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298 ' ANDRADE

6° Si p désigne un nombre entier ou sectionnaire on a:
A+B+4+C.p=A.p)+(B.p +C.p
et par conséquent aussi, sil'on a: A . p > A’. p on peut conclure:
A>A

Les principes qui précedent contiennent toute l'arithmétique et
toute Ualgebre.

I. — Angle d’'un triangle.

Deux demi-droites OX et OY peuvent former (Fig. 21) soit
un angle creux, soit un angle pointu, l'un supérieur, {’autre
inférveur a 2 droits.

Lorsqu’on admet, comme nous 'avons admis jusqu’ici, que
par deux points absolument quelconques ne passe jamais
gu'une seule droite on peut aflirmer que tout angle engagé
dans un triangle est un angle pointu. Démontrons le :
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Fig. 21. ‘ Fig. 22.

Soit Bj‘X\C (Fig. 22) un angle engagé dans un triangle BAC,
sur le plus grand des deux cotés de cet angle prenons une lon-
gueur égale a celle du plus petit soit D le point ainsi obtenu
sur AC, nous obtenons un triangle isocéle BDA ;-soitIle mi-
lieu de BD, joignons-I a A, nous obtenons une droite per-
pendiculaire a BD, menons A perpendiculaire a Al cette
droite ne saurait pénétrer dans l'intérieur du triangle BDA,
car elle couperait BD, ce qui n’est pas possible, donc I'angle

/\ . . .
BAC engagé dans le triangle est formé de droites toutes si-
tuées d’'un méme co6té de AX, donc l'angle considéré ne
peut atteindre 2 droits.

II. — Propriété de I'angle extérieur d'un triangle.

Définition. — On appelle angle extérieur d’un triangle,
'angle formé en un sommet par 'un des cotés du triangle et
par le prolongement de l'autre. (C’est aussi un angle pointu).
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TakorEME. — L’angle extérieur d’un triangle est supérieur
a tout angle intérieur qui n’a pas méme sommet que lut.

Faisons voir par exemple que: (Fig. 23) XAC > ACB Joi-
gnons le troisieme sommet B au milieu D de

AC et prolongeons BD d'une longueur egale
en DB’, joignons B’ a A, la drmte AB’ sera si-

tuée dans l'angle extérieur DAX les angles
opposés par le sommet BDC et ADB' valent

. Fig. 23.

chacun 2 droits diminués de 'angle ADB ils
sont donc égaux; alors les deux triangles ADB’ et BDC ayant
un angle égal compris entre deux ¢dtés égaux chacunachacun,
sont égaux; et par suite les angles opposés respectlvement

a DB’ et BD cotés égaux, seront égaux; ainsi B AD — DLB
mais B'AD est portion de 'angle extérieur CAX, donc enfin
on a bien:
: N AN
XAC > ACB.

III. — Comparaisons simultanées de 2 cétés d'un triangle
et de leurs angles opposés.

TrEOREME. — Si dewr cotés d’un triangle sont inégaux les
angles opposés a ces cbtés sont megau)c dans le méme ordre
de taille.

Comparons (Fig.24)les deux cotés AB et AC dutriangle ABC;
soit le coté AC > AB Prenons sur AC un segment AD AB et

joignons BD; I'angle ADB = ABD (puisque
le trlangle ABDa deux cotés égaux); l'angle

ADB extérieur est plus grand que langle

’D(AB du triangle partlel BDC; langle ABD

portion de 'angle ABC est donc plus grand

que l’angle ACB, donc a plus f01te raison l'angle total ABC
dépassera-t-il ACB.

THEOREME (remproque du précédent). — Si deux angles

d’un triangle sont inégaux, les cotés opposés a ces angles

Fig. 24.

sont inégaux et dans le méme ordre de taille.
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