Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 10 (1908)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Kapitel: RUSSIE1

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

matica, 3. — MARTINETTI: Teoria delle curve piane e delle superficie algebriche; curve e superficie di terz'ordine, 3.

Napoli; Università. — Amodeo: Storia delle Scienze matematiche: Il secolo XVIII, 3. — Capelli: Teoria delle forme algebriche, $4^{1}/2$. — Marcolongo: Teoria del potenziale ed equazioni integrali; teoria dell' elasticità, $4^{1}/2$. — Montesano: Geometria della retta; teoria delle transformazioni birazionali nel piano e nello spazio, $4^{1}/2$. — Pascal: Equazioni a derivate parziali di secondo ordine, 3. — Pinto: Ottica fisica, $4^{1}/2$.

Padova; Università. — D'Arcais: Gruppi discontinui di sostituzioni lineari; funzioni ellittiche; funzioni modulari, 4½. — Favaro: Storia dell'ottica con particolare riguardo alla invenzione del telescopio, 3. — Gazzaniga: Teoria dei numeri, 3. — Levi-Civita: Idrodinamica, 4½. — Ricci. Teorie introduttorie alla fisica matematica; elasticità con speciale riguardo alle applicazioni all'ottica, 4. — Severi: Teoria dei gruppi, 2; Funzioni algebriche di due variabili, 2. — Veronese: Geometria iperspaziale, 3.

Palermo; Università. — Gebbia: Meccanica dei sistemi continui; attrazione newtoniana; idrostatica ed idrodinamica, $4^{1}/_{2}$. — Guccia: Teoria generale delle curve e delle superficie algebriche, $4^{1}/_{2}$. — Venturi: Moderne vedute riguardo ai metodi della meccanica celeste, $4^{1}/_{2}$.

Pavia; Università. — Almansi: Idrostatica e idrodinamica, 3. — Berzo-LARI: Curve e superficie algebriche, 3. — VIVANTI: Calcolo delle variazoni, 3.

Pisa; Università. — Bertini: Geometria iperspaziale; rappresentazione di una forma per combinazione lineare di altre e formule di postulazione; applicazioni, 3. — Bianchi: Funzioni di variabile complessa; funzioni automorfe, $4^{1}/_{2}$. — Dini: Complementi di analisi infinitesimale: integrali definiti, equazioni differenziali, funzioni sferiche, funzioni di Bessel, $4^{1}/_{2}$. — Maggi: Teoria dei fenomeni elettromagnetici con particolare riguardo alle nuove ipotesi, $4^{1}/_{2}$. — Pizzetti: Generalità di astronomia sferica; teoria della figura dei pianeti. 3.

Roma; Università. — Castelnuovo: Funzioni algebriche di una variabile complessa e loro integrali, 3. — Cerruti: Equazioni alle derivate parziali del prim ordine, 3. — Orlando: Integrali definiti e loro applicazioni alla fisica matematica, 3. — Volterra: Teoria dell' elasticità, 4¹/2. — Teoria della rotazione dei corpi ed applicazioni alla meccanica celeste, 3.

Torino; Università. — D'Ovidio: Teoria delle funzioni di variabili complesse ed integrali abeliani, 3. — Morera: Teoria del potenziale newtoniano; attrazione degli ellissoidi; figure di equilibrio di una massa fluida ruotante, 3. — Segre: Rassegna di concetti e metodi della geometria moderna, 3. — Somigliana: Teoria generale dell'elasticità. 3.

RUSSIE¹

Cours annoncés pour l'année 1907-1908.

Dorpat (Jurjew); Université. 1er semestre: septembre-décembre 1907). — Alexejew: Applications du Calcul différentiel à la Géométrie, 4; Détermination des intégrales des équations aux dérivées partielles, 2. — Gravé: In-

¹ M. Bobynin a bien voulu nous adresser ce tableau des cours de mathématiques annoncés dans quelques universités russes pour les deux semestres écoulés.

troduction à l'Analyse, 4; Intégrales indéfinies, 4; Travaux pratiques de Géométrie analytique, 2 — Kolossoff: Cinématique, application à la théorie des mécanismes, 3; Intégration des équations et compléments de la Mécanique analytique, 3; Théorie des fonctions de variables imaginaires, 4. — Ζεωιτζκι: Astronomie théorique, 4; Chapitres complémentaires de l'astronomie sphérique, 2. — Ροκκοwsκι: Mathématiques élémentaires, 2; Cours général d'astronomie, 4; Connaissance du ciel.

2e semestre: janvier-mai 1908. — Alexejew: Algèbre sup., 4; Calcul intégral (II), 3. — Gravé: Géométrie analytique (II). 4; Calcul différentiel (I), 4. — Kolossoff: Mécanique du point, 3; Théorie des nombres, 4. — Zewitzky: Travaux pratiques d'Astronomie sphérique, 2; Mécanique céleste, 4. — Роккомѕку: Cours général d'astronomie, 4; Travaux pratiques d'astronomie sphérique, 2; Connaissance du ciel; Astronomie (colloquium); Eléments de l'Analyse supérieure pour les étudiants-chimistes, 4.

Kiew; Université. — 1er semestre. — Khandrikoff: Calcul intégral, 2. — Bourresteff: Introduction aux mathématiques sup., 4; Applications du Calcul différentiel à l'Analyse et à la Géométrie, 3; Intégration des fonctions, 2. — Pfeiffer: Intégration des équations différentielles, 3; Calcul des différences, 2; Travaux pratiques de Calcul différentiel, 2. — Bielankin: Cours complémentaire de la Géométrie analytique, 2; Travaux pratiques de Géométrie analytique; 3. — Souslow: Cinématique d'un système invariable, 2; Dynamique des solides, 2; Théorie du potentiel et statique, 2. — Wordelz: Introduction à la Mécanique, 2; Calcul des variations, 2; Théorie de l'élasticité (cours' complémentaire), 1; Travaux pratiques de mécanique du point, 2. — Vogel: Astronomie sphérique, 2; Astronomie descriptive, 2; Travaux pratiques de théorie des instruments astronomiques, 3. — Tcherny: Mécanique céleste, 1.

2e semestre: Кнановікоff: Calcul différentiel et ses applications analytiques, 4. Воикпелер : Calcul différentiel, 4; Intégrales définies et intégrales multiples, 4. — Ррепрей : Intégration des équations aux dérivées partielles, 1; Calcul des probabilités, 1; Travaux pratiques d'application du Calcul différentiel à la Géométrie, 2; Travaux pratiques de Calcul intégral, 2; Travaux pratiques d'intégration des équations différentielles, 2. — Souslow: Dynamique d'un système, 4; Dynamique des solides, 2. — Woronetz: Mécanique du point, 3; Théorie de l'élasticité (cours complémentaire), 2; Travaux pratiques de mécanique d'un système, 2. — Vogel: Astronomie sphérique, 2; Astronomie descriptive, 2; Travaux pratiques de théorie des instruments astronomiques, 3. — Tcherny: Mécanique céleste, 2.

Moscou; Université. — 1er semestre: Andreeff: Algèbre sup. (théorie des déterminants, propriétés des polynomes, propriétés fondamentales des équations algébriques et de leurs racines), 3; Géométrie projective, 2. — Мьордівіюмькі: Géométrie analyt. du plan, 4; Géométrie différentielle (cours spécial), 3. — Lakhtine: Introduction à l'Analyse. 4; Calcul intégral, 4. — Есопору ; Géométrie différentielle, 4; Equations différentielles, 2. — Вовумін: Histoire des mathématiques dans l'antiquité, 1; Histoire des mathématiques modernes, 1. — Winogradoff: Travaux pratiques d'intégration des équations différentielles, 2. — Восојамьски: Algèbre sup. (résolution des équations par radicaux), 2. — Whassoff: Cours abrégé des mathématiques supérieures pour les étudiants-naturalistes, 3; Travaux pratiques, 2. — Вміткомьку: Courbes planes des ordres supérieurs, 2; Travaux pratiques, 2.

ques de géométrie analytique du plan, 2. — Gegalkin: Travaux pratiques d'introduction à l'Analyse, 1 ; Travaux pratiques de calcul intégral, 2 ; Ensemble infini, 1; Nombres imaginaires. 1. — Wolkoff: Travaux pratiques de géométrie différentielle, 2. — Poliakoff: Chapitres choisis de la théorie des fonctions (surfaces de Riemann, fonction gamma, fonctions sphériques), 2. — Joukowsky: Cinématique et statique, 3; Travaux pratiques, 2; Dynamique des solides (cours spécial), 2. — TCHAPLYGUIN: Mécanique d'un système et Hydromécanique, 3; Travaux pratiques, 2; Cours abrégé de Mécanique pour les étudiants-naturalistes, 3. — Kowalensky: Résistance des matériaux, 4. — Bolotoff: Théorie du choc des corps solides, 2. — Mertza-LOFF: Géométrie descriptive, 2; Théorie des mécanismes, 2; Travaux pratiques, 1; Dessin linéaire, 2. — Stankiewitch: Intégration des équations différentielles de la mécanique, 3. — Appelroth: Résolutions périodiques dans le problème des trois corps, 2. — Zerassky: Astronomie sphérique, 2; Introduction à l'Astronomie théorique, 2; Travaux pratiques d'astronomie sphérique, 2. — Sternberg: Géodésie supérieure (théorie générale de la figure de la Terre), 2: Travaux pratiques de Géodésie, 2. — Kasakoff: Mécanique céleste, 2; Calcul des orbites, 1. — Oumoff: Cours complet de physique (mécanique, physique moléculaire, chaleur, acoustique et éléments de l'optique), 4; Travaux pratiques de physique, 8. - Zinger: Calcul vectoriel et son application aux questions de la Physique, 2.

2º semestre. — Andréeff : Algèbre supérieure (Théorie des équations numériques, fonctions symétriques, résolutions algébriques), 3 leçons par semaine; Géométrie projective, 2. — Mlodzielowski: Géométrie analyt. de l'espace, 3; Travaux pratiques, 2; Théorie des fonctions à variables réelles, 2. — ZAKHTINE: Calcul différentiel, 4; Calcul intégral, 3; Calcul des différences, 2. — Egoroff: Equations différentielles, I, 3; Calcul des variations, 2; Théorie analytique des équations différentielles, 3. — Bobynin: Histoire des mathématiques dans l'antiquité, 1; Histoire des mathématiques modernes, 1. - Winogradoff: Travaux pratiques d'intégration des équations différentielles, 2. — Bogoiawlensky: Equations du cinquième degré, 2. — Wlassoff: Cours abrégé des mathématiques supérieures pour les étudiants-naturalistes, 3; Travaux pratiques, 2, Théorie synthétique des sections coniques, 2. — Dmitrowski: Courbes planes du troisième ordre, 2. — Gegalkine: Travaux pratiques de Calcul différentiel, 2; Travaux pratiques de Calcul intégral, 2; Ensemble infini, 1; Nombres incommensurables; Théorie de la puissance, 1. - Wolkoff: Théorie des lignes géodésiques, 2. - Poliakoff: Fonction hypergéométrique, 2. — Joukowsky: Dynamique du point, 3; Travaux pratiques, 2; Théorie des régulateurs, 2. — TCHAPLYGUINE: Mécanique d'un système et Hydromécanique, 3; Travaux pratiques. - Kowalensky: Hydraulique, 4. — Bolotoff: Théorie de l'élasticité, 3. — Mertzaloff: Travaux pratiques de Géométrie descriptive, 2; Théorie générale des machines, 2; Dessin linéaire, 2; Travaux pratiques de mécanismes, 1. — Stankiewitch: Intégration des équations différentielles de la Mécanique, 1. - APPELROTH : Sur les travaux de M. Painlevé relatifs à l'intégration des équations différentielles, 2. — Zerasski: Astronomie sphérique, 2; Introduction à l'Astronomie théorique, 2; Astronomie pratique et travaux pratiques à l'Observatoire, 3. — Sternberg: Géodésie supérieure (théorie générale de la figure de la Terre), 2; Travaux pratiques de Géodésie, 2. — Kasakoff : Mécanique céleste, 2. — Oumoff: Cours complet de physique (suite). — Zinger: Calcul vectoriel et son application aux questions de la Physique, 2.