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SUR LE PROLONGEMENT ANALYTIQUE 377

laires ou rectilignes (Journal de Physique, avril 1908}, ce qui
prouve que le succes du nouveau diplome n’est pas moindre
dans le clan des physiciens que dans celui des géometres.

Je serais heureux d’inspirer & quelque étudiant étranger
le désir de le conquérir et heureux d’autre part sila prépa-
ration a I'Agrégation n'entrainait plus dans l’avenir, pour
les membres de I'Enseignement supérieur, que la considé-
ration de travaux de la nature indiquée.

A. Bunr. (Montpellier).

SUR LE PROLONGEMENT ANALYTIQUE
D'UNE FONCTION MEROMORPHE !

1. — Les méthodes de prolongement analytique reposent
surtout sur un théoréme, dit a Weierstrass, d’apres lequel
toute fonction définie hors d’'un cercle taylorien, et coinci-
dant dans celui-ci avec I’élément de fonction y relatif, pro-
longe I'élément considéré. Une des méthodes les plus remar-
quables, éludiée surtout par MM. BorerL et MiTTaG-LEFFLER
consiste & construire effectivement le prolongement au moyen
d’expressions linéaires ou ne figurent que des polyndmes
constitués eux-mémes par des fragments du développement
taylorien connu. M. A. BuHL est revenu, par des formules
trés simples, sur la méthode en question (Bull. des Sciences
mathém., 1907 et 1908). Je me propose de reprendre les ré-
sultats de M. Buhl et d'en tirer quelques applications et
remarques nouvelles.

Je me bornerai, pour plus de simplicité, & une fonction mé-
romorphe F (x) ayant des poles a; de résidus A;.

Je forme d’abord I'étoile de M. Mittag-Leffller obtenue en
tracant des demi-droites issues des a; et opposées 4 l'origine.

1 Résumé d’un travail présenté a la Faculté des Sciences de Montpellier, le 23 juin 1908,
pour 'obtention du Diplome d’Etudes supérieures.
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Tout contour C entourant l'origine (supposée point régulier)
peut grandir en s’étoilant entre les coupures formant I’étoile
mais sans jamais franchir celles-ci. Pour un tel contour on
aura la formule fondamentale de Cauchy :

1 F(z)dz
F{x) = — /C‘ z) .

2QivJg z —2x

S1 C se réduit a un cercle n’enfermant aucun @, on aura la
formule de Taylor :

Nrw

. l :, x? .
F () = C<Z+g+§§+...>b(:)dz.

J'en considére la somme des n + 1 premiers termes, soit

zn—}—l - /n+'l -
é. F(z) = * d

1
n 2 o B e 9 Ll )

Soit maintenant f(§) une fonction eniiére. Jaurai pour
celle-ci la formule de Taylor, valable quel que soit le con-
tour T, ‘

4 sk |
f(E)Hﬁfl‘,<2+c2+--->f(§;dC.

Soit ¢, le (n + 1)** terme de ce développement. On met
immédiatement le produit ¢,s, sous forme d'une intéyrale
double et, en s’appuyant sur les identités

n—w®x

Z.n—}—l . xn—{—l gll - EIL . ‘\E,-?C)” B 1 ¥
2 c11+1 :n—}—l — CT:F] T .%2 (C:)/z+l T — ¢ _C: — Ex

n=90

vraies si | £ < |gletsi|ér| <Igzl, on trouve la formule
fondamentale

n-—owx

(1) N, = (53_1;)/ [ F(z<)fm Ex> s

n=»yu Ct[‘(c__g) z”‘"_c‘

Quels que soient £ et x on peut toujours imaginer que le
contour T soit un cercle de rayon | ¢ | assez grand pour que
les inégalités précédentes soient vérifiées.

2. — M. Buhl a étudié la formule précédente en commen-
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cant par intégrer par rapport a z. Je me propose de retrouver
ses résultats en intégrant d’abord par rapport a ¢. Le second
membre de (1) peut immédiatement s’écrire

1\2 p o F(2)f(8) dzdf 12 x¥ (z) [ (§) d=d§
<§§;>‘/C./r(:—xuc—5>—_<2iﬁ> ‘/(;‘/Ijz( )<C~§:’_C>

P

D’apres les inégalités fondamentales accompagnant la for-
mule (1) on voit que I'intégration en § donne immédiatement

1 F(z)d= | » [Ex\ aF (z)dz
f18) Nin ./(‘: z—x  Un v../] f<?> z(z — x)

d’ou

n—aw

(2) 2 nsn = = [ Flx ‘)m f f<€x> xi‘ia"[;} .

n=0

Supposons les poles a, rangés par modules croissants. Soit
un cercle C; ayant 'origine pour centre et passant entre a; et
ar4+1. La théorie des résidus donne, le contour C étant tou-
jours supposé intérieur a Cy,

Ak

(3) . ‘nmck sz, E’<k> 1 (a, — x)

le sigma étant relatif a tous les poles a, contenus entre C; et C.
Reste a évaluer

, 1 Ex (z) d=
s i‘i‘r‘rfckf<~>z(z—x>°

Pour cela on peut imaginer que la circonférence C; soit
une couronne de Laurent aussi étroite qu’il le faudra. Pour z
dans cette couronne on aura

1 1 z
; » /l Z

2w 2 .

D’ailleurs on a aussi

f<€1> =% + 7N E;'_'_?a <§}>2+ ..
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Or, s1 'on forme maintenant 'expression

f Ex\ «F (z)

3 /) z(z — )
on en fera une série procédant suivant les puissances posi-
tives et négatives de z et l'intégrale (4) sera une série dont
tous les termes seront nuls & I'exception de celui qui con-

tient z a4 la puissance —1.
On a alors pour représenter (4) 'expression

n=—aw

S <7O ')’15 + .t Tn—1 En—1) g;:‘ v/(;k% ’

11::1

Avec ce nouveau résultat les formules (2), (3), (4) donnent

E%)
n )l A i
2 + E (tk x —k a,)

(4) =

n—= cc

o+ + o F 0 ET 2t s Fa)da
+ 2 7(&) 20w '

bR
4l Q/Ck lln+1

=X

C’est bien la formule donnée par M. Buhl dans son mé-
moire Sur la représentation des fonctions méromorphes par
des séries de polynémes tayloriens. (Bull. des Sciences ma-
thém., 1908).

3. — Dans ce travail je ne me propose pas une étude com-
pléte de la formule (A), mais seulement du cas ou le second
membre de cette formule peut se réduire au premier sigma.
Pour cela imaginons que | £ | croisse indéfiniment dans une
direction issue de l'origine et choisie de lelle maniere qu’il
en soit de méme de |f(§)!. Alors on voit facilement que le
dernier sigma de (A) tend vers zéro. Si de plus, pour {§|
croissant comme il est indiqué, on a toujours

(B)

=0,
E=w [lE
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la formule (A) se réduit &

(C) F(x) = lim —

E=u n=1y

C'est le type général des formules de sommabilité de
M. Borel. Quant a la condition (B), on concoit qu’elle ne peut
étre réalisée que pour x dans une certaine région du plan ou
’on cherche & définir F(x). Je dirai que c’est la région de
sommabilité dans laquelle la formule (G) est valable.

4. — La formule (A) a été élablie dans le cas oules poles de
F(x) étaient simples. Si ce sont des poles multiples d’ordre n,
on voit, d’aprés une formule bien connue, que le second
membre de (3), et par suite le second sigma de (A), contien-
nent linéairement )

Ex ) [Ex (n—1) §_7C
G @) )

et non pas seulement la premiére de ces quantités. Alors la
condition (B) est a remplacer par n conditions qui, cas trés
important, se confondent si f(£) = eb.

ETvpE DE LA FORMULE (C).
5. — La formule (C) ne sera applicable, si n est 'ordre de

multiplicité des poles de F(x), que pour & situé dans des ré-
gions du plan telles que 1'on ait

£l (Eﬁ)
lim — k =0,
£ (&)

i =0,1,2, ..., 0.—1.

Si ces n conditions sont réalisables, il s’ensuit notamment
que la formule (C) est n — 1 fois dérivable dans le cas ou
F(z) serait une fonction a poles simples car la (n — 1) dé-
rivée a alors des poles d’ordre n. La formule (C) est méme
indéfiniment dérivable si f(£) = ¢8. Ce résultat a été signalé
par M. Borel. On pourrait le généraliser mais il est particu-
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lierement évident quand la fonction sommatrice est la fonc-
tion exponentielle.

La méthode de sommation exponentielle est done particu-
lierement importante. Je me propose, dans ce qui suit, de
retrouver les résultats de M. Borel concernant les fonctions
sommatrices

p _
f1& = eg , fi& = eE , (p entier) P
et d’étudier en outre le cas de
£
f‘g) = e o
6. — Méthode de sommation exponentielle. — C’est le cas

ou I'on prend /(£, = ¢%. Cherchons les points .r pour lesquels
on ait

Ex
= |
. e
lim — — 0.
P -
€
Posons pour cela |
B = peim , x = re‘d , a; = akeirk

Envoyons ¢ a I'infini dans la direction d’argument «. La li-
mite a chercher est celle d’'une exponentielle dont ’exposant
est

p(cos @+ isin w) [a—rk cos (6 — 7,) + a—:—;isin 0 —7,) — ’1]-

Cette exponentielle tendra vers 0 si la partie réelle de I'ex-
posant croit indéfiniment par valeurs négatives, ce qui exige

r i
— c0s (w 4 6 — 7, ) —cos w <0 .
“r

Considérons la droite d’équation

r
— 6 — — = 0.
~ cos (& -+ T,) — €OS w

Si w est compris entre — 7—;- et + g«l’inégalité précédente

est vérifiée pour tous les points situés du méme coté que
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origine par rapport a cette droite. Comme a chaque pole de
la fonction F correspond une droite, la région des points du
plan ot la formule (B) sera applicable sera formée par la ré-
gion située du méme c6té que l'origine par rapport a toutes
ces droites; c’est donc une région polygonale, appelée poly-
gone de sommabilité.

Si w est compris entre % et °F llnegahte précédente n’est
alors vérifiée que pour les pomts du plan situés de lautre
coté-de 'origine par rapport a la droite précédente.

Dans ce cas la région de sommabilité, si elle existe, est
constituée par tous les points du plan situés de Pautre coté
de l'origine par rapport a toutes ces droites. Elle n'existe que
si F(x) se réduit & une fraction rationnelle car alors le der-
nier terme de (A) n’existe pas. Si ce terme était conservé il
ne pourrait disparaitre pour || croissant dans la direction
indiquée, €% ne croissant pas alors indéfiniment.

7. — Etude du polygone de sommabilité. — Le coté du

ey
R AR 0 A

1
B

TE

TR

T

T
el

T

N e

polygone de sommabilité relatif au point singulier «,, 7, a
pour équation
x cos (w — 7] — y sin (w — 7)) — «; cos w =0 .
Le coefficient angulaire de cette droite est cotg (w — =); le

coefficient angulaire de la droite joignant 1'origine au point

(«, 7)) esttg 7,. L’angle ¢ de ces deux dr01tes se calcule fa-
cilement et est egal a

_Tt'
¢—35 — @

d’ou la propriété suivante :
Les droites joignant Uorigine aux points singuliers de la
fonction F font avec les cétés du polygone passant par ces

. ’ \ w
points des angles constants égaux a 5 — w .

Dans le cas ou o = 0 ’'angle précédent est droit, et les
cotés du polygone correspondant aux points singuliers situés
sur le cercle de convergence sont tangents a ce cercle. Le
cercle de convergence est alors situé tout entier a 'intérieur
du polygone de sommabilité.
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Au contraire si » est différent de 0 mais compris entre

T w . A 3 ey * »
— 5 et 4 5, certains cotés du polygone de sommabilité sont

~

sécants par rapport au cercle de convergence, et il y a alors
une région du cercle de convergence qui est extérieure au
polygone de sommabilité; ce qui nous conduit a cette re-
marque curieuse, que, pour les points d’'une région du plan
ou la série de Taylor est convergente, la sommabilité peut
ne pas avoir lieu. Le cas de o =— 0 est celui étudié d’abord

par M. Borel.

Pour o = == = le polygone de sommabilité est réduit au
point origine.

Quand o varie chaque coté du polygone tourne autour du
point singulier y relatif, dans le méme sens. Ces cdlés font
tous des angles égaux avec les droites joignant les dits points
singuliers a Uorigine.

Les sommets du polygone de sommabilité ou, plus généra-
lement, les points de rencontre de deux cétés du polygone dé-
crivent des cercles passant par Uorigine et les deux points
singuliers, correspondants.

Proposons-nous le probléme suivant.

A quelles conditions le point de rencontre de deux cotés
correspondants a deux points singuliers sera-t-il sommet du
polygbne de sommabilité pour une valeur de w; et a quelles
conditions le restera-t-il quel que soit w.

La condition nécessaire et suffisante pour que le point de
rencontre de deux cbtés correspondants a deux points sin-
guliers a,, a, soil un sommet du polygone de sommabilité,
quel que soit », est qu’'tl n’y ail aucun point singulier de la
fonction I a Uintérieur du cercle passant par Uorigine et les
points singuliers a,, a,.

La condition est nécessaire, il suffit de montrer pour cela
que s’il existait un point singulier @, a l'intérieur du cercle
@,0a,, le point M de rencontre des cotés a,, a, serait séparé
de l'origine par le coté a;. Donc OM serait, quel que soit o,
coupé par le coté relatif a @, en un point Q) situé entre O et M.

Le lieu du point Q quand w varie, est un cercle passant
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par a,, O, et tangent en O au cercle ¢,0a,. On a en effet

AN /N N\
MQa; = = — QPay — QMP

VAN "\
QPa; = @10a3 —= 71 — 73,
/\ VAN
QMP — @;a,0 = const ,
A \ N\
MQay— © — (7, — 73] — ;0,0 = const .

Donc le point Q décrit un cercle et la tangente a ce cercle
au point O fait avec
le coté Oa, I'angle

A
T — (T1 — Ta) — aia,O .

De méme la tan-
gente au cercle «,a,0
au point O fait avec

) '+
Oa, 'angle

A .‘ |
(,72(!10 “‘I— Tg — T2 /
qui est égal a

§ /\ ~..‘~--.______-—’
T — (1'1 — Tg) il ait(zo s

Le point(Q) est donc
a l'intérieur du cercle «,0a, et il est, quel que soit w. com-
pris entre O et M.

La condition est suffisante car, s’il existait un co6té du po-
lygone séparant le point M du point O, on voit en s’aidant
de la démonstration précédente que ce point singulier
auquel ce coté correspondrait serait situé a lintérieur du
cercle @,0a,. Ce que I'on ne suppose pas.

Ces propriétés géométriques nous permettent de cons-
truire les seuls cOtés utiles intervenant dans la formation du
polygone de sommabilité.

8. — Région de sommabilité obtenue par la variation de w.
— Déterminons toute la région constituée par les points du

plan pourlesquels la série de Taylor de la fonction sera som-

mable pour une valeur de » au mwoins ; il existe en effet des
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régions du plan qui sont situées dans des polygones de som-
mabilité correspondant a de certaines valeurs de w et ne sont
pas a l'intérieur d’autres polygones de sommabilité corres-
pondant a d'autres valeurs de w.

Or tout point sommet du polygone de sommabilité pour
une valeur de » l’est pour toutes les valeurs de « comprises

T ™ . : . -
entre — 5 et 4 79 et lorsque o varie entre ces limites, ces

points sommets du polygone décrivent entierement leur cir-
conférence lieu.

Il resulte donc que la région de sommabilité sera limitée
par des cercles passant
par Lorigine et par les
groupes de deux points
singuliers auxquels cor-
respondent les sommets

q du polygone. Dans le cas
ou w est compri's entre

-+ _— et —}— " a région ex-

térieure de sommabilité
n’existe qu’autant que la
fonction F(x) est une frac-
tion rationnelle. Il est de
plus nécessaire et sufli-
sant que les poles de cette
Fig. 2. ~ fonclion soient tels qu’il

“en existe deux d’entre

eux tels que le cercle passant par 'origine et ces deux poinls
contienne tous les autres. La région de sommabilité est alors
'angle limité par les cotés correspondants a ces deux points;
région située de l'autre coté de l'origine par rapport a ces
deux cotés. Ceci nous permet de déterminer la région totale

Stus . T , 3
de sommabilité lorsque o varie de 5 a 5
9. — Méthode de sommation exponentielle généralisée.

Elle correspond a l'emploi de la fonction sommatrice

f(f) — ¢f s p étant entier.
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~ Cherchons les points # du plan vérifiant, quel que soit le
point singulier ax, la condition

()"
& ar.

— 0.
EP

e

' lim

—_=

N

oV

Cela revient a chercher la limite d’une exponentielle dont
Iexposant est

r

‘ pf (cos pw + i sin pe) [<—>Pcos plo— )+ <L>pi sin p(H — 7,) — ’l] :

ak “/{

Cette exponentielle tendra vers 0 lorsque & croitra indéfi-
niment dans la direction w, si 'on a

“k

r\P
<—) cos p(w —+ 6 — T — cos pw < 0.

C’est une condition analogue & celle déja trouvée, mais
elle nous améne 4 considérer les courbes

aP

P k
r& —
cos ple 4 h — 7!

COS poo

qui, dans le cas de o = 0, ont été encore considérées par
M. Borel. |

On peut faire sur ces courbes limitant la région de som-
mabilité des raisonnements absolument identiques a ceux
déja fait dans le cas de la méthode exponentielle, on est
conduit & des résultats plus généraux; et 'on peut montrer
que I'on peut disposer du nombre p, entier, de maniere a
étendre la région de sommabilité en un point quelconque

du plan.

. : e £
10. — Emploz de la fonction sommatrice f(§) — e*”. — Par
un raisonnement toujours analogue aux précédents on déter-
minera la région de sommabilité en égalant a zéro la limite,

- pour |£]| croissant indéfiniment, d’une exponentielle dont

Pexposant est

Ex
e —. eg )
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Cela nous conduit a écrire que la partie réelle de cette
quantité croit indéfiniment par valenrs négatives. Or on
trouve facilement que cette partie réelle est

pr

— cos (f+w—7,) r
e“k ¥ cos [9— sin (0 4+ w
%k

'rk):l — ePeosoog (p sin )

les notations étant les mémes qu’au paragraphe 6.
Considérons maintenant la droite

psinw=—a,

qui est paralléele a 'axe réel et pour laquelle nous suppose-
™ . , ., . . .
rons @ < - . Si extrémité du rayon vecteur p va a l'infini en

suivant cette droite dans le sens positif, le second terme de
la partie réelle ci-dessus considérée se comporte a l'infini
comme

— ¢f cos a,

C’est diré que ce terme croit indéfiniment par valeurs né-
gatives. Je dis qu’on peut s’arranger a ce que le terme précé-
dent tende vers zéro dans les mémes conditions. Il suffit pour
cela que le facteur cos (6 + o — ~,) qui figure dans 'exposant
soit toujours négatif. Comme, pour les grandes valeurs de
0, w devient nul, il faudra

3 _- : 13 3r T

Géométriquement cela revient a dire qu’un point singulier
d’argument 7, de F(x) entraine que la région de sommabilité
n’est qu’'un demi-plan limité par une droite passant par I'ori-
gine et perpendiculaire a la direction 7,. Si tous les points
singuliers de F(x) sont compris dans un angle ayant son
sommet 4 I'origine et une ouverture 1, la région de sommabi-
lité est un angle de méme nature dont les c6tés sont perpen-
diculaires a4 ceux du précédent et dont l'ouverture est par
suite 180° — A. On voit que la fonction sommatrice ici étu-
diée ne peut étre employée que pour une fonction F(r) dont
les singularités ne sortent pas d’'un demi-plan.
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ETUDE DU CAS OU LA FONCTION f{£) N'EST PAS ENTIERE.
REsvurLTaTs DE CESARO.

11. — Je vais indiquer trés briévementce qu’il advient lors-
que la fonction sommatrice f a des singularités a distance finie.
Je m’en tiendrai d’ailleurs au cas ou ce sera une fraction ra-
tionnelle. Ce cas qu’il me semble naturel de placer aprés
celui ou f'n’a pas de singularités a distance finie a été cepen-
dant le premier étudié au point de vue historique. Il corres-
pond a des formules données en premier liez par Cesaro.
La formule fondamentale (1) du paragraphe 1 subsiste si T
est un cercle de rayon fini mais, pour que les intégrations
conservent la forme indiquée dans la suite, T' ne doit conte-
nir aucun point singulier de . On peut alors imaginer que
ce cercle I' qui a Porigine pour centre soit décrit de maniére
a s’approcher autant qu’on le voudra du point singulier de f
le plus rapproché de l'origine et que la variable £, tout en
restant dans I', s’approche aussi du point singulier en ques-
tion ce qui est une maniére de faire croitre |f(£)]| autant qu’on
veut. Mais alors, des conditions |£| < |¢], [&x| < |¢z], on ne
peut tirer autre chose que |z| = |z|. La condition |x| <] z|
est la méme que celle qui caractérise la formule de Taylor;
comme de plus nous pouvons avoir {x| =z] il s’en suit que
I'on peut obtenir des formules valables sur la circonférence
du cercle de convergence d’un développement taylorien.

1
Prenons par exemple f(§) = —%- Nous aurons

Flax) — lin Sg + Esy + E%sy - ...
A N

ou

ce qui est la formule bien connue donnée par Cesaro.
Prenons encore, p étant entier,

L’Enseignement mathém., 10¢ année ; 1908. 26
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Alors
F(x) = lim B Epsp + EZPS2P A ;
E—1 14+ B 4 ...
- ou
Fla) = lim s, + sp—{— 321,—’}1— -+ S (n—1) p .

Pour p — 1, cette derniere formule redonne celle de
Cesaro. On peut faire a son sujet plusieurs remarques cu-
rieuses.

D’abord on peut la considérer comme un cas particulier
des formules obtenues non pas en faisant tendre £ vers la
racine égale a4 1 de 'équation & — 1 = 0 mais en faisant
tendre £ vers 'une quelconque des racines de cette équa-
tion, c’est-a-dire vers I'un des sommets d'un polygone régu-
lier de p cotés inscrit dans le cercle | £ | =

Voici une remarque plus importante encore relative a la
derniére formule donnée pour F (x). Soit x a l'intérieur du
cercle de convergence. Alors on peut prendre p assez grand
pour que les sommes S,, S2p, ... , Su—1), difféerent les unes
des autres d’aussi peu qu’on voudra. Dans ces conditions la
formule considérée peut s’écrire

F (x) = lim [ﬁ) yr=! s(n_l)p}

n—oo n n
c'est-a-dire

F (2) = lim s,

n=—oa0o

n-1)p-

Ce n’est autre chosc que la formule de Taylor elle-méme
qu’il est bien intéressant de retrouver directement comme
cas particulier de formules plus générales étudiées dans ce
travail.

A. CostaBeL (Montpellier).
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