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318 * E. BARBETTE

On remarquera que les longueurs d’arcs de cercle de rayons
égaux sont comparables entre elles au méme titre que des
longueurs de droites ou des étendues angulaires.

Angles d’un triangle spérigue. La génération (fig. 52), d’un
fuseau spérique sphérique par une rotation convenable con-
tinue d'une demi-circonférence
tournant autour d’'un diametre est
absolument analogue a la rotation
du plan autour d’une perpendicu-
0 § laire au plan, elle permet de dé-

' ! finir les angles sphériques par une

et

it {

trame de grands cercles; l'angle
sphérique peut d’ailleurs étre me-
suré par 'angle des tangentes rectilignes a ses deux cotés
qui sont tirées du sommet A ; cet angle est encore un angle
rectiligne du diédre formé par les demi-plans dont les arcs
de cercle sont les images sphériques.

¢ .

Fig. 52.

J. Axprape (Besancon).
(A suivre.)
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' . a; da, a an
LeEMME. — La somme des n fractions -, =, =, ..., = étant
171 [)2 1)3 I)IL
représentée par la fraction
ab,b, ... b, 4+ Ay by b, + ... +a,bb, .. b, _—
bbb b ’ )
1 23 112

- pour que cette derniére fraction soit irréductible, il faut et il
suffit que les n fractions données le soient aussi et que leurs
dénominateurs soient premiers entre eux deux a deux.
DemonsTRrATION. 1° La condition est nécessaire. En effet,
si deux des dénominateurs au moins, b, et b, par exemple,
ou si le numérateur et le dénominateur de I'une des fractions,
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a, et b, par exemple, admettaient un facteur premier com-
mun, ce facteur diviserait le numérateur et le dénominateur
de la fraction (1) : en sorte que cette fraction ne serait pas
irréductible.

- 2° La condition est suffisante. En effet, si le numérateur
et le dénominateur de la fraction (1) admettaient un facteur
premier commun : ce facteur, divisant le produit (b,0,0, ... 0,),
diviserait I'un de ses termes, b, par exemple ; ce facteur,
divisant aussi la somme : o

(a,b,b, ... b, + a,0,0, ... b, + ... + @,0,0,... 0y 1)

et divisant les (n —— 1) derniéres parties de cette somme, divi-
serait la premiére partie (@,0,0, ... b,) et par suite diviserait
a, puisque b, est premier avec b,, b,, ... b,, donc premier
avec le produit (0,0,... b,): en sorte que la fraction %i ne
serait pas irréductible. |

OsservarioN. Ce lemme est applicable tant aux fractions
algébriques rationnelles qu’aux fractions numériques. Nous
entendons par facteur premier commun a des polynomes
entiers en x, un binome de la forme % (x — @) divisant chacun
d’eux, le nombre £ n’étant ni nul ni infini, « étant un nombre
fini et déterminé, positif, nul ou négatif; nous entendons par
polynomes premier entre eux, des polynomes n’'admettant
pas de facteur premier commun.

THEOREME. — Lorsqu’une équation est formée de fractions
rationnelles et de termes entiers en x : l'équation obtenue, en
multipliant ses deux membres par le plus petit commun mul-
tiple des dénominateurs est équivalente a la proposée.

DEMONSTRATION. — PREMIER cAs : toutes les fractions sont
wrréductibles et leurs dénominateurs sont premiers entre eux
deux a deux.

La fraction quireprésente la somme des fractions de 1'équa-
tion proposée, le dénominateur commun choisi étant le plus
petit commun multiple des dénominateurs, est aussi irréduc-
tible et 'équation affecte la forme

L 4+ P =0 o

[
—
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Si nous multiplions par ¢ (x), nous obtenons I'équation en-
tiere
fle) + Flx).o(x) = 0. (2)

Nous allons prouver que les équations (1) et (2) sont équi-
valentes : '

1o Toute solution x — a de U'équation (l)est une solution de
Uéquation (2). En effet, xr =— a étant une solution de 1'équa-
tion (1), transforme cette équation en l'identité

fla)
¥ (a)

Il

+ F(a) (1)
La fonction F(x) étant entiére en x, F(a) est fini et déter-
miné; il en est donc de méme de ;E—Z; et par suite g(a), qui est

fini et déterminé, est aussi différent de zéro. En multipliant
par ¢(a) tous les termes de 'égalité (1), nous obtenons:
fla) + F(a).¢(a) = 0. (27)
et cette identité prouve que x — « est une solution de l'équa-
tion (2). ’
2° Toute solution x — « de U’équation (2) est une solution de
Uéquation (1). En effet, x — « étant une solution de I'équation
(2), transforme cette équation en l'identité
fle) + Flu). ¢ a) = 0. | (2")

Mais g(), fini et déterminé, est aussi différent de zéro: car

si g(x) était nul, f(«) le serait également a cause de l'identité
(2”5 les polynomes g(x) et f(x) seraient divisibles par (x — «)
et la fraction :D%) ne serait pas irréductible .

En divisant par ¢(a) tous les termes de l'égalité (2"), nous

obtenons

f ()

v («)

Il

+ F(a) (1)

et cette identité prouve que x = « est une solution de I'équa-
tion (1).
DEUXIEME CAS: certaines fractions (une au moins) ouw toutes
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les fractions sont réductibles et leurs dénominateurs sont pre-
miers entre eux deux a deux. - |

Les valeurs de x qui annulent les deux termes de 'une ou
Pautre des fractions réductibles, sont racines de 'équation
proposée ; car, pour ces valeurs, 'équation se transforme en
Pidentité? :

0
M + A =0 ’

A étant un nombre fini et déterminé, nul ou non. Apres
avoir supprimé les facteurs communs aux deux termes de
chaque fraction réductible, facteurs dont les racines repré-
sentent des solutions de I'équation, nous retombons sur le
premier cas : il en résulte que, en multipliant les deux mem-
bres de l'équation considérée par le plus petit commun
multiple des dénominateurs, I'équation transformée est équi-
valente a la proposée.

Observation. 11 est possible de déterminer le nombre des
racines égales de la facon suivante : si le numérateur de I'une
des fractions réductibles est divisible par (x — a)f et son
dénominateur par (r — a)?, cette fraction prend la forme

P
xr — a . X * 2 " — )

( P filz) ; 81 nous représentons par (v — a)" . F,(r) I'en-
(x — @)t g:()
semble de tous les autres termes, entiers ou fractionnaires.
r pouvant étre nul et chacune des fonctions f;(x), ¢,(x) , F,ix)

n’étant plus divisible par (x — a), 'équation devient -

(x — a)f . fi (x)

(x — a)? . g (x)

4 (x—a)f.Fi(a) =0

et possede autant de racines @ que son équivalente

(x — a)?. ;1—((?) +(x— @t Fylx) =0 .

1 Le nombte indétermine F représente tous les nombres et, parmi eux, se trouve le nombre

. 0
— A ; donc parmi toutes les valeurs que prend T -+ A, se trouve la valeur — A 4+ A = 0. Par

3(x —2)

exemple, si nous considérons la fonction y = 5
- X — 2

+ x 4 1:pour x # 2, elle devient

=3+ 2+ 1ouy=x+ 4et sannule pour x = — 4; pour x = 2, elle devient y = —g— + 3

3(x — 2

et parmi ces valeurs indéterminées de y, se trouve le nombre nul 0. L’équation
x — 2

x 4+ 1 = 0 a par suite pour racines ¥ = — 4 et x = 2.
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Par conséquent, si p <{ ¢ + r, cette équation admet p ra-
cines égales a @ ; si p > ¢ + r, cette équation admet (g + 1)
racines égales a «.

TROISIEME cas: les dénominateurs des fractions, irréduc-
ttbles ou non, ne sont pas premiers entre eux dewxr a deux.

Additionnons® toutes les fractions en prenant pour déno-
minateur commun, le plus petit commun multiple des déno-
minateurs ; I'équation prend la forme

ﬂ%+mm:m

o(x

1

Si les fonctions fix) et g (x) ont des racines communes,
racines qui sont les solutions de I'équation obtenue en égalant
a zéro leur plus grand commun diviseur, celles-ci sont des
solutions de I'équation et nous rentrons dans le deuxiéme
cas considéré; siles fonctions f{x! et g/} sont premiéres entre
elles, nous retombons sur le preniier cas.

REPRESENTATION GRAPHIQUE. La fonction

fla) _ (x — alf - filx)
Flx) ™ (x — a)? . Fya)

fi(x) et Fix) n'admettant plus de diviseur commun (r — «a)

0 ‘ ’ ,
prend la forme ; pour x = a; parmitouslesnombres querepré-
sente ;5 les mathématiciens n’ont considéré que celui auquel
ils ont donné le nom de vraie valeur? et qui, géométrique-
ment, représente l'ordonnée du pointd’intersection des lignes
dont les équations sont

x — alP =0 t ':fl——(x)
(x — a) et 1y Friz)

fi la

1 * 3 , ( . g - .
c’est-a-direl'ordonnée (a?) du point d'intersection de p droites
£ &

1 Nous pourrions aussi grouper les fractions, puis additionner celles constituant chaqgue
groupe (en preunant pour dénominateur commun, le plus petit commun multiple des dénomi-
nateurs), de telle sorte que les dénominateurs de tous les groupes ainsi formés soient
premiers entre eax deux a deux: nous retomberions sur le premier cas considéré si toutes les
fractions résultantes étaient irréductibles, et sur le deuxiéme si certaines de ces fractions
(une au moins) ou toutes étaient réductibles. :

2 Ce nom de vraie valeur sonne faux! Cette vraie valeur n'est autre que la limite de la fonc-
tion-y, la variable x tendant vers a.
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confondues, paralléles a I'axe des y découpant le segment a
sur l'axe des x, et de la ligne y1.

- La représentation graphique de i montre que cette fonc-
tion estréellementindéterminée pour x = « et par conséquent
que, parmi les valeurs corresp01'1d'111tes de y variant de — o
f1 (a)

lllaIS
Fila)’

a 4+ o, se trouvent non seulement la vraie valeur m—

aussi la valeur 0.

Dans la résolution d'une équation, les facteurs communs
entrant dans la composition des deux termes d’'une fraction,
‘ne peuvent étre supprimés que si nous convenons de ne
regarder comme solutions de I'équation, non pas les racines
qui rendent la fonction identiquement nulle, mads celles pour
lesquelles cette fonction ne peut avoir d’autre valeur que zéro.
Suivant les conditions du probléme que nous nous proposons
de résoudre ou du théoréme que nous voulons démontrer,

O 1
5 sera a prendre : dans

la détermination du coeflicient angulaire de la tangente en
un point d’'une courbe, par exemple, nous en prendrons la
limite ; peut-étre, dans une des théories que réserve 'avenir,
devrons-nous en prendre une aulre valeur; mais dans la

telle ou telle autre valeur du nombre

résolution brute des équations, le nombre ; ne satisfaisant a

aucune condition, est réellement indéterminé.
ExempLE 1. Les nombres a, b, ¢ étant finis et déterminés,
résoudre ’équation

x+cc+;x—[—l) x 4+ c

x — a x— b X — ¢

+3=0- (1)

en supposant : A) @, b et ¢ distincts ; B) a2 b et b= ;
Cla=0b=c0; D)a:[):C:O.

Solution. A) a, b et ¢ sont distincts. L'équation proposée
est équivalente a la suivante:

(@ 4 w) (@ — b) @ — o) + (& — @) (x + b) {z — ¢] +
(x—a)/;(*——l))( x4+ )+ 3(x—ax—b)(x—c)=0
ou
3x% — 2(a + b -t c)x® + (ab + be + ca)x = 0 .
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Cette équation se décompose en deux autres :
. Xy — 0.
el

3a* — 2(a 4+ b 4 c¢)x 4 (ab + be + ca) = 0
d’ott A "

Xy :a—{—b—}—ci“/?——a(l)+c)+b2—l)c—|—02

X3 3

B) a £ b et b = c. L’équation proposée devient

x—i—a_}_Q.x—}-b

x— a %z — b

+ 3=0. (2)

et est équivalente a la suivante:

(x + a)(x — b) 4+ 2(x — a) (x + l;)-—l— 3(x —a)(x— b =0.
ou |
Ja? — (2a'—{— byax = 0 .

¢

Cette équation a pour solutions :

J‘lzo

S 2a b
X9 E;}— o

Observons qu'en faisant ¢ = b dans les solutions x, et «,
de I'équation (1), résolue dans I’hypothése A, nous obtenons:

2a + b
3

Xy == xs =10 -

La solution x; — b est une solution étrangére a I'équation
(2): en effet, le plus petit commun multiple des dénomina-
teurs de ’équation (1) est (x — a)(x — b)(x — ¢), expression
qui devient (r — a) (x — b)% si ¢ = b, tandis que le plus petit
commun multiple des dénominateurs de I'équation (2) est
(x — a)(x — ). |

C) a = b = c # 0. I’équation proposée devient

rtae . (3)

x — a
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et est équivalente & la suivante:

x+a+x—a=20,
d’ou
.1’1::0.

Observons qu’en faisant @« — b == ¢ dans les solutions x, et
x; de I'équation (1), résolue dans ’hypothése A, nous obte-
nons:

Xo —— A et X —— a .

Ces deux solutions sont étrangeres a l'équation (3); en
effet, le plus petit commun multiple des dénominateurs de
I’équation (1) est (x — a) (x — b) (x — ¢), expression qui
devient (x — a)® si @ = b — ¢, tandis que le dénominateur de
la fraction qui intervient dans I’équation (3) est simplement
(x — a).

D) @ = b0 = ¢ = 0. L’équation proposée devient

-~

S41=0. (

et est équivalente a la suivante:

x+x=0

d’ou’

(E1:O.

Observons qu'en faisant @ = b — ¢ = 0 dans les solutions
Z, et x; de I'équation (1), résolue dans 'hypothése A, nous
obtenons:

22 =0 et a3—=—20.

Ces deux solutions sont étrangéres a 'équation (4): en
effet, le plus petit commun multlple des dénominateurs de

| lequatlon (1) est (x — a)(x — b) (x — ¢), expression qui de-

vient x° si @ = b= c¢ =20, tandis que le dénominateur de
la fraction qui intervient dans I'équation (4) est simplement .
ExempLE 2. Résoudre I’équation.

1 4 a8 1 — a3

(1 +x)2+_(1——'~x)‘3:4.
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Solution. Divisons les deux termes de la premiere fraction
par (1 4 x) et les deux termes de la seconde par (1 — x);
I'équation proposée se décompose en trois autres:

14+2=0 dou x—=-—1;
1—ax=0 dou ay,—1 x
1—ax+ 2 14 x + 22 . .
= ‘ot 8x2 —2—=20-
iy + = 4 d’on Ox3 4 8x

Cette derniere équation a pour racines:

1 1
Xg. == X0 ; I4:§; x5:—§-

ExEmMpLE 3. Résoudre I'équation
7 2 2

. _ — 1

3(x — 3)(2x + 1)  (2x + 1)(z — 1) 3(x — 1) (x — 3)

Solution. 1’ équation proposée est équivalente a la suivante:

Ne—1) —6(x—3 —2(2c41) |
‘ 3lx — 3)(2x + 1) (x — 1) o

ou
x— 3 R
(x — 3) (22 4+ 1) (x — 1)

= —1-

Divisons les deux termes de la fraction par (x — 3); I'équa-
tion se décompose en deux autres :

x—3=0 dou ax3=3,;
et

1 - o 2
(23:-{—’1)(.%——1):_1 douw 1 =—2x*+x-+1.

x(2x — 1) =0
en sorte que
1
Xy =0 et asg— -
2 3 2
ExempLE 4. Les nombres « et &' étant finis et déterminés,
résoudre ’équation :

“x? — 2’ — 3 (x — &)

o
PR :;~(2x’+a—-—-3)

en supposant A) « constant, puis successivement: 1°) o diffé-
rent de zéro; 2° « égal a zéro; B) a variable et ayant a pour
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limite, puis successivement: 1°  différent de zéro; 2° a égal
a zéro. 1 ,

Solution. Quelle que soit la- valeur de «, I'équation pro-
posée admet la solution x, = /. L’autre solution est donnée
par 'équation suivante, obtenue en divisant les deux termes
de la fraction du premier membre par (x — x'):

x+x’~3:g-(2x’—f—a—3) (1)

A) « est constant :
1° « £ 0. L'équation (1) est équivalente a ’équation:

, - x+x —3 =22+ a—3
d’ou

X9 —— x, + .

2° '« = 0. De I’équation (1), nous déduisons

Xy = - (2x’—3)—.x’+3.

0
La racine x, est, par suite, indéterminée.

B) a est variable et a est sa limite

1° a = 0. L’équation (1) est équivalente a I’équation :

Limite x + 2/ — 3 = 22 + a--3
d’ou '

Limite x ou 2, =& 4+ «a .
2° ¢ = 0. L’équation (1) est équivalente a la suivante:

Limite x + 2’ —- 3 = 22" — 3
d’ou

Limite x ou g2, = x’.

E. BARVBE'J‘TE (Liege).
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