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SUR LA LOGIQUE ET LA NOTION DE NOMBRE ENTIER

On a beaucoup discuté ces temps derniers, sur la notion
de nombre entier, sur les principes de l'Arithmétique et
particulièrement sur les principes d"induction complète.

Trop souvent en logique on emploie des mots vagues. Il
en résulte des discussions sans issue. Le mot démontrer est

un de ceux là. Je vais en préciser le sens.
Supposez que, dans le cours d'une démonstration Géométrique

j'aie un triangle ABC; je sais, soit par l'hypothèse,
soit par un raisonnement antérieur, soit de toute autre façon,

que l'angle B est égal à l'angle C.
Je dis: « L'angle B est égal à l'angle C, donc le côté AB

est égal au côté AC ».

C'est là un petit raisonnement, que je nomme implication,
ou inference. L'infère nee est justifiée, ou autorisée par le
théorème supposé connu : « Si un triangle a deux angles
égaux, les côtés opposés à ces angles sont égaux».

Ainsi, une inférence ou implication est un petit
raisonnement de la forme suivante :

Le fait A est vrai, donc le fait B est vrai.
L inférence est juste si 1° 11 est établi déjà que le fait A est

vrai. 2° Il existe un principe ou un théorème général
autorisant l'inférence.

Ceci posé, la démonstration d'une proposition consistera
clans une chaîne d'inférences, plus ou moins ramifiée, reliant
fhypothèse de la proposition à démontrer à sa conclusion.

Ce n'est pas le lieu d'examiner les particularités que peut
présenter une démonstration. Ce que je viens de dire suffira
pour la suite.

On définit presque toujours une classe d'objets comme il
suit. On indique sous quelles conditions un objet donné x
appartient à la classe, et aussi sous quelles conditions deux
objets x et y de la classe sont considérés comme distincts.
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Lorsqu'une classe est ainsi définie je dirai qu'elle est
définie généralement.

On peut aussi définir une classe en donnant la liste des

objets qui la composent. Je dirai dans ce cas, que la classe
est définie individuellement. Une classe pouvant être ainsi
définie se nommera une collection.

Une troisième manière de définir une classe est la définition
par récurrence. Supposez qu'à un objet a on fasse
correspondre par une certaine règle un objet f (a) etc, en répétant
l'opération (f). Par exemple, le père de a, le père du père
de a, le père du père du père de a etc. constituent les
ancêtres de a.

Une classe K peut être formée d'un seul individu x. S'il
en est ainsi l'implication suivante est légitime.

y est de la classe K, donc y est identique à x. C'est Leibniz,
je crois, qui définit le nombre deux comme il suit : « Si .rest
un objet de la classe A, si y est un objet de la classe A distinct
de .r, x et y sont deux objets de la classe A ».

On définira ensuite 3 ainsi:
Si B est une collection de deux objets de la classe A, si .r

est un objet de la classe A n'appartenant pas à B, la collection
B' formée de B et de l'objet x est une collection de 3 objets.

Et en général, ayant défini un nombrep> on définira son
suivant p -p 1, comme il suit : Si K est une collection de p
objets de la classe A, et si x est un objet de la classe A,
n'appartenant pas à K, la collection K/ formée de B et de l'objet
x est une collection de p + 1 objets.

Les nombres se définissent ainsi par récurrence.
J'arrive au principe d'induction complète. Ce principe

s'énonce ainsi.
Si une proposition est vraie du nombre un, et si, étant

vrai d'un nombre elle l'est de son suivant, elle est vraie pointons

les nombres.
Examinons comment se fait l'application du principe.
On a une proposition P ; cette proposition est vraie du

nombre un. On sait en outre que : « Si P est vraie d'un nombre,

P est vraie de son suivant». Les mots entre guillemets
constituent un principe, que je nomme le principe a.
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Je sais que P est vraie de an.
Le principe a autorise l'inférence suivante :

P est vraie de* un, donc P est vraie de deux.

C'est la seule chose qu'on puisse inférer en partant des

données. Je dis ensuite:
P est vraie de deux, donc P est vraie de trois ;

P est vraie de trois, donc P est vraie de quatre;
P est vraie de quatre, donc P est vraie de cinq.

J'ai ainsi démontré la proposition pour le nombre cinq,
au moyen de quatre inferences. On voit bien quaucune ne

peut être omise. Si l'on voulait démontrer la proposition P

pour le nombre 10.000, il faudrait faire 9999 inferences.
Nous nous représentons très bien ces inferences sans les

faire. Il suffit d'écrire 9999 fois de suite :

« P est vrai de n, donc P est vraie de n 1 ».

en mettant successivement cà la place de n les 9999 premiers
nombres, dans leur ordre naturel.

Se représenter des implications sans les faire, eel à peut
s'appeler intuition logique. Le principe d'induction est donc
l'expression d'une intuition logique.

Un tel principe est indémontrable. Si en effet il existait
une démonstration, la conclusion de la dernière inference
serait : « donc P est vraie d'un nombre quelconque », or
aucune de nos inférences n'aboutit à une pareille conclusion.

«Mais, objectera le lecteur, ceci tient à ce que vous avez
défini les nombres par récurrence ; si vous aviez donné
une définition générale du nombre, le principe d'induction
eût été une conséquence de cette définition générale. »

Avant de réfuter cette objection, je reviens sur la définition
d'une classe par récurrence.

Supposons que par une certaine règle on puisse faire
correspondre à un objet x, un autre objet f(x) ; /'sera alors le
signe de cette correspondance. Je suppose que cette
correspondance possède les deux propriétés suivantes.

1° Les correspondants de deux objets distincts sont distincts.
2° Il existe un objet a, qui n'est le correspondant d'aucun

autre.
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Je définirai une classe K comme il suit: j'y mettrai l'objet

ci, l'objet f(a), l'objet ff (ci) et en général quand j'y mettrai
un objet, j'y mettrai aussi son correspondant.

Si je désigne par fn(ci), ce que j'obtiens en répétant n fois
l'opération f la classe K se composera de ci et de tous les
objets fa (a), n étant n'importe quel nombre.

Cette manière de définir la classe K suppose la notion de
nombre.

Mais on peut éviter cela.
On définira la classe K comme il suit :

§ 1° La classe K contient a;
§ 2° Si la classe K contient b, la classe K contient f (h) ;

§ 3° Toute classe G qui contient a, et qui ne peut contenir
aucun objet b de la classe K sans contenir f (b), contient la
classe K ou lui est identique.

Dans ces phrases il n'est plus question de nombres. D'autre
part la partie § 3° de cet énoncé équivaut au principe
d'induction complète. Effectivement, soit P une proposition sur
laquelle on sait

1° Que P est vraie de a ;

2° Que si P est vraie de x, P est vraie de f (xK
Soit G la classe d'objets pour laquelle P est vraie; à l'aide

de la partie § 3° de l'énoncé ci-dessus, on démontre que G
contient la classe K. Ce paragraphe 3° équivaut donc au principe

d'induction complète.
11 semble donc, au 1er abord que les paragraphes 1°, 2°, 3°

donnent de la classe K une définition générale, en sorte que
toute définition par récurrence peut être réduite à une
définition générale.

Piegardons les choses de plus près.
Une définition générale de K, c'est une condition nécessaire

et suffisante pour qu'un objet x donné tout seul
appartienne à K.

La définition ci-dessus ne satisfait pas à cette condition:
Pour démontrer que b appartient à K, il faut considérer les

objets a f (a) fa (a) etc. jusqu'à ce qu'on en trouve un
identique à b. La définition ne nous donne pas le moyen de
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procéder autrement. Pour montrer que b appartient à la classe,
il faut le relier à a.

Ceci réfute alors l'objection donnée plus haut. On pourrait

démontrer le principe d'induction si l'on donnait une
définition générale du nombre. Mais les définitions générales
du nombre qu'on a tenté de donner sont comme la définition
de la classe K donnée ci-dessus, elles ne sont qu'apparentes.
Par un ingénieux tour de phrase on peut faire disparaître
certains mots tels que : (cet ainsi cle suite » ou bien des noms
de nombre.

Cela ne transforme pas en définition générale une définition

par récurrence.
J'ajouterai quelques mots relatifs à la récurrence. Soit A

une classe, et f le signe d'une correspondance univoque et
réciproque:

Univoque cela veut dire :

Si âc — jt f{x) f[y)

Réciproque cela veut dire:
Si fix) — fir) if y

Le signe signifie l'identité.
Je définirai la classe f(A) comme il suit : si x est un A, f(x)

est un/(A), si ,3 est un f (A) il existe un x tel que f (x) est
identique à 2, et x est un A.

Je puis alors former une série de classes

A ' t (A) /2(A) fn(A)

Je pourrai appeler totalité de ces classes une classe K de-
finie comme il suit :

x appartient à la classe K s'il existe un entier 11 tel que x
appartient à fn (A), ou bien si x est un A.

La partie commune à toutes ces classes sera une classe oj
définie comme il suit:

x appartient à la classe w, si x est un A, et si x appartient
aussi à la classe f\ (a) quel que soit 11.

Ces définitions sont utilisées dans la démonstration du
théorème de Cantor Bernstein, que je n'examinerai pas ici.
Il y figure la notion de nombre entier. On peut l'éliminer en
quelque sorte par une tournure de phrase appropriée, mais,
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comme dans ce qui précède 011 ne transforme pas pour cela

une définition par récurrence en définition générale.
Peut-011 démontrer que les axiomes de la logique et de

rArithmétique ne sont pas contradictoires. Il est clair que
ces axiomes ne sont pas condradictoires, puisqu'ils sont vrais
mais il y a une autre façon de poser la question.

Dans la logique symbolique de M. Peano, on adopte un certain

nombre de signes, signifiant et, ou, implique, est, non,
etc. Certaines règles de transformation des propositions sont
alors vraies, et l'on peut raisonner en appliquant ces règles.

Parmi ces règles il y en a d'irréductibles entre elles, c'est
à dire qui ne peuvent se démontrer les unes par les autres,
sans spécifier le sens attribué aux signes. Les autres se
déduisent de celles-là. La question de la compatibilité des axiomes

peut alors se poser ainsi. En admettant ces règles, et

en raisonnant d'après elles, on ne peut pas arriver à conclure
la fausseté de l'une d'elles. Cela peut-il se démontrer sans
spécifier le sens des signes? Il s'agit de montrer qu'en
combinant des'signes d'après certaines lois on ne peut pas
arriver à obtenir certaines combinaisons.

A cela il n'y a rien d'absurde. Dans l'étude de certains
jeux, sur l'échiquier par exemple, on trouve des propositions
analogues. Mais le principe d'induction complète reste en
dehors de la question. Il faut en effet l'admettre dans ces
sortes de démonstrations. Il faudra en effet faire voir que,
si après n applications des règles 011 n'arrive pas à une
contradiction, on n'y arrivera pas par 11 + 1 applications. On
ne saurait donc démontrer, par ce procédé, le principe
d'induction complète, ou la non contradiction de ce principe.

Voici maintenant la conclusion de ce petit travail sur la

logique : Ce qu'on nomme le principe d'induction présente un
caractère très particulier; ce n'est pas un principe destiné à

légitimer des inférences, comme sont les autres principes. Il
énonce la possibilité de faire un nombre d'inférences pouvant

croître indéfiniment.
Ce principe est indémontrable, il est l'expression d'une

intuition logique. J. Richard (Dijon).
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