angle sphérique égal à j droits ; le triangle isocèle

qui a pour sommet ce pôle et pour base un côté de la dalle a

un excès sphérique égal à ^ ~ — 2 droits.

Ce nombre mesure la surface sphérique de la yme partie de
la dalle quand on prend comme unité le triangle trirectangle

qui vaut le
^

de la sphère; avec cette unité l'aire d'une dalle

est donc (^'+ y — 2^) y \ dès lors, si nous nommons £ le

nombre des dalles dont l'ensemble recouvre la sphère, on
aura entre les trois nombres entiers x, y et z la relation :

4 4 \-+ 2 J3 y S

x y

que nous pourrons écrire ainsi :

1,112f1) • x + r ~ 2 - Ty
;

le problème du dallage sphérique revient donc à trouver
tous les nombres entiers x, y, z unis par cette relation, ou

comme on dit encore à résoudre l'équation (1) en nombres
entiers.

Ce problème d'arithmétique est d'ailleurs très facile ; nous
nous contenterons ici d'en énoncer les solutions, qui sont
au nombre de cinq, savoir :

lre solution : as 3, J 3, sr: 4

2me solution : x — 3, y~ 4, # 6

Sme solution : ^ 3, y — 5, z — \1
4me solution : x—k, y 3, ^ — 8

5me solution : x 5, y—3, s —20.
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Ces cinq modes de dallages sphériques font évidemment
connaître aussi cinq solides, limités par des polygones réguliers

qui sont réunis par leurs côtés et assemblés par angles
polyèdres réguliers ; ces solides, nommés polyèdres réguliers
convexes, ont tous leurs sommets situés sur la surface sphé-
rique que l'on a envisagée.

III. — Triangles sphériques et rotations successives d'un solide.

Glissement sphérique. — Quand un corps solide reste cloué
par un point fixe 0 et qu'il se meut, ce mouvement se nomme
un mouvement de pivotement; une portion du solide qui est
à un instant sur une surface sphérique ayant le point 0 comme
centre demeurera sans cesse sur la surface de cette même
sphère. Comme trois points définissent un solide, on peut
dire que le mouvement de pivotement équivaut au glissement
d'une figure sphérique sur sa sphère.

1° Effet de deux rotations successives. Soient marqués sur
la sphère considérée les pôles de deux rotations successives;
sans doute, pour chaque rotation on pourrait hésiter entre
deux pôles, mais nous adopterons le
pôle sur lequel un observateur
marchant sur la sphère, étant posé tête
hors la sphère, verrait s'accomplir
la rotation considérée dans un sens
déterminé par rapport à sa gauche et
à sa droite; A (fig. 72) est le point de la sphère fixe qui va
être le pôle de la première rotation; B est le point de la
sphère fixe qui va être le pôle de la deuxième rotation.

On peut même supposer que ces rotations soient chacune
moindre qu'un demi-tour, soit alors u la rotation sur A vue
par l'observateur posé sur le pôle A dans le sens des aiguilles
d une montre, soit de même v la rotation également orientée
sur le pôle B.

Nous nous proposons de construire un point de la figure
sphérique entraînée qui finalement n'aura pas bougé; à cet
effet joignons le premier pôle A au second par un arc de
grand cercle AB moindre qu'une demi-circonférence.
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— IFaisons tourner (fig. 73) l'arc AB autour de A d'un angle

mais en sens contraire du sens de la rotation donnée, nous
obtenons sur l'hémisphère (1) un arc AX; faisons de même

A
1

tourner l'arc BA autour du second pôle d'un angle e,

mais dans le sens même de la
seconde rotation ; nous obtenons
ainsi un arc BY allant encore

x sur l'hémisphère (1) ; les deux
arcs AX et BY se croisent sur
l'hémisphère (1) en un point C.

Le point de la figure sphé-
rique qui était en G avant la

première rotation va par cette
Fig. 73. rotation venir en D, position

symétrique de C par rapport au
plan de l'arc AB; la seconde rotation ramène le point D en C.
C n'a donc,* en définitive, point bougé.

Donc, le déplacement final du solide résulte d'une rotation
autour de G qui représente sur la sphère l'axe qui joint
à C le centre 0 de la sphère.

Ainsi deux rotations dont les axes se croisent en un point O

sont remplaçables par une rotation unique dont Vaxe passe
aussi par le même point O.

Remarque. — Si l'ordre des rotations avait été changé,
mais si leurs grandeurs et si leurs pôles sur la sphère fixe
avaient été maintenus, le pôle G de la rotation unique
remplaçant les deux autres eût été au point D.

Grandeur de la rotation remplaçante. — Soit (fig. 73) E le

point symétrique de B par rapport au plan de l'arc AX, le

point E de la figure sphérique vient en B par la première
rotation, de plus il y demeure pendant la seconde rotation.

De là résulte que l'angle XCB extérieur au triangle AGB
1

représente la moitié w de la rotation remplaçante w.

2° Théorème. — Tout déplacement défini de pivotement
sur un point O peut toujours être réalisé par une rotation
exécutée autour d'un certain axe passant par O.
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En effet, une figure sphérique a toujours sa situation définie

par les situations de deux de ses points; or le changement
des positions de ceux-ci peut toujours être produit par un

premier changement amenant le point P rj*

(fig. 74) en sa position finale P', suivi d'une
rotation convenable autour du pôle P', qui | ^laisse la droite OP' invariable. „.r ig.

Le premier changement peut être réalisé

par une rotation convenable exécutée autour d'un pôle I
appartenant à l'arc de grand cercle perpendiculaire à l'arc PP'

en son milieu, et ceci, même d'une infinité de manières. Le
déplacement final de la figure est donc produit par une
première rotation autour de I suivie d'une seconde rotation
autour de P' ; or nous venons de voir que ces deux déplacements
successifs peuvent être remplacés par une rotation unique,
et le théorème est démontré.

Remarques. — Il est d'ailleurs bien évident, d'après la
définition de la ligne droite, et les propriétés des trames,
que deux rotations autour de deux axes concourants ne
s'équivalent que si elles sont exécutées autour d'un même
axe. D'où la conséquence suivante :

Autre remarque. — Si le pôle A est donné, le lieu des axes
des secondes rotations qui produisent après une rotation de

pôle A un pivotement total donné est un plan, c'est le plan
du grand cercle qui fait en C avec l'arc CX (fig. 73) l'angle
déterminé ^ w.

IV.— Fin de la Géométrie qualitative. Prévision de la Géométrie
métrique.

Un triangle plan ou un triangle sphérique, image d'un
trièdre, renferment 6 éléments : 3 côtés et 3 angles; notons
seulement que dans un triangle sphérique les mots côtés,
appliqués aux arcs de cercle qui forment les côtés, désignent
en réalité : les angles au centre de la sphère dont ces arcs
sont les images, ou encore les faces du trièdre correspondant
au triangle sphérique.
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Aux trois cas généraux d'égalité des triangles plans
correspondent, on le vérifie bien aisément, trois cas d'égalité
ou symétrie des triangles sphériques. Exemple : si deux
triangles sphériques ont un angle égal compris entre deux
côtés égaux chacun à chacun, l'un des triangles est ou bien
égal à l'autre ou égal à un symétrique de l'autre.

Or, ces divers cas d'égalité nous montrent que, aussi bien
dans les triangles sphériques que dans les triangles plans,
les six éléments d'un triangle solide dépendent de trois
d'entre eux, puisque trois d'entre eux permettent de
construire le triangle ou son symétrique. Il doit donc exister un
moyen de calculer ou de construire les grandeurs de trois
des éléments du triangle, connaissant les trois autres.

Ces constructions ou ces calculs seront l'objet du second
livre de la géométrie naturelle, elles formeront la géométrie
quantitative ou métrique.

Nous terminons ici le premier livre, et nous pourrons le
résumer en'disant qu'il comprend essentiellement :

1° La notion des deux mouvements fondamentaux d'un
solide: rotation autour d'une droite; translation avec
guidage plan autour d'une droite qui est l'axe de la translation.

2° L'ajustage ou la correspondance des figures égales.
3° La symétrie.
C'est ce qu'on peut encore appeler la Géométrie qualitative.

Elle doit être enseignée avec des modèles de solides et de

mouvements.
J. Andrade (Besançon).

P.-S». — Remarques. —1. Bien que l'exposé didactique du
premier livre de la géométrie nouvelle soit achevé, je rappellerai aux
lecteurs de cette Bevue que le second livre ou la géométrie
métrique a été approfondi ici même dans mon article intitulé « Les
fonctions angulaires dans la géométrie de l'ajustage » (8e année,
p. 257-281). Cet article pourra être aisément et considérablement
allégé en vue d'un enseignement élémentaire qui, à mon avis, doit
rester euclidien (en ce sens qu'on adoptera avec Euclide le
phénomène de la similitude), mais qui néanmoins doit faire sentir?
même au débutant, que le solide euclidien pour être le plus simple
n'est pourtant pas le seul, logiquement possible, et cela suffira
pour une première étude élémentaire.

II. Quittons maintenant le domaine pédagogique. Voici une re-
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