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GÉOMÉTRIE NATURELLE 299

Théorème. — L'angle extérieur d'un triangle est supérieur
à tout angle intérieur qui n'a pas même sommet que lui.

Faisons voir par exemple que: (Fig. 23) XAG > AGB.

Joignons le troisième sommet B au milieu D de

AG et prolongeons BD d'une longueur égale
en DB', joignons B' à A, la droite AB' sera

située dans l'angle extérieur DAX ; les angles
opposés par le sommet BDC et ADB' valent

/\ Fig. 23.

chacun 2 droits diminués de l'angle ADB ils
sont donc égaux ; alors les deux triangles ADB' et BDG ayant
un angle égal compris entre deux côtés égaux chacun à chacun,
sont égaux; et par suite les angles opposés respectivement

/\ /\
à DB' et BD côtés égaux, seront égaux; ainsi B'AD DGB;

/\mais B'AD est portion de l'angle extérieur CAX, donc enfin
on a bien :

/\ /\XAG > ACB.

III. — Comparaisons simultanées de 2 côtés d'un triangle
et de leurs angles opposés.

Théorème. — Si deux côtés d'un triangle sont inégaux les

angles opposés ci ces côtés sont inégaux clans le même ordre
de taille.

Comparons (Fig.24) les deux côtés AB et AC du triangle ABC;
soit le côté AG > AB. Prenons sur AG un segment AD AB et

/\
joignons BD ; l'angle ADB — ABD (puisque
le triangle ABD à deux côtés égaux) ; l'angle
ADB extérieur est plus grand que l'angle
/\ /\

Fig 24
DGB du triangle partiel BDG ; l'angle ABD

portion de l'angle ABC est donc plus grand
que l'angle AGB, donc à plus forte raison l'angle total ABC
dépassera-t-il ACB.

Théorème (réciproque du précédent). — Si deux angles
d'un triangle sont inégaux, les côtés opposés à ces angles
sont inégaux et dans le même ordre de taille.
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/\ /\Soient (sans figure) A et B deux angles d'un triangle et

soient: a et b les côtés respectivement opposés à ces angles;
/\ /\

je dis que l'inégalité A > B entraînera comme conséquence
l'inégalité a )> b.

En effet, en comparant a et b, trois cas peuvent seuls se

présenter ; ou bien 1° : a <£ b, ou bien 2°: a b; ou bien
3° : a > b ; or le cas de a < b entraînerait, d'après le
théorème précédent A < B et le cas de a b entraînerait
comme nous l'avons vu, au début de ces leçons A B. Ces
deux suppositions provisoires a < b et a b entraîneraient
donc des conséquences contradictoires avec l'hypothèse; on
aura donc bien a > b tout comme on avait d'abord A > B.

Remarque. — Ce genre de raisonnement est ce qu'on
nomme un raisonnement par Vabsurcle.

IV. — Un côté d'un triangle est plus petit que la somme
des deux autres.

Il n'y a lieu à démonstration que si le côté considéré n'est
pas le plus petit de tous, soit alors (Fig. 25) AB > AC. Proion -

geons AC d une longueur CD, de manière

que AD AB, joignons BD; envisageons
d'une part le triangle isocèle ABD et d'autre
part le triangle CBD. Dans ce dernier, l'angle
CBD portion de ABD sera plus petit que celui-
ci ou que son égal CDB ; on a donc un triangle

/\ /x
CBD dans lequel CDB > CBD; on peut donc affirmer, d'après
le théorème précédent, que CD < CB ; ABAD se composant

de AC et de CD sera donc moindre que AC + CB.

V. — Comparaison de deux triangles qui ont deux côtés égaux
chacun à chacun comprenant deux angles inégaux.

Théorème. — Si deux triangles ont deux côtés égaux chacun

à chacun comprenant un cingle inégal, les côtés opposés
à cet angle clans les deux triangles seront inégaux et clans le
même ordre de taille.
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