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300 ÂNDRÂDE

/\ /\Soient (sans figure) A et B deux angles d'un triangle et

soient: a et b les côtés respectivement opposés à ces angles;
/\ /\

je dis que l'inégalité A > B entraînera comme conséquence
l'inégalité a )> b.

En effet, en comparant a et b, trois cas peuvent seuls se

présenter ; ou bien 1° : a <£ b, ou bien 2°: a b; ou bien
3° : a > b ; or le cas de a < b entraînerait, d'après le
théorème précédent A < B et le cas de a b entraînerait
comme nous l'avons vu, au début de ces leçons A B. Ces
deux suppositions provisoires a < b et a b entraîneraient
donc des conséquences contradictoires avec l'hypothèse; on
aura donc bien a > b tout comme on avait d'abord A > B.

Remarque. — Ce genre de raisonnement est ce qu'on
nomme un raisonnement par Vabsurcle.

IV. — Un côté d'un triangle est plus petit que la somme
des deux autres.

Il n'y a lieu à démonstration que si le côté considéré n'est
pas le plus petit de tous, soit alors (Fig. 25) AB > AC. Proion -

geons AC d une longueur CD, de manière

que AD AB, joignons BD; envisageons
d'une part le triangle isocèle ABD et d'autre
part le triangle CBD. Dans ce dernier, l'angle
CBD portion de ABD sera plus petit que celui-
ci ou que son égal CDB ; on a donc un triangle

/\ /x
CBD dans lequel CDB > CBD; on peut donc affirmer, d'après
le théorème précédent, que CD < CB ; ABAD se composant

de AC et de CD sera donc moindre que AC + CB.

V. — Comparaison de deux triangles qui ont deux côtés égaux
chacun à chacun comprenant deux angles inégaux.

Théorème. — Si deux triangles ont deux côtés égaux chacun

à chacun comprenant un cingle inégal, les côtés opposés
à cet angle clans les deux triangles seront inégaux et clans le
même ordre de taille.
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Portons (Fig. 26) le triangle A'B'C' vers le triangle ABC, de

manière à juxtaposer deux côtés égaux A/B/ sur AB et à placer
les deux triangles dans une même région de leur plan
commun, par rapport à ce
côté coïncidant ; soit
ABD la nouvelle venue
du triangle A'B'C', soit
AX la bissectrice de

Tangle formé par les
deux autres côtés après
ce transport.

Cette bissectrice
intérieure au plus grand
angle BAC va couper le Fig. 26.

côté BC en I, joignons
ID; nous formons ainsi deux triangles ADI, AIC, égaux
comme ayant un angle égal compris entre deux côtés égaux
chacun à chacun, puis de l'égalité de ces triangles nous
concluons DI IC.

D'autre part, dans le triangle BDI nous avons, si D n'est

pas sur BI,
BD < DI -h IB ou BD < BI -f IG ou BC.

Si D était sur BI, il serait forcément entre B et I et on
aurait BD BI — ID et à plus forte raison BD < BI + ID.

Théorème (réciproque du précédent). — Si deux triangles
ont deux côtés égaux chacun à chacun, mais si leurs
troisième côtés sont inégaux, les angles opposés à ces côtés seront
aussi inégaux et dans le même ordre de taille.

Nous démontrerons cette réciproque par la réduction à

l'absurde ; soient : les côtés du premier triangle,
ô/,c',#', les côtés du second; soient A et A' les angles de ces
triangles respectivement opposés aux côtés a et a!.

Nous supposons donnés les renseignements suivants :

b — bf c — cf a <g af (hypothèses données

voulant comparer les angles A et A', nous ne pouvons que
faire les suppositions suivantes :

1° A )> A' ; 2° A A'; 3° A <( A7; (hypothèses provisoires).
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Or, d'après le théorème direct la supposition : A > A'
entraînerait: a > a\ ce qui n'est pas ; la supposition A A'
entraînerait: a a\ ce qui n'est pas non plus ; la seule supposition

qui reste donc possible est : A < A'.

VI. — Définition et propriétés de l'angle trièdre.

On appelle angle trièdre la figure 27 formée par 3 demi-
droites et par les trames angulaires qui les réunissent deux

à deux.
Ces trames angulaires portent

encore le nom de faces du trièdre, leurs
intersections ou les demi - droites
déjà considérées se nomment les
arêtes du trièdre.

Deux faces forment sur leur arête
commune un angle dièdre que l'on
nomme: un dièdre du trièdre. Le
trièdre, sorte de capuchon, n'est pas
une figure fermée; mais un angle
trièdre présente néanmoins certaines
analogies avec un triangle ; nous

allons par exemple démontrer le théorème suivant :

Théorème. — Dans tout angle trièdre une face est plus
petite que la somme des deux autres.

Il n'y a lieu à démonstration que pour
la face qui n'est pas la plus petite; dans le

plan de cette face qui prolonge le triangle
ASB (Fig. 28) reproduisons donc un angle
égal à la face adjacente plus petite, à partir
de l'arête commune aux deux faces et dans

une portion de la plus grande des deux
faces; nous obtenons ainsi l'angle ASD

portion de ASB et reproduction de la

face ASX; sur l'arête SX prenons une
longueur SC SD.

Menons CA, CB, CD ; grâce à notre
choix des points C et D, les deux triangles ASD et ASC,
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