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LE PREMIER LIVRE DE LA GÉOMÉTRIE NATURELLE1

CHAPITRE V

La symétrie.
Sphère et Pian comparés ; analogies et dissemblances.

Avant d'étudier les analogies et les dissemblances des triangles
sphériques comparés aux triangles plans, nous devons, pour cet
objet même, étudier un mode remarquable de correspondance
entre deux figures : le mode de correspondance par symétrie.

J-— Déîinitions et propriétés des figures symétriques.

Définitions. -— 1° Si deux figures Fd et F2 se correspondent,
point par point, de manière que (fig. 53) toute droite qui réunit

un point de la première à un point
correspondant M2 de la seconde soit
traversée en son milieu H par un plan P

fixe, mais perpendiculaire à la droite de

jonction, on dira que les figures F1 et F2

sont symétriques par rapport au plan P.
Remarques. —a) Le plan P est le lieu

des points de l'une des deux figures qui
coïncident avec leurs correspondants
respectifs de l'autre figure. C'est le plan
de symétrie. — b) Une droite juxtaposée sur sa symétrique
est ou bien perpendiculaire au plan de symétrie, ou bien
située dans ce plan.

2° Si deux figures Gi et G2 (fig. 54) se correspondent point
par point de manière que le milieu de la droite qui réunit

M-

p /MjifÉi
Me

Fig. 53.

1 Voir L'Enseign. Math., année 1908, n® du 15 mai, p. 185-207; n® du 15 juillet, p. 296-318.
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les deux points correspondants et M2 soit un point fixe O
de l'espace, on dit que les deux figures sont symétriques

^ Vune de l'autre par rapport au point O. Le point O

s'appelle le centre de symétrie.
Remarque. — Une droite juxtaposée sur sa symé-

° trique doit nécessairement passer par le centre de sy¬
métrie.

V Problème fondamental. — On construit (fig. 55) la

Fig. figure F2 symétrique de F1 par rapport au plan P et la
54'

figure F3 symétrique de Fi par rapport au point O pris
dans le plan P. Cherchons
quelle relation existe entre
les deux figures 1\2 et F3.

Pour répondre à cette question

menons par le point O la

droite ZOZ' perpendiculaire
au plan P; soit M4 un point
quelconque de la figure F4,

soient M2 son correspondant
dans F2 et M3 son correspondant

dans F3.
Le milieu H de M,M2 est

la projection commune desr J Fig 55.

points Ma et M2 sur le plan P;
nous avons vu (chapitre 11, théorie du dièdre) que la droite
ZOZ' est dans le plan des trois droites IV^OMg, OH, OM2, et
si Ton fait le rabattement de ce plan sur lui-même par un
demi-tour exécuté autour de OH, Mi venant en M2 l'angle/\ ^ /\
MdOH recouvre l'angle M2OH : il résulte de là que les sup-/\ /\pléments de ces angles ou ZOMj et Z'OM2 sont égaux; en
considérant alors l'angle opposé par le sommet à ZOM4 c'est-

à-dire l'angle Z'OM3 on voit enfin que la droite OZ' est la

bissectrice de l'angle au sommet O du triangle M3OM2, et
comme ce triangle est isocèle puisque OM2 et OM3 tous deux
égaux à OM1 sont égaux, la droite OZ' doit passer par le
milieu de MiMçl et être perpendiculaire à cette droite.

On voit donc que pour amener la figure F3 en coïncidence
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avec la figure F2 il suffira de la faire tourner aulour de 1 axe

de rotation OZ d'une demi-révolution.
Conséquence. —Les figures symétriques d'une même figure

sont superposables. — Ce fait est la conséquence du problème

précédent et de la remarque suivante.

Remarque. — Les figures symétriques d'une même figure
F par rapport à deux centres différents sont superposables,

car elles sont chacune superposable sur la symétrique de la

même figure F par rapport à un plan contenant les deux

centres.

2. _ Une figure non plane n'est en général pas superposable sur
sa symétrique, et elle n'est, dans tous les cas, jamais superposable
avec correspondance des éléments symétriques dans la superposition,

bien que tous les éléments plans correspondants soint égaux.
Exemple: (fig. 56) soit un trièdre, formons le trièdre symétrique

par rapport à son sommet S ;

faces et dièdres du nouveau
trièdre sont respectivement
égaux aux éléments
correspondants du premier trièdre,
car ce sont des faces ou des

dièdres, deux à deux, opposés

par le sommet ou par
l'arête. Or, une trame d'un
solide fixant la position du
solide, on pourra, si on veut
essayer la superposition du
trièdre et de son symétrique a i

par éléments symétriques,
commencer par faire coïncider

la trame ASC sur la
symétrique A'SC' par une
rotation de un demi-tour exécutée autour d'une perpendiculaire
menée par S à cette face, mais, après ce mouvement, la droite SB
est restée d'un même côté du plan ASC et ne pourra donc pas
venir coïncider avec sa symétrique SBC Si pourtant le trièdre
est isocèle, si par exemple (fig. 57) le dièdre d'arête SA est égal
au dièdre d'arête SC, une rotation de un demi-tour exécutée
autour de la perpendiculaire XY à la bissectrice de l'angle ASC
fera coïncider le trièdre sur son symétrique; mais dans ce mode
de superposition l'arête SC recouvre SA' qui n'est pas son
élément symétrique.

Autre exemple. —11 résulte des lois de la réflexion de la lumière

Fig. 56. Fig. 57.
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que l'image d'une figure F éclairée, fournie par un miroir plan, est
une figure symétrique de F, par rapport à ce miroir.

Or, regardez-vous dans une glace plane, et que votre main gauche
tire votre oreille gauche, votre image ne vous est pas superposable
car elle se tire l'oreille droite.

3. — Les figures planes sont égales à leurs symétriques. —
Ce fait résulte du théorème suivant (fig. 58) :

Théorème. — Si on fait tourner une figure plane F autour
d'un axe XYsitué dans le plan (1) de la figure et si la figure

F vient, après la rotation occuper la
position F' dans le plan (2) les figures
égales F et F' sont encore symétriques
par rapport au plan P qui partage en
deux dièdres égaux le dièdre formé par
les deux demi-plans, (1), XY, d'une part,
et, 2, XY, d'autre part.

En effet tout point S de la figure
situé sur l'axe demeure immobile, si donc
H est le milieu de la droite qui réunit
un point M de la figure à sa nouvelle
venue dans la figure F', la droite SH sera
perpendiculaire à MM' et bissectrice de

l'angle en S du triangle isocèle M SM'.
En faisant varier à volonté le point S on voit que la droite

MM' est perpendiculaire en H au plan qui passe par H et par
XY; en prenant pour S le point I projection commune des

points M et M' sur XY on voit de suite que le plan H, XY est
le plan qui forme des dièdres égaux avec les plans (1) et (2)

ce plan est donc le même pour tous les points M ; or M et
M' sont symétriques par rapport à ce plan fixe. Il en est de

même des figures F et F'.
Remarque. — Ce théorème est la clef des propriétés du

triangle sphérique isocèle.

II. — Propriétés du triangle sphérique.

1. — Propriété du triangle sphérique dont deux côtés sont
égaux.— Soit (fig. 59) ABC un triangle sphérique isocèle
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c'est-à-dire dont les côtés arc AB et arc AC sont égaux.
Soient I le milieu de l'arc de base BC, H le milieu de la

corde de l'arc de grand cercle BC, et 0 le centre de la sphère ;

il résulte du théorème précédent que :

1° les arcs égaux AB et AC sont
symétriques par rapport au plan bissecteur
du dièdre (B, OA, G); 2° les arcs égaux
BI et IC sont symétriques par rapport
au plan bissecteur du dièdre (équivalent

à 2 droits) (B, 01, C); de plus, tous
deux perpendiculaires à BC au point H, o

ces deux plans doivent coïncider. Fig. 59.

Ainsi donc : La figure formée par
l'arc de cercle AB, l'arc Bl, les deux rayons OA, OB, est
symétrique de la figure formée par l'arc de cercle AC, 1 arc CI,
les deux rayons OA, OC. En particulier les tangentes en B

aux deux arcs de grand cercle BA et BC forment un angle
plan symétrique de l'angle formé par les tangentes en C aux
deux arcs de grand cercle CA et BC, ces deux angles sont
donc égaux, et enfin les angles en B et C du triangle sphé-
rique ABC sont égaux; de plus le plan des quatre points
A I H 0 étant le plan de symétrie des deux portions du

triangle sphérique considéré, on voit que les deux tangentes
en l aux deux arcs IB et IC, portions du même arc BC, sont à

la fois coïncidantes et symétriques par rapport à ce plan,
mais hors de ce plan ; elles forment donc une perpendiculaire
à ce plan qui est celui de l'arc de grand cercle AI ; donc enfin
dans le triangle sphérique isocèle Tare AI qui joint le sommet
au milieu de l'arc de base est perpendiculaire à cette base.

2. Propriété du triangle sphérique dont deux angles sont
égaux. — Soit 0 le centre de la sphère. Considérons d'abord
le cas d'un, triangle sphérique ABC (fig. 60) dont les angles
en B et C sont droits; A est alors un pôle1 de l'arc de grand
cercle BC, c'est-à-dire que le rayon OA est perpendiculaire
au plan BOC (théorie du dièdre), les arcs AB et AC égaux
chacun à un quadrant2 sont égaux. Soit H le milieu de BC,

1 pôle d un cercle de la sphère : point où l'axe du cercle perce la surface sphérique.
2 quadrant ou quart de la circonférence d'un grand cercle.
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l'arc AH est dans le plan de symétrie des figures planes BOA
et GOA, soit D un point quelconque de l'arc AH ; joignons

OD, D est à lui-même son
symétrique, B et C sont symétriques par
rapport au plan ADHO, les angles
plans DOB et DOC symétriques sont
égaux, donc les arcs BD et DC sont

/\
égaux et les angles sphériques DBG

/\et DGB sont égaux.
Il n'y a d'ailleurs à partir du som-

à met G qu'un arc de grand cercle fai-
Fig. 60. sant avec l are de grand cercle BG

et d'un côté de cet arc un angle
sphérique donné, comme le montre la notion du dièdre.

Conséquence. — Si (fig. 61) un triangle quelconque sphérique

A'BC a ses angles en A et G égaux, l'angle DBG étant

par exemple aigu, nous considérerons
le pôle A de l'arc BG qui est dans le
même hémisphère que A', soit H le
milieu de l'arc BG et D le point où l'arc
BA' coupe AH. Joignons D à G par un
arc de grand cercle, les arcs DG et A'C
feront au-dessus de BC un angle égal à

l'angle DBH; donc ces arcs DG et A'C
coïncideront. Donc A' devant coïncider Fig. ei.

avec D, on aura bien arc A'C arc A'B.
Ainsi, un triangle sphérique, qui a deux angles égaux, aura

aussi égaux les côtés opposés à ces angles.
3. — Triangle sphérique propre qui a

deux angles inégaux. — Théorème. —
Dans un pareil triangle sphérique les côtés

opposés à ces angles sont inégaux et
dans le même ordre de taille.

Du sommet B du plus grand des deux
Fig. 62. angles (fig. 62) traçons l'arc de grand cercle

B1 qui, dans le triangle fait avec le côté
BG commun aux deux angles un angle égal au plus petit des
deux angles comparés dont le sommet est en G, cet arc coupe
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le côté AG en I ; le triangle éqniangle 1BG est alors isocèle et

arc BI arc IC.

Or le triangle propre AIB donne :

arc AB arc AI -f- arc IB

c'est-à-dire
arc. AB arc AI -f- arc IC

ou enfin
arc AB arc AC.

Ce qui démontre le théorème énoncé.
On va établir la réciproque de cette proposition.
4. — Triangle sphérique qui a deux côtés inégaux. — Soient

/\ /\
(sans figure) a et b les côtés inégaux; A et B les angles
respectivement opposés à ces côtés; je dis que le fait : a < b va

/\ /\entraîner le Fait : A < B.

En effet des trois seules hypothèses possibles

/\ /\ /\ /\ /\lo A > B ; 2° A =r B ; 3° A < B

la première entraînerait (V; II, 3) a y b ; la seconde exigerait

(V; II, 2) que a b; la troisième hypothèse subsiste donc
seule et la démonstration est achevée.

5. — Comparaison de ces théorèmes avec les théorèmes analogues
du plan. — En comparant les propositions qui précèdent et leurs
analogues dans le plan (Chapitre III) le lecteur aperçoit la raison
des changements nécessaires dans les étapes des démonstrations.
Nous avions, avec les propriétés admises pour la droite, adopté et
justifié pour cette série de propositions le point de départ
suivant :

L'angle extérieur d'un triangle dépasse l'un et l'autre des deux
angles du triangle qui n'ont pas même sommet que l'angle extérieur

considéré.
Or cette proposition, on le voit aisément, est fausse pour les

triangles sphériques ; exemple: ceux-ci peuvent avoir deux angles
droits et un troisième angle supérieur à 1 droit.

En revanche nous possédions pour les triangles sphériques,
images des trièdres, cette proposition qu'un côté du triangle est
plus petit que la somme des deux autres.
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De là ce changement dans la marche suivie; les angles sphé-

riques ne sont plus superposables sur eux mêmes par retournement,

et les raisonnements, qui pour le plan employaient le
retournement, sont remplacés sur la sphère par les raisonnements
qui invoquent les propriétés de la symétrie.

Ces remarques se vérifieront encore dans la théorie des
perpendiculaires et des obliques sphériques que nous allons résumer
succinctement.

111. — Perpendiculaires et obliques sur la sphère.

Etant donnés sur la sphère (sans figure) un arc de grand cercle
XY et un point A hors de cet arc, nous distinguerons deux cas :

1° ou bien A est un pôle de XY : 2° ou bien A est distinct des
pôles de XY ; en nous rappelant les propriétés de la projection
d'une droite sur un plan (chapitre II) nous voyons que dans le cas
1° tous les arcs de grand cercle joignant A aux divers points de
XY sont égaux à un quadrant et tous perpendiculaires à XY ; au
contraire daps le second cas on obtient l'arc perpendiculaire à

XY et passant par A en joignant ce point à l'un ou l'autre pôle

L'arc ainsi obtenu est unique mais il a deux pieds : (fig. 63) le pied
H ou le pied K ; l'un d'eux H est à une distance de A moindre
qu'un quadrant. Nous allons voir que cette distance AH est la plus
courte distance sphérique de A aux divers points de XY ; comparons

l'arc AH à l'arc oblique AM prolongeons AH d'une longueur

de XY.

p
égale au-dessus de XY et
joignons A' et M par un grand arc ;

le triangle AA'M est un triangle
propre et

arc AA' arc AM -f- arc A'M
X

Y les arcs AM et A'M sont égaux
comme symétriques par rapport
au plan du cercle XY, donc

2 arc AH <[ 2 arc AM
OU

Fig. 63.
arc AH < arc AM

Soient (fig. 63) AM et AN deux obliques aboutissant du même côté
de H et telles que HM et HN soient tous deux moindres que 2

quadrants. Soit alors arc HM < arc HN.
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Le triangle AMA' est intérieur alors au triangle propre ANA'

or soient (fxg. 64) deux tels triangles; prolongeons l'arc AM

jusqu'en J sur A'N; par les deux triangles sphériques partiels on a :

arc AM + arc MJ < arc AN + arc NJ

arc A'M < arc MJ + arc JA ;

d'où, en ajoutant ces égalités membre à membre :

arc AM -h arc MA7 < arc AN -f- arc NA',

en appliquant ceci à la figure 63, nous aboutirons

à la conclusion :

2 arc AM < 2 arc AN ou à : arc AM < arc AN ;

donc, de 2 obliques sphériques qui s'écartent inégalement du pied
propre de la perpendiculaire celle qui s'écarte le plus est la plus
grande.

Propriété des obliques réduites. — Triangles réduits. — Nous
considérons d'abord (fig. 65) les obliques dont les pieds s écartent
de moins d'un quadrant du pied de la plus courte distance; consi¬

dérons d'abord deux telles obliques

AM et AN, situées dans un
même hémisphère par rapport à

AH; soit arc HM < arc HN et soit
AM' l'arc symétrique de AM par

y rapport au plan de l'arc AH; arc
AM < arc AN ; donc : arc AM' <arc
AN; donc, dans le triangle propre
M'AN angle AMTI > angle aInM ;

donc, en revenant au triangle AMN,

angle extérieur enM< angle AN M.
Fig. 65. Remarque. — On étendra aisé¬

ment cette propriété à tout triangle
sphérique réduit, c'est-à-dire, dont les trois côtés sont moindres
qu'un quadrant.

Petits cercles sur la sphère. — Le rayon sphérique d'un petit
cercle de la sphère sera la distance sphérique de l'un des pôles à

un point quelconque du petit cercle; dans ce qui suit nous
prendrons pour pôle celui des pôles pour lequel le rayon sphérique
est moindre qu'un quadrant.

La remarque faite tout à l'heure sur l'angle extérieur des
triangles sphériques réduits nous permettra de démontrer à l'égard
des petits cercles de la sphère les mêmes théorèmes de continuité
que ceux établis pour les cercles du plan; en considérant ainsi
les pôles propres et les rayons propres des petits cercles de la

Fig. 64.
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sphere, nous aurons alors pour les positions mutuelles de deux
petits cercles de la surface sphérique les mêmes critères que pour
les cercles du plan (voir chapitre IY).

IV. — Quelques propriétés spéciales aux triangles
sphériques, leurs aires comparées.

1° Le fuseau sphérique et la notion d'aire sphérique. —
Les fuseaux sphériques de même angle sont, au moins d'une
manière, superposables ; ils représentent des étendues ou
aires sphériques mesurables et comparables entre elles
comme les angles des fuseaux considérés.

D'autre part si on partage un fuseau en deux portions par
un plan perpendiculaire ä l'arête du fuseau on obtient deux

triangles sphériques bi-rectangles symétriques
et isocèles admettant un mode de superposition

indiqué par la figure 66.

L'aire du fuseau est alors double de l'aire
de l'un ou l'autre de ces triangles.

Nous appellerons aires sphériques équivalentes

: des aires qui sont composées de
portions superposables en correspondance dans
les deux figures.

Si on prend comme unité d'aire l'aire du
triangle sphérique trirectangle qui est la
huitième p-orlion de la sphère, l'aire d'un fuseau
sera évidemment mesurée par deux fois le

nombre qui mesure son angle comparé à l'angle droit.
2° Théorème. —Deux triangles sphériques symétriques sont

équivalents. — Si on élève sur deux côtés d'un triangle
sphérique, et en leurs milieux, dos arcs de grand cercle perpendiculaires

respectivement à ces côtés, le point I (sans figure)
où ces arcs se coupent est à des distances sphériques égales
des trois sommets, il appartient donc à l'arc de grand cercle
perpendiculaire au troisième côté en son milieu.

Soient (fig, 67, en haut) ABC et A'B'C' deux triangles
sphériques symétriques, le point V symétrique du point I de l'un
sera évidemment à distances sphériques égales des trois som-

Fig. 66.
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mets, puisque les éléments plans correspondants des figures

symétriques sont égaux.
Pour la même raison les distances sphériques Al, AH, BH,

HC sont respectivement égales à leurs symétriques, arcs AT,
arc A'H', arc B'H', arc t ^

H'C'; d'où résulte que c H J3

si le point I est intérieur
à ABC, T sera intérieur
à A'B'C', et que si le

point I est dans l'angle
ABC et de l'autre côté
de AC que B, la position

de T à l'égard des

éléments symétriques
A'B'C' sera la même que ^la disposition précédente,

quoiqu'avec une ^
Fig. 07.

orientation différente.
Le triangle sphérique considéré est alors la somme de trois
portions additives ou la somme de deux portions positives
diminuée d'une portion soustractive ; ces portions sont
isocèles, et par conséquent admettent un mode de superposition
avec leurs symétriques, d'où résulte enfin que les deux

triangles sphériques ABC et
A'B'C' sont bien équivalents.

3° Mesure de l'aire d'un
triangle sphérique. — En prolongeant

(fig. 68) les côtés AC et
CB jusqu'aux points A' et B' où
ils recoupent respectivement le
côté AB prolongé, on partage
toute une moitié de la sphère
en quatre triangles : ACB, et les
trois triangles (1), (2), (3). Avec
l'unité d'aire adoptée la demi-

/\
sphère vaut 4 unités; soient A,

B, C les angles du triangle sphérique considéré, le triangle
(1) vaut le fuseau B moins le triangle ACB; le triangle (2)

A

Fig. 68.

/\ /\
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vaut le fuseau A moins le triangle AGB; le triangle (3) vaut
le fuseau G moins le symétrique A'C'B' du triangle AGB,
d'ailleurs équivalent à ce dernier ; chaque fuseau étant
mesuré par 2 fois son angle mesuré lui-même avec l'angle
droit, nous aurons, par la décomposition de l'hémisphère
ci-dessus définie,

(2A — aire ACB) -f- (2B — aire ACB) -J- (2C — aire ABC) -j- aire ACB =: 4

d'où :

aire ABC — (A -J- B -j- C — 2) droits.

c'est-à-dire :

Théorème. — L'aire d'un triangle sphérique est mesurée

par l'excès sur deux droits de la somme de ses angles ; c'est
ce qu'on nomme l'excès sphérique du triangle.

CHAPITRE VI

Géométrie qualitative de la sphère. — Déplacements de

pivotement d'un corps solide.

Ou s'arrête la géométrie qualitative Ou commence la géométrie
métrique P

I. — Triangles sphériques supplémentaires et trièdres associés.

En comparant les" aires des triangles sphériques situés
sur une même surface sphérique, nous avons reconnu que
la somme des trois angles d'un triangle sphérique surpasse
deux angles droits par un excès dont la valeur est
proportionnelle à l'aire du triangle ; cet excès est ce qu'on appelle
l'excès sphérique du triangle.

On peut se proposer d'établir directement l'existence de
cet excès sphérique soit sur le triangle sphérique, mais sans

passer par la notion d'aire, soit sur l'angle trièdre dont le
triangle est l'image.

C'est cette dernière méthode que nous suivrons.
Nous allons définir d'abord les trièdres réciproques ou
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marque qui peut intéresser les lecteurs géomètres ; les propriétés
de l'étendue vectorielle en géométrie générale, telles que je les ai

exposées dans l'article précité, vont être éclairées d'un nouveau
jour par le théorème d'Ampère-Stokes.

En effet, le vecteur tourbillon d'un vecteur donné, correspond à

une distribution continue et même dérivable; or, les deux caractères

de dérivabilité et de continuité, dont le premier contient
d'ailleurs le second, ne sont pas essentiellement euclidiens. De là
l'extension du théorème d'Ampère-Stokes en géométrie générale;
enfin, cette extension nous donne immédiatement et d'une
manière intuitive le théorème suivant :

L'espace euclidien est le seul dans lequel puisse exister un
réseau triple orthogonal avec conservation de la longueur des arcs
correspondants; en d'autres termes, le théorème d'Ampère-Stokes
nous montre de suite que si l'élément linéaire ds d'un espace est
réductible à la forme :

[dsf — (dx)2 -j- (dr)2 -f- (dz)'2

cet espace est nécessairement euclidien.
Ce rapprochement entre la méthode classique des (ds)2 et ma

méthode vectorielle pour l'étude de la géométrie générale me paraît
intéressant à signaler.

J. A.

L'IMPORTANCE DES
TRANSFORMATIONS LINÉAIRES DES VECTEURS

DANS LE CALCUL VECTORIEL GÉNÉRAL

Une fois établi (et cela nous semble logique) que : «

l'unification des notations vectorielles doit être faite en tenant
compte des résultats auxquels conduira l'analyse, complète
et rationnelle, des entités géométriques et mécaniques, cle leurs
opérations et de leurs fonctions, » nous croyons utile d'indiquer

brièvement Félat actuel des recherches relatives à la
question, et quelles sont les entités qui doivent encore être
étudiées par rapport à leur théorie générale et à leurs
applications.

M. R. Marcolongo et moi, nous avons étudié 1 sous l'as-
1 Rendiconti del Circolo matematico di Palermo. Nota I, tomo XXIII (1° sem. 1907) : Nota

II, t. XXIV; 2o sem. 1907): Nota III, t. XXIV : Nota IV, t. XXV (1« sem. 1908) : Nota V (ed
ultima), t. XXVI (2° sem. 1908).
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associés, dont les images sphériques seront deux triangles
dits polaires ou supplémentaires.

Envisageons (fig- 69) un trièdre de sommet S et dont les

arêtes sont les trois demi-droites SA, SB, SC. Par S élevons

une droite perpendiculaire à la

face BSC du trièdre, et nous
aurons soin de la tirer du même côté
de cette face que celui où se trouve
l'arête SA, nous obtenons ainsi la
demi-droite SA'; en répétant cette
construction pour chaque face,

nous formons un nouveau trièdre
de sommet S et dont les arêtes
sont SA', SB', SC'.

Ces deux trièdres sont dans une
corrélation telle que toute face de l'un orientée par rapport à

l'arête opposée, engendre une arête correspondante du
second trièdre; on les appelle deux trièdres associés ou
réciproques ou encore : deux trièdres supplémentaires ; ces
désignations se rattachent à des propriétés aussi simples que
remarquables que nous allons maintenant établir.

1° Le mode d'association des deux trièdres est réciproque.
Faisons d'abord la remarque suivante qui est une vérité de
la Palice : considérons un assemblage de deux demi-droites

(fig. 70) tirées par un point O d'un plan P,
et dont l'une D est perpendiculaire à ce

plan; ces demi-droites seront d'un même
côté du plan P ou bien de part et d'autre
de ce plan suivant que l'angle de ces
de mi-droite s sera aigu ou obtus ; la

remarque se justifie immédiatement en
considérant l'intersection OU du plan P

avec le plan passant par les droites données.
Dès lors, revenons à nos deux trièdres associés (fig. 69).

L'arête SB' a été conduite perpendiculaire au plan ASC ;

l'arête SC' a été menée perpendiculaire au plan ASB ; en
particulier SB' et SC sont l'une et l'autre, perpendiculaires
à SA ; SA est donc une droite perpendiculaire à la face B'SC'
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et comme l'angle A'SA est aigu, SA sera perpendiculaire à

la face B'SC' et du même côté de cette face que SA'.
Ainsi le premier trièdre dérive du second trièdre, comme

le second dérivait du premier.
2° Dans le trièdre d'arêtes SA, SB, SC, considérons le

dièdre d'arête SC; et (fig. 71) soient tracées : la droite SA'
perpendiculaire orientée à la face CSB et la droite SB'
perpendiculaire orientée à la face CSA de ce dièdre. Soit XSY
l'angle rectiligne de ce dièdre ayant S pour sommet. Pour
fixer les idées supposons XSY aigu, en ce cas :

c /\ /\ /\ldr — A'SY — XSY + A'SX ;

et de même :

/\ /\ /\ldr — B'SX XSY -f Y SB7 ;

ces égalités se lisent dans le plan
du rectiligne du dièdre; ajoutons
ces égalités membre à membre, on
aura :

/\ /x /\ /\2dr XSY + (A'SX + XSY -f Y SB')

Fig. 7i. XSY -f- A^SB'

Ainsi une face du trièdre associé est le supplément de

l'angle dièdre correspondant qui a pour arête l'arête du trièdre

primitif associée à cette face du second trièdre.
Nouvelles propriétés- des trièdres déduites de la notion des

trièdres associés. — Soient : a, è, c, les faces et A, B, G, les
dièdres d'un trièdre T, opposés à ces faces; soient : a\b\ c\
les faces et A',B\C\ les dièdres du trièdre T' associés à T ;

d'après la propriété déjà établie, et d'après la réciprocité de
l'association des deux trièdres on a :

90.a 2° - A',
b 2Ö —B',

c 2Ô — C',

Or dans le trièdre T' on a :

A 2Ô — a',

B 2Ô — y,
C 2Ö —

a' + b' + c' < 4dr :
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Or des égalités précédentes on déduit :

A + B + C 6dr — (a' + 4- c')
c'est-à-dire :

A B + C > 6dr — 4dr ou 2dl*

Nous retrouvons ainsi l'existence de l'excès sphérique,
comme propriété corrélative du théorème du parapluie.
(Chap. III.)

Cherchons de même un théorème corrélatif du théorème
qui montre toute face d'un trièdre plus petite que la somme
des deux autres ; soit a! la plus grande face du trièdre T on a :

a' < b' + c'

ou en vertu des égalités précédentes :

2 — A<2 — B-j-2 — C OU A + 2 > B + C

Ainsi : dans un angle trièdre le plus petit dièdre augmenté
de deux droits dépasse la somme des deux autres dièdres.

Remarque. — Le théorème sur l'excès sphérique peut
encore s'énoncer ainsi :

Dans un triangle sphérique, un angle extérieur est plus
petit que la somme des angles intérieurs qui n'ont pas même
sommet que lui.

II. — Le problème du dallage de la sphère.

Nous appelons polygone sphérique convexe une portion
delà sphère, limitée par des arcs de grand cercle, mais située
tout entière dans une même hémisphère bornée par chaque
côté du polygone prolongé en circonférence entière de grand
cercle.

On voit sans peine que si on considère un polygone
convexe régulier, c'est-à-dire ayant ses angles égaux entre eux
et ses côtés égaux entre eux, les sommets de ce polygone
seront tous situés sur un même petit cercle dont le pôle sera
dit un pôle du polygone.

Problème. — Quels sont les polygones réguliers sphériques
convexes que l'on peut reproduire et réunir, contigus par
côtés et par sommets, de manière à recouvrir toute la sur-

L'Enseignement mathém., 10e année; 1908 27
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face de la sphère, sans répétition nilacune? en d'autres termes
quels sont les polygones réguliers convexes aptes à daller la
surface de la sphère Désignons par x le nombre des
polygones réunis autour d'un même sommet ou nœud du réseau
de dallage, x angles contigus formant 4 angles droits, chaque

angle du polygone vaut ^ droits. D'autre part, soit y le

nombre des côtés de chaque polygone, ou dalle. Du
pôle de chaque dalle, on verra chaque côté de la dalle

sous un angle sphérique égal à j droits ; le triangle isocèle

qui a pour sommet ce pôle et pour base un côté de la dalle a

un excès sphérique égal à ^ ~ — 2 droits.

Ce nombre mesure la surface sphérique de la yme partie de
la dalle quand on prend comme unité le triangle trirectangle

qui vaut le
^

de la sphère; avec cette unité l'aire d'une dalle

est donc (^'+ y — 2^) y \ dès lors, si nous nommons £ le

nombre des dalles dont l'ensemble recouvre la sphère, on
aura entre les trois nombres entiers x, y et z la relation :

4 4 \-+ 2 J3 y S

x y

que nous pourrons écrire ainsi :

1,112f1) • x + r ~ 2 - Ty
;

le problème du dallage sphérique revient donc à trouver
tous les nombres entiers x, y, z unis par cette relation, ou

comme on dit encore à résoudre l'équation (1) en nombres
entiers.

Ce problème d'arithmétique est d'ailleurs très facile ; nous
nous contenterons ici d'en énoncer les solutions, qui sont
au nombre de cinq, savoir :

lre solution : as 3, J 3, sr: 4

2me solution : x — 3, y~ 4, # 6

Sme solution : ^ 3, y — 5, z — \1
4me solution : x—k, y 3, ^ — 8

5me solution : x 5, y—3, s —20.



GÉOMÉTRIE NATURELLE 407

Ces cinq modes de dallages sphériques font évidemment
connaître aussi cinq solides, limités par des polygones réguliers

qui sont réunis par leurs côtés et assemblés par angles
polyèdres réguliers ; ces solides, nommés polyèdres réguliers
convexes, ont tous leurs sommets situés sur la surface sphé-
rique que l'on a envisagée.

III. — Triangles sphériques et rotations successives d'un solide.

Glissement sphérique. — Quand un corps solide reste cloué
par un point fixe 0 et qu'il se meut, ce mouvement se nomme
un mouvement de pivotement; une portion du solide qui est
à un instant sur une surface sphérique ayant le point 0 comme
centre demeurera sans cesse sur la surface de cette même
sphère. Comme trois points définissent un solide, on peut
dire que le mouvement de pivotement équivaut au glissement
d'une figure sphérique sur sa sphère.

1° Effet de deux rotations successives. Soient marqués sur
la sphère considérée les pôles de deux rotations successives;
sans doute, pour chaque rotation on pourrait hésiter entre
deux pôles, mais nous adopterons le
pôle sur lequel un observateur
marchant sur la sphère, étant posé tête
hors la sphère, verrait s'accomplir
la rotation considérée dans un sens
déterminé par rapport à sa gauche et
à sa droite; A (fig. 72) est le point de la sphère fixe qui va
être le pôle de la première rotation; B est le point de la
sphère fixe qui va être le pôle de la deuxième rotation.

On peut même supposer que ces rotations soient chacune
moindre qu'un demi-tour, soit alors u la rotation sur A vue
par l'observateur posé sur le pôle A dans le sens des aiguilles
d une montre, soit de même v la rotation également orientée
sur le pôle B.

Nous nous proposons de construire un point de la figure
sphérique entraînée qui finalement n'aura pas bougé; à cet
effet joignons le premier pôle A au second par un arc de
grand cercle AB moindre qu'une demi-circonférence.
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— IFaisons tourner (fig. 73) l'arc AB autour de A d'un angle

mais en sens contraire du sens de la rotation donnée, nous
obtenons sur l'hémisphère (1) un arc AX; faisons de même

A
1

tourner l'arc BA autour du second pôle d'un angle e,

mais dans le sens même de la
seconde rotation ; nous obtenons
ainsi un arc BY allant encore

x sur l'hémisphère (1) ; les deux
arcs AX et BY se croisent sur
l'hémisphère (1) en un point C.

Le point de la figure sphé-
rique qui était en G avant la

première rotation va par cette
Fig. 73. rotation venir en D, position

symétrique de C par rapport au
plan de l'arc AB; la seconde rotation ramène le point D en C.
C n'a donc,* en définitive, point bougé.

Donc, le déplacement final du solide résulte d'une rotation
autour de G qui représente sur la sphère l'axe qui joint
à C le centre 0 de la sphère.

Ainsi deux rotations dont les axes se croisent en un point O

sont remplaçables par une rotation unique dont Vaxe passe
aussi par le même point O.

Remarque. — Si l'ordre des rotations avait été changé,
mais si leurs grandeurs et si leurs pôles sur la sphère fixe
avaient été maintenus, le pôle G de la rotation unique
remplaçant les deux autres eût été au point D.

Grandeur de la rotation remplaçante. — Soit (fig. 73) E le

point symétrique de B par rapport au plan de l'arc AX, le

point E de la figure sphérique vient en B par la première
rotation, de plus il y demeure pendant la seconde rotation.

De là résulte que l'angle XCB extérieur au triangle AGB
1

représente la moitié w de la rotation remplaçante w.

2° Théorème. — Tout déplacement défini de pivotement
sur un point O peut toujours être réalisé par une rotation
exécutée autour d'un certain axe passant par O.
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En effet, une figure sphérique a toujours sa situation définie

par les situations de deux de ses points; or le changement
des positions de ceux-ci peut toujours être produit par un

premier changement amenant le point P rj*

(fig. 74) en sa position finale P', suivi d'une
rotation convenable autour du pôle P', qui | ^laisse la droite OP' invariable. „.r ig.

Le premier changement peut être réalisé

par une rotation convenable exécutée autour d'un pôle I
appartenant à l'arc de grand cercle perpendiculaire à l'arc PP'

en son milieu, et ceci, même d'une infinité de manières. Le
déplacement final de la figure est donc produit par une
première rotation autour de I suivie d'une seconde rotation
autour de P' ; or nous venons de voir que ces deux déplacements
successifs peuvent être remplacés par une rotation unique,
et le théorème est démontré.

Remarques. — Il est d'ailleurs bien évident, d'après la
définition de la ligne droite, et les propriétés des trames,
que deux rotations autour de deux axes concourants ne
s'équivalent que si elles sont exécutées autour d'un même
axe. D'où la conséquence suivante :

Autre remarque. — Si le pôle A est donné, le lieu des axes
des secondes rotations qui produisent après une rotation de

pôle A un pivotement total donné est un plan, c'est le plan
du grand cercle qui fait en C avec l'arc CX (fig. 73) l'angle
déterminé ^ w.

IV.— Fin de la Géométrie qualitative. Prévision de la Géométrie
métrique.

Un triangle plan ou un triangle sphérique, image d'un
trièdre, renferment 6 éléments : 3 côtés et 3 angles; notons
seulement que dans un triangle sphérique les mots côtés,
appliqués aux arcs de cercle qui forment les côtés, désignent
en réalité : les angles au centre de la sphère dont ces arcs
sont les images, ou encore les faces du trièdre correspondant
au triangle sphérique.
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Aux trois cas généraux d'égalité des triangles plans
correspondent, on le vérifie bien aisément, trois cas d'égalité
ou symétrie des triangles sphériques. Exemple : si deux
triangles sphériques ont un angle égal compris entre deux
côtés égaux chacun à chacun, l'un des triangles est ou bien
égal à l'autre ou égal à un symétrique de l'autre.

Or, ces divers cas d'égalité nous montrent que, aussi bien
dans les triangles sphériques que dans les triangles plans,
les six éléments d'un triangle solide dépendent de trois
d'entre eux, puisque trois d'entre eux permettent de
construire le triangle ou son symétrique. Il doit donc exister un
moyen de calculer ou de construire les grandeurs de trois
des éléments du triangle, connaissant les trois autres.

Ces constructions ou ces calculs seront l'objet du second
livre de la géométrie naturelle, elles formeront la géométrie
quantitative ou métrique.

Nous terminons ici le premier livre, et nous pourrons le
résumer en'disant qu'il comprend essentiellement :

1° La notion des deux mouvements fondamentaux d'un
solide: rotation autour d'une droite; translation avec
guidage plan autour d'une droite qui est l'axe de la translation.

2° L'ajustage ou la correspondance des figures égales.
3° La symétrie.
C'est ce qu'on peut encore appeler la Géométrie qualitative.

Elle doit être enseignée avec des modèles de solides et de

mouvements.
J. Andrade (Besançon).

P.-S». — Remarques. —1. Bien que l'exposé didactique du
premier livre de la géométrie nouvelle soit achevé, je rappellerai aux
lecteurs de cette Bevue que le second livre ou la géométrie
métrique a été approfondi ici même dans mon article intitulé « Les
fonctions angulaires dans la géométrie de l'ajustage » (8e année,
p. 257-281). Cet article pourra être aisément et considérablement
allégé en vue d'un enseignement élémentaire qui, à mon avis, doit
rester euclidien (en ce sens qu'on adoptera avec Euclide le
phénomène de la similitude), mais qui néanmoins doit faire sentir?
même au débutant, que le solide euclidien pour être le plus simple
n'est pourtant pas le seul, logiquement possible, et cela suffira
pour une première étude élémentaire.

II. Quittons maintenant le domaine pédagogique. Voici une re-
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