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298 ANDRADE
6° Si p désigne un nombre entier ou sectionnaire on a :

(A + B + C) p =_(A p) + (B p) + C p)

et par conséquent aussi, si l'on a : A p A'. p on peut conclure :

A > À'.
Les principes qui précèdent contiennent toute Varithmétique et

toute Valgèbre.

I. — Angle d'un triangle.

Deux demi-droites OX et OY peuvent former (Fig. 21) soit
an angle creux, soit un angle pointu, Vun supérieur, Vautre
inférieur a 2 droits.

Lorsqu'on admet, comme nous l'avons admis jusqu'ici, que
par deux points absolument quelconques ne passe jamais
qu'une seule droite on peut affirmer que tout angle engagé
dans un triangle est un angle pointu. Démontrons le :

Y-
A

Fig. 22.

Soit BAG (Fig. 22) un angle engagé dans un triangle BAC,
sur le plus grand des deux côtés de cet angle prenons une
longueur égale à celle du plus petit soit D le point ainsi obtenu
sur AC, nous obtenons un triangle isocèle BDA ; soit Ile
milieu de BD, joignons-I à A, nous obtenons une droite
perpendiculaire à BD, menons A perpendiculaire à AI cette
droite ne saurait pénétrer dans l'intérieur du triangle BDA,
car elle couperait BD, ce qui n'est pas possible, donc l'angle
/\BAC engagé dans le triangle est formé de droites toutes

situées d'un même côté de AX, donc l'angle considéré ne

peut atteindre 2 droits.

II. — Propriété de l'angle extérieur d'un triangle.

Définition. — On appelle angle extérieur d'un triangle,
l'angle formé en un sommet par l'un des côtés du triangle et

par le prolongement de l'autre. (C'est aussi un angle pointu).
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Théorème. — L'angle extérieur d'un triangle est supérieur
à tout angle intérieur qui n'a pas même sommet que lui.

Faisons voir par exemple que: (Fig. 23) XAG > AGB.

Joignons le troisième sommet B au milieu D de

AG et prolongeons BD d'une longueur égale
en DB', joignons B' à A, la droite AB' sera

située dans l'angle extérieur DAX ; les angles
opposés par le sommet BDC et ADB' valent

/\ Fig. 23.

chacun 2 droits diminués de l'angle ADB ils
sont donc égaux ; alors les deux triangles ADB' et BDG ayant
un angle égal compris entre deux côtés égaux chacun à chacun,
sont égaux; et par suite les angles opposés respectivement

/\ /\
à DB' et BD côtés égaux, seront égaux; ainsi B'AD DGB;

/\mais B'AD est portion de l'angle extérieur CAX, donc enfin
on a bien :

/\ /\XAG > ACB.

III. — Comparaisons simultanées de 2 côtés d'un triangle
et de leurs angles opposés.

Théorème. — Si deux côtés d'un triangle sont inégaux les

angles opposés ci ces côtés sont inégaux clans le même ordre
de taille.

Comparons (Fig.24) les deux côtés AB et AC du triangle ABC;
soit le côté AG > AB. Prenons sur AG un segment AD AB et

/\
joignons BD ; l'angle ADB — ABD (puisque
le triangle ABD à deux côtés égaux) ; l'angle
ADB extérieur est plus grand que l'angle
/\ /\

Fig 24
DGB du triangle partiel BDG ; l'angle ABD

portion de l'angle ABC est donc plus grand
que l'angle AGB, donc à plus forte raison l'angle total ABC
dépassera-t-il ACB.

Théorème (réciproque du précédent). — Si deux angles
d'un triangle sont inégaux, les côtés opposés à ces angles
sont inégaux et dans le même ordre de taille.
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