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bien flou, et cela est trés génant. Cette phrase: « Les axiomes
viennent de ’expérience » n’a pas un sens net, il me serait facile
de le montrer, mais cela m’entrainerait trop loin. C’est une raison,
et 1l y en a bien d’autres, pour étre trées modéré dans les discus-
sions philosophiques et pour ne pas avoir peur de changer d’'avis.
I1 faudrait trouver un moyen d’exprimer sa pensée d’une facon
bien nette, sans ambiguité. Je ne désespére pas d’y arriver, mais
je n’y suis pas encore complétement parvenu en ce qui concerne

la question des axiomes. ‘
J. Ricuarp (Dijon).

3. Rérrioue pe M. CowmBEBIAc.

Ainsi que le tait remarquer M. Richard, il est fort difficile de
s’entendre sur certaines questions parce que les mots n’ont que
la signification que chacun leur donne. Je crois toutefois pouvoir
constater notre accord sur les deux points essentiels, savoir : 1°les
mémes lignes ne peuvent pas servir d’axes & une métrique hyper-
bolique et a une métrique parabolique; 2° les difficultés incontes-
tablement fort délicates que souleve la question des relations de
la Géométrie et de 'expérience sont du méme ordre que celles que
l'on rencontre pourles diverses branches de la physique, de sorte
que l'on se trouve ramené a la grosse question du réalisme scien-
lifique et non plus géométrique.

Sur les sommes de sinus et de cosinus dont les arguments sont en
progression arithmétique.

Ces sommes donnent lieu a d’intéressants exercices de transfor-
mations dans les applications de la formule de Moivre. En raison
du role qu’elles jouent dans les Mathématiques supérieures, leur
sommation mérite d’étre examinée, a titre d’exercice déja dans les
éléments.

Posons
- n—1 . n—1i
A= cos (a+16), B =" sin (« + f)
k=0 k=0
et formons la somme
n-—1
A+ Bi=> {cos (a + 1) + i sin (« + 4B)]
i k=0

Cette .expression peut se transformer successivement comme

- suit

n—1

AA—[—-Bi:(coso:—|—is‘ina)2-%cos kB -+ i sin Kﬁ%

k=0
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n—1

— (cos a + i sin «) 2 (cos B + i sin ﬁ)k

— (cos « -+ ¢ sin a)

= (cos a + I sin «|
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On en déduit
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n—1
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C. BRrRANDENBERGER (Zurich).
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