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Iciires ou rectilignes (Journal de Physique, avril 1908;, ce qui

prouve que le succès du nouveau diplôme n'est pas moindre
dans le clan des physiciens que dans celui des géomètres.

Je serais heureux d'inspirer à quelque étudiant étranger
le désir de le conquérir et heureux d'autre part si la préparation

à l'Agrégation n'entraînait plus dans l'avenir, pour
les membres de l'Enseignement supérieur, que la considération

de travaux de la nature indiquée.

A. Buhl. (Montpellier).

SUR LE PROLONGEMENT ANALYTIQUE
D'UNE FONCTION MÉROMORPHE 1

1. — Les méthodes de prolongement analytique reposent
surtout sur un théorème, dû à Weierstrass, d'après lequel
toute fonction définie hors d'un cercle taylorien, et coïncidant

dans celui-ci avec l'élément de fonction y relatif,
prolonge l'élément considéré. Une des méthodes les plus
remarquables, étudiée surtout par MM. Borel et Mittag-Leffler
consiste à construire effectivement le prolongement au moyen
d'expressions linéaires où ne figurent que des polynômes
constitués eux-mêmes par des fragments du développement
taylorien connu. M. A. Buhl est revenu, par des formules
très simples, sur la méthode en question [Bull, des Sciences
mathém., 1907 et 1908). Je me propose de reprendre les
résultats de M. Buhl et d'en tirer quelques applications et

remarques nouvelles.
Je me bornerai, pour plus de simplicité, à une fonction mé-

romorphe F (x) ayant des pôles ak de résidus Ak.
Je forme d'abord l'étoile de M. Mittag-Leffler obtenue en

traçant des demi-droites issues des ak et opposées à l'origine.
1 Résumé d'un travail présenté à la Faculté des Sciences de Montpellier, le 23 juin 1908,

pour l'obtention du Diplôme d'Etudes supérieures.
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Tout contour G entourant l'origine (supposée point régulier)
peut grandir en s'étoilant entre les coupures formant l'étoile
mais sans jamais franchir celles-ci. Pour un tel contour on
aura la formule fondamentale de Cauchy :

2i 7T Je - — x

Si G se réduit à un cercle n'enfermant aucun a* on aura la
formule de Taylor :

,w r.X(; + + » + -)'«A-
J'en considère la somme des n 1 premiers termes, soit

3'1+1 — a-n+i dz
Je

A ^ Ä — * 5«+»
'

Soit maintenant /(£) une fonction entière. J'aurai pour
celle-ci la formule de Taylor, valable quel que soit le contour

r,
m îk fc(ï + & +

Soit cn le [n + l)ième terme de ce développement. On met
immédiatement le produit cnsn sous forme d'une intégrale
double et, en s'appuyant sur les identités

230 _ xn+l ^ ^ ^
n

ç/i+i Ç — g — g,r

vraies si | £ | < | Ç I et si I £.# 1 < i Çs I, on trouve la formule
fondamentale

Quels que soient £ et .r on peut toujours imaginer que le
contour T soit un cercle de rayon | Ç ] assez grand pour que
les inégalités précédentes soient vérifiées.

2. — M. Buhl a étudié la formule précédente en commen-
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çant par intégrer par rapport az. Je me propose de retrouver
ses résultats en intégrant d'abord par rapport à Ç. Le second

membre de (1) peut immédiatement s'écrire

/ 1 Y /» F (z) /'(£) dzdÇ _ / 1 Y r Ç x¥[z)f[Ç) dzdÇ

\2inJ JcJf [z — x) [Z — Ç) \2m/ t'cJr ^ ^ ^ __ ^
D'après les inégalités fondamentales accompagnant la

formule (1) on voit que l'intégration en Ç donne immédiatement

£ J_ /* F (g) dz
_ i_ ç f(tf\ (*) dz

' ' 2in Je z — x 2in Je \ z z(z — x)

d'où

m 0

Supposons les pôles ak rangés par modules croissants. Soit
un cercle Ck ayant l'origine pour centre et passant entre ak et
cijc.j_i. La théorie des résidus donne, le contour G étant
toujours supposé intérieur à C*,

J_ ç i_ r*S2f (SA xkk
(3) 2ztt Jck 2i n Je ' \ak) ak{cik — x)

k

le sigma étant relatif à tous les pôles ak contenus entre C* et C.
Reste à évaluer

(4) f f (~) xJWdz_2m Jek \z z(z — x)

Pour cela on peut imaginer que la circonférence C* soit
une couronne de Laurent aussi étroite qu'il le faudra. Pour z
dans cette couronne on aura

F w 27i fcj (u)(?t + 7* + • • •) du + f fck K +? + •••) d"

D'ailleurs pn a aussi

1 1 -x X3
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Or, si l'on forme maintenant l'expression

/^x\ xF (z)f z(z — x)

on en fera une série procédant suivant les puissances positives

et négatives de z et l'intégrale (4) sera une série dont
tous les termes seront nuls à l'exception de celui qui
contient z à la puissance — 1.

On a alors pour représenter (4) l'expression

11 1 k 11

Avec ce nouveau résultat les formules (2), (3), (4) donnent

"*-2 £+2'
f© ^A.

„V«. /'(Ç) ©
(A) ' ^

+ 2 Vo + + • • • + 7/i_i£n /» F (m)—^ 2ïSJck^+r

C'est bien la formule donnée par M. Buhl dans son
mémoire Sur la représentation des fonctions méromorphes par
des séries de polynômes lay loriens. [Bull, des Sciences ma-
thém1908).

3. — Dans ce travail je ne me propose pas une étude
complète de la formule (A), mais seulement du cas où le second
membre de cette formule peut se réduire au premier sigma.
Pour cela imaginons que | £ I croisse indéfiniment dans une
direction issue de l'origine et choisie de telle manière qu'il
en soit de même de |/'(£)!. Alors on voit facilement que le
dernier sigma de (A) tend vers zéro. Si de plus, pour |.£|

croissant comme il est indiqué, on a toujours

lim ©
n
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la formule (A) se réduit à

71— OC

(C) F(x)= lim 2 77çf
Ç — 00 u 0

C'est le type général des formules de sommabilité de

M. Borel. Quant à la condition (B), on conçoit qu'elle ne peut
être réalisée que pour.x dans une certaine région du plan où
l'on cherche à définir F(#). Je dirai que c'est la région de

sommabilité dans laquelle la formule (C) est valable.
4. — La formule (A) a été établie dans le cas où les pôles de

F(x) étaient simples. Si ce sont des pôles multiples d'ordre /?,

on voit, d'après une formule bien connue, que le second
membre de (3), et par suite le second sigma de (A), contiennent

linéairement

Cf '•"OD '"-"(I)
et non pas seulement la première de ces quantités. Alors la
condition (B) est à remplacer par n conditions qui, cas très
important, se confondent si /(£) e%.

Etude de la formule (C).

5. — La formule (C) ne sera applicable, si n est l'ordre de

multiplicité des pôles de F(.r), que pour x situé dans des
régions du plan telles que l'on ait

Si ces n conditions sont réalisables, il s'ensuit notamment
que la formule (C) est n — 1 fois dérivable dans le cas où
F(.:u) serait une fonction à pôles simples car la (n — l)ième
dérivée a alors des pôles d'ordre n, La formule (C) est même
indéfiniment dérivable si /*(£) Ce résultat a été signalé
par M. Borel. On pourrait le généraliser mais il est partieu-
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lièrement évident quand la fonction sommatrice est la fonction

exponentielle.
La méthode de sommation exponentielle est donc

particulièrement importante. Je me propose, dans ce qui suit, de

retrouver les résultats de M. Borel concernant les fonctions
sommatrices

£
f\%) — f(£| e3 (p entier)

et d'étudier en outre le cas de

m
6. — Méthode de sommation exponentielle. — C'est le cas

où l'on prend /(£; e%. Cherchons les points x pour lesquels
on ait

If
eUfc

lira —— 0
Ç e'

Posons pour cela

£ pel0i x rel® ak — akelTk

Envoyons £ à l'infini dans la direction d'argument gj. La
limite à chercher est celle d'une exponentielle dont l'exposant
est

Io (cos w -f- i sin toi — cos (6 — 7jr.) H- — i sin (6 — t,) — 1
L H *k

k J

Cette exponentielle tendra vers 0 si la partie réelle de

l'exposant croît indéfiniment par valeurs négatives, ce qui exige

— COS (to 4- Ô T,.) COS to <f 0

Considérons la droite d'équation

r
— cos (to -f- 6 — Tk) — cos to r= 0
ak

Si (ù est compris entre — ^ et -f- ~ l'inégalité précédente

est vérifiée pour tous les points situés du même côté que
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l'origine par rapport à cette droite. Comme à chaque pôle de

la fonction F correspond une droite, la région des points du

plan où la formule (B) sera applicable sera formée par la

région située du même côté que l'origine par rapport à toutes
ces droites; c'est donc une région polygonale, appelée polygone

de sommabilité.

Si Gj est compris entre ^ et ~ l'inégalité précédente n'est

alors vérifiée que pour les points du plan situés de l'autre
côté de l'origine par rapport à la droite précédente.

Dans ce cas la région de sommabilité, si elle existe, est
constituée par tous les points du plan situés de l'autre côté
de l'origine par rapport à toutes ces droites. Elle n'existe que
si F(.#) se réduit à une fraction rationnelle car alors le dernier

terme de (A) n'existe pas. Si ce terme était conservé il
ne pourrait disparaître pour |£| croissant dans la direction
indiquée, e% ne croissant pas alors indéfiniment.

7. — Etude du polygone de sommabilité. — Le côté du
polygone de sommabilité relatif au point singulier a]{1 rk a

pour équation

x cos (w — rj.) — y sin (*> — rfc) — cos w — 0

Le coefficient angulaire de cette droite est cotg (w — -/c) ; le
coefficient angulaire de la droite joignant l'origine au point
(«jo est tg rk. L'angle <p de ces deux droites se calcule
facilement et est égal à

TC

¥=2~w
d'où la propriété suivante :

Lesdroites joignant l'origine aux points singuliers de la
fonction F font avec les côtés du polygone passant par ces

points des angles constants égaux a, \ — &,.

Dans le cas où o 0 l'angle précédent est droit, et les
côtés du polygone correspondant aux points singuliers situés
sur le cercle de convergence sont tangents à ce cercle. Le
cercle de convergence est alors situé tout entier à l'intérieur
du polygone de sommabilité.
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Au contraire si eo est différent de 0 mais compris entre

— * et + ^ certains côtés du polygone de sommabilité sont

sécants par rapport au cercle de convergence, et il y a alors
une région du cercle de convergence qui est extérieure au
polygone de sommabilité; ce qui nous conduit à cette
remarque curieuse, que, pour les points d'une région du plan
où la série de Taylor est convergente, la sommabilité peut
ne pas avoir lieu. Le cas de « 0 est celui étudié d'abord

par M. Borel.

Pour o) zh le polygone de sommabilité est réduit au

point origine.
Quand w varie chaque côté du polygone tourne autour du

point singulier y relatif] dans le même sens. Ces côtés font
tous des angles égaux avec les droites joignant les dits poin ts

singuliers h Vorigine.
Les sommets du polygone de sommabilité ou, plus généralement,

les /Joints de rencontre de deux côtés du polygone
décrivent des cercles passant par Vorigine et les deux points
singuliers, correspondants.

Proposons-nous le problème suivant.
A quelles conditions le point de rencontre de deux côtés

correspondants à deux points singuliers sera-t-il sommet du
polygone de sommabilité pour une valeur de co ; et à quelles
conditions le restera-t-il quel que soit

La condition nécessaire et suffisante pour que le point de

rencontre de deux côtés correspondants à deux points
singuliers a1? a2 soit un sommet du polygone de sommabilité,
quel que soit &>, est qu'il n'y ait aucun point singulier de la
fonction F à l'intérieur du cercle passant par l'origine et les

points singuliers a15 a2.

La condition est nécessaire, il suffit de montrer pour cela

que s'il existait un point singulier a3 à l'intérieur du cercle
afia^, le point M de rencontre des côtés ai, a% serait séparé
de l'origine par le côté a3. Donc OM serait, quel que soit &),

coupé par le côté relatif à a3 en un point Q situé entre 0 et M.
Le lieu du point Q quand varie, est un cercle passant
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par a3, 0, et tangent en 0 au cercle cifia^. On a en effet

/\ /\ /\
MQaz * — QPöi — QMP

/\ /\
QPfli a\Oaz Ti — r8

/X /\QxMP ata%0 — const

MQa3 7T — (T! — T3' — «1«20 const

Donc le point Q décrit un cercle et la tangente à ce cercle

au point 0 fait avec
le côté Oa3 l'angle

/\
7T — (Ti — t8) — ci±atO

De même la

tangente au cercle axafi
au point 0 fait avec

0a3 l'angle

/\
«T/aftiO -f- T3 — T2

qui est égal à

/\
— (TI — Ts) — 0±a20

Le point Q est donc
à l'intérieur du cercle cifia^ et il est, quel que soit &>, compris

entre 0 et M.
La condition est suffisante car, s'il existait un côté du

polygone séparant le point M du point 0, on voit en s'aidant
de la démonstration précédente que ce point singulier
auquel ce côté correspondrait serait situé à l'intérieur du
cercle aiOa^. Ce que l'on ne suppose pas.

Ces propriétés géométriques nous permettent de
construire les seuls côtés utiles intervenant dans la formation du
polygone de sommabilité.

8. — Région de sommabilité obtenue par la variation de go.

— Déterminons toute la région constituée par les points du
plan pour lesquels la série de Taylor de la fonction sera som-
mable pour une valeur de go au moins ; il existe en effet des

f0

Fig. 1
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régions du plan qui sont situées dans des polygones de som-
mabilité correspondant à de certaines valeurs de w et ne sont
pas à l'intérieur d'autres polygones de sommabilité
correspondant à d'autres valeurs de &>.

Or tout point sommet du polygone de sommabilité pour
une valeur de w l'est pour toutes les valeurs de o, comprises

entre — j et -f- ^ ; et lorsque &> varie entre ces limites, ces

points sommets du polygone décrivent entièrement leur
circonférence lieu.

Il résulte donc que la région de sommabilité sera limitée

eux tels que le cercle passant par l'origine et ces deux poinls
contienne tous les autres. La région de sommabilité est alors
l'angle limité par les côtés correspondants à ces deux points ;

région située de l'autre côté de l'origine par rapport à ces
deux côtés. Ceci nous permet de déterminer la région totale

de sommabilité lorsque « varie de ^ à ^
9. — Méthode de sommation exponentielle généralisée.

Elle correspond à l'emploi de la fonction sommatrice

f{£) e^P, p étant entier.

Fig. 2.

par des cercles passant
par l'origine et par les

groupes de deux points
singuliers auxquels
correspondent les sommets
du polygone. Dans le cas
où Co est compris entre

7T 3jT -, •+ 2
et + Y region

extérieure de sommabilité
n'existe qu'autant que la
fonction F(x) est une fraction

rationnelle. Il est de

plus nécessaire et suffisant

que les pôles de cette
fonction soient tels qu'il
en existe deux d'entre
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Cherchons les points x du plan vérifiant, quel que soit le

point singulier ctk, la condition

t )F
e«*)

lim — 0

£ oc lP- « e -

Cela revient à chercher la limite d'une exponentielle dont

l'exposant est

pp (cos poi -j- i sin pea) ^ cos p(0 — t^) -f- (cT~) * S*n ^ ^ ^

Cette exponentielle tendra vers 0 lorsque | croîtra
indéfiniment dans la direction co, si l'on a

v\p
j cos p(w 4 Ô — TA.) — cos pto << 0

C'est une condition analogue à celle déjà trouvée, mais

elle nous amène à considérer les courbes

af cos pco
v fr 1

cos p[ea 0 — Tfc)

qui, dans le cas de co 0, ont été encore considérées par
M. Borel.

On peut faire sur ces courbes limitant la région de som-
mabilité des raisonnements absolument identiques à ceux
déjà fait dans le cas de la méthode exponentielle, on est
conduit à des résultats plus.généraux ; et l'on peut montrer
que l'on peut disposer du nombre p, entier, de manière à

étendre la région de sommabilité en un point quelconque
du plan.

10. — Emploi de la fonction sommatrice f (|) ee^. — Par
un raisonnement toujours analogue aux précédents on
déterminera la région de sommabilité en égalant à zéro la limite,
pour ||| croissant indéfiniment, d'une exponentielle dont
l'exposant est

lx
.ïi J
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Cela nous conduit à écrire que la partie réelle de cette
quantité croît indéfiniment par valeurs négatives. Or on
trouve facilement que cette partie réelle est

gr cos (6+W—t. Cor 1 ûnna,
e k cos I — sin (0 -j- r«> — r^)J — e^ ''cos (p sin w)

les notations étant les mêmes qu'au paragraphe 6.

Considérons maintenant la droite

p sin w — a

qui est parallèle à l'axe réel et pour laquelle nous supposerons

a < * Si l'extrémité du rayon vecteur p va à l'infini en

suivant cette droite dans le sens positif, le second terme de
la partie réelle ci-dessus considérée se comporte à l'infini
comme

— eP cos a

C'est dire que ce terme croît indéfiniment par valeurs
négatives. Je dis qu'on peut s'arranger à ce que le terme précédent

tende vers zéro dans les mêmes conditions. Il suffit pour
cela que le facteur cos (0 + &> — zk) qui figure dans l'exposant
soit toujours négatif. Comme, pour les grandes valeurs de

p} on devient nul, il faudra

y > 6 — rk > 2
0U T Tk > 6 > 2 Tk '

Géométriquement cela revient à dire qu'un point singulier
d'argument zk de F(x) entraîne que la région de sommabilité
n'est qu'un demi-plan limité par une droite passant par l'origine

et perpendiculaire à la direction xk% Si tous les points
singuliers de FÇx) sont compris dans un angle ayant son
sommet à l'origine et une ouverture A, la région de sommabilité

est un angle de même nature dont les côtés sont
perpendiculaires à ceux du précédent et dont l'ouverture est par
suite 180° — X. On voit que la fonction sommatrice ici
étudiée ne peut être employée que pour une fonction F(x) dont
les singularités ne sortent pas d'un demi-plan.
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Etude du cas ou la fonction f{f) n'est pas entière.
Résultats de Cesaro.

11. — Je vais indiquer très brièvement ce qu'il advient lorsque

la fonction sommatrice f a des singularités à distance finie.
Je m'en tiendrai d'ailleurs au cas où ce sera une fraction
rationnelle. Ce cas qu'il me semble naturel de placer après
celui où fn'a pas de singularités à distance finie a été cependant

le premier étudié au point de vue historique. Il correspond

à des formules données en premier lieu par Cesàro.
La formule fondamentale (1) du paragraphe 1 subsiste si T
est un cercle de rayon fini mais, pour que les intégrations
conservent la forme indiquée dans la suite, T ne doit contenir

aucun point singulier de f On peut alors imaginer que
ce cercle P qui a l'origine pour centre soit décrit de manière
à s'approcher autant qu'on le voudra du point singulier de f
le plus rapproché de l'origine et que la variable £, tout en
restant dans P, s'approche aussi du point singulier en question

ce qui est une manière de faire croître |/'(£) j autant qu'on
veut. Mais alors, des conditions ||| < | Ç |, | \x | < | Çz j, on ne
peut tirer autre chose que \ x\ ^ \z |. La condition \x\ <\z\
est la même que celle qui caractérise la formule de Taylor;
comme de plus nous pouvons avoir j x | | z | il s'en suit que
l'on peut obtenir des formules valables sur la circonférence
du cercle de convergence d'un développement taylorien.

Prenons par exemple f(g) -. Nous aurons

ce qui est la formule bien connue donnée par Cesàro.
Prenons encore, p étant entier,

F (x) lim
5 1

so T 5*i ~}~ 52*a T • • •

i + + +
ou

F (oc) lim -
*o + *i + • • • +

n

L'Enseignement mathém., 10e année; 1908. 26
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Alors

OU

F (x) — lim
5o + sp + s2p + • • • + S(n-l)p

n

Pour p 1, cette dernière formule redonne celle de
Cesàro. On peut faire à son sujet plusieurs remarques
curieuses.

D'abord on peut la considérer comme un cas particulier
des formules obtenues non pas en faisant tendre £ vers la
racine égale à 1 de l'équation — 1 0 mais en faisant
tendre £ vers l'une quelconque des racines de cette équation,

c'est-à-dire vers l'un des sommets d'un polygone régulier

de p côtés inscrit dans le cercle | £ | 1.

Voici une remarque plus importante encore relative à la

dernière formule donnée pour P [oc). Soit x à l'intérieur du
cercle de convergence. Alors on peut prendre p assez grand
pour que les sommes sp, s%p, diffèrent les unes
des autres d'aussi peu qu'on voudra. Dans ces conditions la
formule considérée p^ut s'écrire

c'est-à-dire
F (x) lim s{n_x)

71=00

Ce n'est autre chose que la formule de Taylor elle-même

qu'il est bien intéressant de retrouver directement comme
cas particulier de formules plus générales étudiées dans ce
travail.

A. Costabel (Montpellier).


	SUR LE PROLONGEMENT ANALYTIQUE D'UNE FONCTION MÉROMORPHE 1
	Etude de la formule (C)
	Etude du gas ou la fongtion f(ξ) nest pas entière. Resultats de Cesaro.


