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300 ANDRADE

‘ NN : :
Soient (sans figure) A et B deux angles d'un triangle et

solent: @ et b les cotés respectivement opposés a ces angles ;
A TR
je dis que l'inégalité A > B entrainera comme conséquence

I'inégalité @ > b.

En effet, en comparant a et b, trois cas peuvent seuls se
présenter; ou bien 1°: @ < b, ou bien 2°: @ = b; ou bien
3: a > b;or le cas de a < b entrainerait, d’apres le
théoréme précédent A < B et le cas de a = b entrainerait
comme nous 'avons vu, au début de ces lecons A = B. Ces
deux suppositions provisoires ¢ < b et @ = b entraineraient
donc des conséquences contradicloires avec I'’hypothése; on
aura donc bien @ > b tout comme on avait d’abord A > B.

Remargue. — (ie genre de raisonnement est ce qu'on
nomme un raisonnement par {'absurde.

IV. — Un c6té d'un triangle est plus petit que la somme
des deux autres.

¢

Il n'y a lieu a démonstration que si le coté considéré n’est
pas le plus petit de tous, soitalors (Fig. 25) AB > AC. Prolon-
geon_é AG d'une longueur CD, de maniére

que AD = AB, joignons BD; envisageons

A s dune part le triangle isocele ABD et d’autre
part le triangle CBD. Dans ce dernier, 'angle
CBD portion de ABD sera plus pelit que celui-
ciouque son égal CDB ; on a donc un triangle

~ AN\

CBD dans lequel CDB > CBD; on peut donc affirmer, d'apres
le théoréme précédent, que CD < CB; ABAD se compo-
sant de AC et de CD sera donc moindre que AC + CB.

A

D
Fig. 25.

V. — Comparaison de deux triangles qui ont deux codtés égaux
chacun a chacun comprenant deux angles inégaux.

THEOREME. — S¢ deux triangles ont deux cotés égaux cha-
cun a chacun comprenant un angle inégal, les cétés opposés
a cet angle dans les deux triangles seront inegaux el dans le
méme ordre de taille.
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Portons (Fig. 26)le triangle A'B'C’ vers le triangle ABC, de
maniére & juxtaposer deux cotés égaux A'B’ sur AB et a placer
les deux triangles dans une méme région de leur plan com-
mun, par rapport a ce ,
coté coincidant; soit A
ABD la nouvelle venue:
du triangle A’B'C/, soit
AX la bissectrice de
I'angle formé par les
deux autres cotés apres
ce transport.

Cette bissectrice 1n- ’
térieure au plus grand B’
angle BAC va couper le Fig. 6.
coté BC en I, joignons
ID: nous formons ainsi deux triangles ADI, AIC, égaux
comme ayant un angle égal compris entre deux cotés égaux
chacun a chacun, puis de I’égalité de ces triangles nous con-
cluons DI = 1C.

D’autre part. dans le triangle BDI nous avons, si D n’est
pas sur BI,

BD < DI 4 IB ou BD < BI - IC ou BC.

Si D était sur BI, 1l serait forcément entre B et [ et on
aurait BD = BI — ID et a plus forte raison BD < BI + ID.

TuEOREME (réciproque du précédent). — 8¢ deux triangles
ont deux cétés égaux chacun a chacun, mais si leurs troi-
stéme cotés sont inégaux, les angles opposés a ces cotés seront
ausst inégaux et dans le méme ordre de tatlle.

Nous démontrerons cetle réciproque par la réduction a
'absurde ; soient : b,c,a, les cotés du premier triangle,
b',c',a', les cotés du second; soient A et A’ les angles de ces
triangles respectivement opposés aux cotés a et «'.

Nous supposons donnés les renseignements suivants :

= b c¢c=<¢ a<a .. (hypothéses données )
voulant comparér les angles A et A’, nous ne pouvons que
faire les suppositions suivantes :

1o A>A"; 20 A=A"; 30 A <A’; (hypothéses provisoires).
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Or, d’apreés le théoréme direct la supposition: A > A’ en-
trainerait: @ > a’, ce qui n'est pas; la supposilion A = A’ en-
trainerait: @ == a’, ce qui n’est pas non plus ; la seule suppo-
sition qui reste donc pessible est: A < A’.

VI. — Définition et propriétés de I’angle triédre.

On appelle angle triedre la figure 27 formée par 3 demi-
droites et par les trames angulaires qui les réunissent deux
a deux.

Ces trames angulaires porlent en-
core le nom de faces du triedre, leurs
intersections ou les demi-droites
déja considérées se nomment les
arétes du triédre.

Deux faces forment sur leur aréte
commune un angle diédre que l'on
nomme: un diédre du triedre. Le
triedre, sorte de capuchon, n’est pas
une ﬁguré fermée; mais un angle

Fie. 21, triedre présente néanmoins certaines
analogies avec un triangle ; nous al-
lons par exemple démontrer le théoreme suivant :

TuEorEME. — Dans tout angle triedre une face est plus
petite que la somme des deux autres.

Il n’y a lieu a démonslration que pour
la face qui n’est pas la plus petile; dans le
plan de cette face qui prolonge le triangle
ASB (Fig. 28) reproduisons donc un angle
égal a la face adjacente plus petite, a partir
de l'aréte commune aux deux faces et dans
une portion de la plus grande des deux
faces; nous obtenons ainsi l'angle ASD
portion de ASB et reproduction de la
face ASX; sur l'aréte SX prenons une lon-
gueur SCG = SD. |

Menons GCA, CB, CD; grace A mnolre
choix des points C et D, les deux triangles ASD et ASC,
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