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318 E. BARBETTE

On remarquera que les longueurs d'arcs de cercle de rayons
égaux sont comparables entre elles au même titre que des

longueurs de droites ou des étendues angulaires.
Angles d'un triangle spéricjue. La génération (fig. 52), d'un

fuseau spérique sphérique par une rotation convenable con¬
tinue d'une demi - circonférence
tournant autour d'un diamètre est
absolument analogue à la rotation
du plan autour d'une perpendiculaire

au plan, elle permet de
définir les angles sphériques par une
trame de grands cercles ; l'angle
sphérique peut d'ailleurs être

mesuré par l'angle des tangentes rectilignes à ses deux côtés

qui sont tirées du sommet A ; cet angle est encore un angle
rectiligne du dièdre formé par les demi-plans dont les arcs
de cercle sont les images sphériques.

Fig. 52.

(A suivre.)
J. Andra.de (Besançon).

SUR L'ÉQUIVALENCE DES ÉQUATIONS

Lemme.—La somme des n fractions p p étant
b± b2 b81 1 b,i

représentée par la fraction

• aibA hn + Wh •" bn+ •" + anbA bn-1
/4

f 1

pour que cette dernière fraction soit irréductible, il faut et il
suffit que les n fractions données le soient aussi et que leurs
dénominateurs soient premiers entre eux deux à deux.

Démonstration. 1° La condition est nécessaire. En effet,
si deux des dénominateurs au moins, bi et &2 par exemple,
ou si le numérateur et le dénominateur de l'une des fractions,
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a1 et bA par exemple, admettaient un facteur premier
commun, ce facteur diviserait le numérateur et le dénominateur
de la fraction (1) : en sorte que cette fraction ne serait pas
irréductible.

2° La condition est suffisante. En effet, si le numérateur
et le dénominateur de la fraction (1) admettaient un facteur

premier commun : ce facteur, divisant le produit ibtb2bs ôrt),

diviserait l'un de ses termes, b± par exemple ; ce facteur,
divisant aussi la somme :

(cifb2b2 bn + a%btbz bn + + anbjj2... bn-\)

et divisant les (n — 1) dernières parties de cette somme,
diviserait la première partie (aj)2b2 bn) et par suite diviserait
a± puisque bt est premier avec è2, 6S, bfl, donc premier

avec le produit (b2b2 bn) : en sorte que la fraction ^ ne

serait pas irréductible.
Observation. Ce lemme est applicable tant aux fractions

algébriques rationnelles qu'aux fractions numériques. Nous
entendons par facteur premier commun à des polynômes
entiers en ,r, un binôme de la forme k (x — a) divisant chacun
d'eux, le nombre k n'étant ni nul ni infini a étant un nombre
fini et déterminé, positif, nul ou négatif; nous entendons par
polynômes premier entre eux, des polynômes n'admettant
pas de facteur premier commun.

Théorème. — Lorsqu'une équation est formée cle fractions
rationnelles et de termes entiers en x : l'équation obtenue, en

multipliant ses deux membres par le plus petit commun multiple

des dénominateurs est équivalente à la proposée.
Démonstration. — Premier cas : toutes les fractions sont

irréductibles et leurs dénominateurs sont premiers entre eux
deux cl deux.

La fraction qui représente la somme des fractions de l'équation

proposée, le dénominateur commun choisi étant le plus
petit commun multiple des dénominateurs, est aussi irréductible

et l'équation affecte la forme

f-p+ F(ar) 0 • (1)
^[X) V 1
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Si nous multiplions par 9 (V), nous obtenons F équation

entière

f(x) + F (x) y{x) — 0 (2)

Nous allons prouver que les équations (1) et (2) sont
équivalentes :

L° Toute solution x a de l'équation (l)est une solution de

l'équation (2). En effet, x a étant une solution cle l'équation

(1), transforme cette équation en l'identité

— + F(«) 0- (1*1
?(«)

1 '

La fonction F (x) étant entière en x, F (a) est fini et déterminé;

il en est donc de même de et par suite 9(a), qui est

fini et déterminé, est aussi différent de zéro. En multipliant
par 9(a) tous les termes de l'égalité (F), nous obtenons :

/*(«) + F (a) y (a) 0 (24

et cette identité prouve que x a est une solution de l'équation

(2).
2° Toute solution x a de l'équation (2) est une solution de

l'équation (1). En effet, x a étant une solution de l'équation
(2), transforme cette équation en l'identité

f{a) + F («) <p a) S 0 (2"j

Mais 9(0:), fini et déterminé, est aussi différent de zéro: car
si 9(a) était nul, /(a) le serait également à cause de l'identité
(2") ; les polynômes 9(x) et f(x) seraient divisibles par (x — a)

et la fraction ne serait pas irréductible
(x) r

En divisant par 9(a) tous les termes de l'égalité (2"), nous
obtenons

Ö*) + F(a) 0 (1")
?l«) W

et cette identité prouve que x a est une solution de l'équation

(1).
Deuxième cas: certaines fractions {une au moins) ou toutes
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les fractions sont réductibles et leurs dénominateurs sont
premiers entre eux cleux à deux.

Les valeurs de x qui annulent les deux termes de Tune ou
l'autre des fractions réductibles, sont racines de l'équation
proposée ; car, pour ces valeurs, l'équation se transforme en
l'identité1 :

î+AS»,
A étant un nombre fini et déterminé, nul ou non. Après

avoir supprimé les facteurs communs aux deux termes de

chaque fraction réductible, facteurs dont les racines
représentent des solutions de l'équation, nous retombons sur le

premier cas : il en résulte que, en multipliant les deux membres

de l'équation considérée par le plus petit commun
multiple des dénominateurs, l'équation transformée est
équivalente à la proposée.

Observation. Il est possible de déterminer le nombre des
racines égales de la façon suivante : si le numérateur de l'une
des fractions réductibles est divisible par {x — af et son
dénominateur par (x—af, cette fraction prend la forme
(x — af flix) >

(x — a)q ?!(,%•)

semble de tous les autres termes, entiers ou fractionnaires.
/' pouvant être nul et chacune des fonctions f(x), (fy{x) F.t .rj
n'étant plus divisible par (x- — a), l'équation devient

'i=4Jûî) + te_„r.FlW=»
L: — a) • ?i (#î

et possède autant de racines a que son équivalente

(x — a)p. + (x - a)q + r FAx) 0

q ^
; si nous représentons par (x — af Fd (x) l'en-

1 Le nombre indéterminé représente tous les nombres et, parmi eux, se trouve le nombre

— A; donc parmi toutes les valeurs que prend L _j_ a, se trouve la valeur — A -}- A 0. Par

3 (qq
exemple, si nous considérons la fonction y — 'A SI _j_ x -J- 1 : pour x X=- 2, elle devient

2/ 3-f-;r4-lou7/ — a? 4- 4 et s'annule pour x — 4 ; pour x — 2, elle devient y ~ + 3

et parmi ces valeurs indéterminées de y, se trouve le nombre nul 0. L'équation 3-Azl1! _j_
x — 2

x -f- 1 0 a par suite pour racines x — — 4 et x 2.
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Par conséquent, si p q -f- /', cette équation admet p

racines égales à a ; §i p > q -f /% cette équation admet (q + /•)

racines égales à a.
Troisième cas : les dénominateurs des fractions, irréductibles

ou non, ne sont pas premiers entre eux deux à deux.
Additionnons1 toutes les fractions en prenant pour

dénominateur commun, le plus petit commun multiple des
dénominateurs ; l'équation prend la forme

Si les fonctions fix) et <p (,r) ont des racines communes,
racines qui sont les solutions de L'équation obtenue en égalant
à zéro leur plus grand commun diviseur, celles-ci sont des
solutions de l'équation et nous rentrons dans le deuxième
cas considéré ; si les fonctions f(x) et <p<x) sont premières entre
elles, nous «retombons sur le premier cas.

Représentation graphique. La fonction

f [x\ (x — a)p fi (x)

F A) (x — a)p FjJ.rj

ffx) et F.j (x) n'admettant plus de diviseur commun (x — a)

prend la forme pour x a; parmi tous les nombres que représente

H. les mathématiciens n'ont considéré que celui auquel
ils ont donné le nom de vraie valeur2 et qui, géométriquement,

représente l'ordonnée du point d'intersection des lignes
dont les équations sont

[x — a\p — 0 et ri Ft{x)

c'est-à-dire l'ordonnée du point d'intersection de p droites

1 Nous pourrions aussi grouper les fractions, puis additionner celles constituant chaque
groupe (en prenant pour dénominateur commun, le plus petit commun multiple des
dénominateurs), de telle sorte que les dénominateurs de tous les groupes ainsi formés soient
premiers entre eux deux à deux : nous retomberions sur le premier cas considéré si toutes les
fractions résultantes étaient irréductibles, et sur le deuxième si certaines de ces fractions
(une au moins) ou toutes étaient réductibles.

2 Ce nom de vraie valeur sonne faux! Cette vraie valeur n'est autre que la limite de la ionc-
tion y, la variable x tendant vers a.
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confondues, parallèles à Taxe des y découpant le segment a

sur l'axe des ,z\ et de la ligne y1.

• La représentation graphique de y montre que cette fonction

est réellement indéterminée pour x a et par conséquent
que, parmi les valeurs correspondantes de y variant de — oo

à 4- oo, se trouvent non seulement la vraie valeur §4~! niais

aussi la valeur 0.
Dans la résolution d'une équation, les facteurs communs

entrant dans la composition des deux termes d'une fraction,
ne peuvent être supprimés que si nous convenons de ne
regarder comme solutions de l'équation, non pas les racines
qui rendent la fonction identiquement nulle, mais celles pour
lesquelles cette fonction ne peut avoir d'autre valeur que zéro.
Suivant les conditions du problème que nous nous proposons
de résoudre ou du théorème que nous voulons démontrer,

telle ou telle autre valeur du nombre ^ sera à prendre : dans

la détermination du coefficient angulaire de la tangente en
un point d'une courbe, par exemple, nous en prendrons la
limite ; peut-être, dans une des théories que réserve l'avenir,
devrons-nous en prendre une autre valeur ; mais dans la

résolution brute des équations, le nombre jj ne satisfaisant à

aucune condition, est réellement indéterminé.
Exemple i. Les nombres a, 6, c étant finis et déterminés,

résoudre l'équation

^Lf< + -^±i+fL+_c + 3 o. (ijx — ci x — b x — c

en supposant : A) a, b et c distincts ; B) a ^ b et b — c ;

C) a b c 0 ; D) « 6 c 0.
Solution. A) a, b et c sont distincts. L'équation proposée

est équivalente à la suivante:

(x 4- a) (x — b) (x — c) -f- (x — a) (x -}- b) (x — c) -f-
(x — ci) {x — b) (x + r.) + 3 (x — a {x — b) (x — c) 0

OU

3a4 — 2 (a 4~ b -f- c)x2 4- [ab 4- be 4- ca)x — 0
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Cette équation se décompose en deux autres :

x± — 0

et
Sx2 — 2(a + b + c)x -J- (ab -f- bc -f- ca) 0

d'où
xa) a b c ± [/ g2 — g (b -f c) + b2 — bc -f-
^*3 / 3

~ ~

B) ci b et b c. L'équation proposée devient

*±_« 2.ï+-J + 3=0. (2,
x — a x — b v

et est équivalente à la suivante:

(x -f- a) (x — b) -f- 2 {x — a) (x -}- b) -f- 3(.x — a) (x — b) — 0

OU

Sx2 — (2a + b)x — 0

Cette équation a pour solutions :

xx — 0

la -(- b

^=—3— •

Observons qu'en faisant c b dans les solutions xcl et x3
de l'équation (1), résolue dans l'hypothèse A, nous obtenons:

2 a b
jx% — —-— et xs b •

La solution x% b est une solution étrangère à l'équation
(2): en effet, le plus petit commun multiple des dénominateurs

de l'équation (1) est [x — d)(x — b) (x — c), expression
qui devient (x — a) (x — b)2 si c b, tandis que le plus petit
commun multiple des dénominateurs de l'équation (2) est

(x — a) (x — b).

C) a b c ^ 0. L'équation proposée devient

x-àJL +1 0- (3)
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et est équivalente à la suivante:

x -j— a -j— X — a r=r 0

d'où
xt — 0

Observons qu'en faisant a — b — c dans les solutions x2 et

x3 de l'équation (1), résolue dans l'hypothèse A, nous
obtenons:

x2 =r cl et xs — a

Ces deux solutions sont étrangères à l'équation (3); en
effet, le plus petit commun multiple des dénominateurs de

l'équation (t) est (x — a) [x — b) {x — c), expression qui
devient {x — a)B si a b c, tandis que le dénominateur de
la fraction qui intervient dans l'équation (3) est simplement
(x — a).

D) a — b c 0. L'équation proposée devient

2 + 1 0. (4)

et est équivalente à la suivante :

x + x — 0

d'où
Xt 0

Observons qu'en faisant ci b c 0 dans les solutions
x2 et x3 de l'équation (1), résolue dans l'hypothèse A, nous
obtenons:

-x2 0 et x3 0

Ces deux solutions sont étrangères à l'équation (4) : en
effet, le plus petit commun multiple cles dénominateurs de
l'équation (1) est {.x — a) (.r— b) (x — c), expression qui
devient x3si a b c=0, tandis que le dénominateur de
la fraction qui intervient dans l'équation (4) est simplement

Exemple 2. Résoudre l'équation.

l+,t! 1 — a-3

+ n———, 4 •
(1 -f x)*' (1 — af
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Solution. Divisons les deux termes de la première fraction

par (1 -f- oc) et les deux termes de la seconde par (1 — x) ;

l'équation proposée se décompose en trois autres:

1 -j- x ~ 0 d'où xt — — 1 ;

1 — x — 0 d'où x2 — 1 ;

l-x + x»
4 d,où 0 + 8*» - 2 0 •

1 -f- x 1 — a;

Cette dernière équation a pour racines:

1 t
; ^5 —

2
'

Exemple 3. Résoudre l'équation
7 2 2 _ ^

3(x — 3) (2x -|- 1) (2a; -f- 1) (x — 1) 3(x — 1) (x — 3)

Solution. L'équation proposée est équivalente à la suivante:

l(x — 1) — 6 x — 3) — 2 (2x -j- 1)

É 3(x — 3) (2x -f- 1} (x — 1)

OU

x — 3

r= 1

(x — 3) (2x —j— 1] (x — 1]

Divisons les deux termes de la fraction par (x — 3); l'équation

se décompose en deux autres :

x — 3 — 0 d'où Xi — 3 ;

et
A

— — 1 d'où 1 — — 2x2 -f- x -f- 1

(2x -j- 1) [x — 1)

x(2x — 1) rrr: 0

en sorte que
1

x2 — 0 et x3 ~ - •

Exemple 4. Les nombres a et x' étant finis et déterminés,
résoudre l'équation

s» - *" «. + B _ 3,
X X (A

en supposant A) a constant, puis successivement: .1°) a différent

de zéro ; 2° a égal à zéro; B) a variable et ayant a pour
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limite, puis successivement: 1° a différent de zéro ; 2° a égal
à zéro.

Solution. Quelle que soit la valeur de a, l'équation
proposée admet la solution xx — x!. L'autre solution est donnée

par l'équation suivante, obtenue en divisant les deux termes
de la fraction du premier membre par ix — x :

x -j- xf — 3 - • (2x' -(- a — 3) (1)

A) a est constant :

L° a ^ 0. L'équation (i) est équivalente ä l'équation:

x —j— xr — 3 2xf + a — 3

d'où
x2 — xr —|—

2° a 0. De l'équation (i), nous déduisons

x2 - (2x/ — 3) — x' -)- 3

La racine x2 est, par suite, indéterminée.
B) a est variable et a est sa limite :

1° a ^ 0. L'équation (1) est équivalente à l'équation:

Limite x -j- xf — 3. 2xr a - • 3

d'où
Limite x ou x2 ~ x' -f- a

2° a — 0. L'équation (i) est équivalente à la suivante:

Limite x + xf — 3 2x' — 3

d'où
Limite x ou x2~ xf.

E. Barbette (Liège).
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