Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 9 (1907)

Heft: 1: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: SUR LA LOGIQUE ET LA NOTION DE NOMBRE ENTIER
Autor: Richard, J.

DOl: https://doi.org/10.5169/seals-10134

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-10134
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

SUR LA LOGIQUE ET LA NOTION DE NOMBRE ENTIER

On a beaucoup discuté ces temps derniers, sur la notion
de nombre entier, sur les principes del'Arithmétique et par-
ticulicrement sur les principes d’induction compléte.

Trop souvent en logique on emploie des mots vagues. 1l
en résulte des discussions sans issue. Le mot demontrer est
un de ceux la. Je vais en préciser le sens.

Supposez que, dans le cours d’'une démonstration Géomé-
trique j'aie un triangle A B C; je sais, soit par I’hypothese,
soit par un raisonnement antérieur, soitde toute autre facon,
que-l’angle B est égal a4 I'angle C.

Je dis: « L’angle B est égal a I'angle (i, donc le coté AB
est égal au coté AC».

(’est 1a un petit raisonnement, que je nomme implication,
ou inférence. L’inférence est justifiée, ou autorisée par le
théoréme supposé connu: «Si un triangle a deux angles
égaux, les cotés opposés a ces angles sont égaux ».

Ainsi, une inférence ou implication est un petit raison-
nement de la forme suivante :

Le fait A est vrai, donc le fait B est vrai.

L'intérence est juste si 1° Il est établi déja que le fait A est
vrai. 2° Il existe un principe ou un théoreme général au-
torisant l'inférence.

Cecti posé, la démonstration d'une proposition consistera
dans une chaine d'inférences, plus ou moins ramifiée, reliant
I'hypothese de la proposition 4 démontrer a sa conclusion.

Ce n’est pas le lieu d'examiner les particularités que peut
présenter une démonstration. Ce que je viens de dire suflira
pour la suite.

On définit presque toujours une classe d’objets comme il
suit. On indique sous quelles conditions un objet donné .
appartient a la classe, et aussi sous quelles conditions deux
objets & et y de la classe sont considérés comme distincts.
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Lorsqu’une classe est ainsi définie je dirai qu’elle est dé-
finie généralement.

On peut aussi définir une classe en donnant la liste des
objets qui la composent. Je dirai dans ce cas, que la classe
est définie individuellement. Une classe pouvant étre ainsi
définie se nommera une collection.

Une troisieme maniere de définir une classe est la définition
par récurrence. Supposez qu’a un objet « on fasse corres-
pondre par une certaine régle un objet f(«) etc, en répétant
'opération (f). Par exemple, le pére de «, le péere du peére
de @, le pére du pére du pere de « ete. constituent les an-
célres de «a. ,

~Une classe K peut étre formée d'un seul individu x. Sl
en est ainsi I'implication suivante est légilime.

y est de la classeK, donc yest identique a . Cest Leibniz,
je crois, qui définit le nombre deux comme il suit: « St .xest
un objet de la classe A, siy est un objet de la classe A distinct
de x, x el y sont deux objets de la classe A ».

On définira ensuite 3 ainsi:

Si B est une collection de deux objets de la classe A, six
est un objet de la classe A n’appartenantpas a B, la collection
B’ formée de B et de I'objet & est une collection de 3 objets.

Et en général, ayant défini un nombre p, on définira son
sutvant p 4+ 1, comme il suit: Si K est une collection de p
objets de la classe A, et si x estun objet de la classe A, n’ap-
partenant pas a K, ]Ja collection K’ formée de B et de 'objet
x est une collection de p + 1 objets.

Les nombres se définissent ainsi par récurrence.

J'arrive au principe d'induction compleéte. Ce principe
s’énonce ainsi.

Si une proposition est vraie du nombre un, el si, étant
vrai d'un nombre elle I'est de son suivant, elle est vraie pour
tous les nombres.

Examinons comment se fait l'application du principe.

On a une proposition P; cette proposition est vraie du
nombre un. On sait en outre que : « Si P est vraie d’'un nom-
bre, P est vraie de son suivant». Les mots entre guillemels
constituent un principe, que je nomme le principe o.
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Je sais que P est vraie de un.
LLe principe o au torise 'inférence suivanle :

P est vraie de” un, donc P est vraie de deuwx.

C’est la seule chose qu'on puisse inférer en partant des
données. Je dis ensuite:

P est vraie de deux, donc P est vraie de trois;
P est vraie de trois, donc P estvraie de guatre;

P est vraie de guatre, donc P est vraie de cing.

J'ai ainsi démontré la proposilion pour le nombre cing,
au moyen de quatre inférences. On voit bien qu'aucune ne
peut étre omise. St 'on voulait démontrer la proposition P
pour le nombre 10.000, il faudrait faire 9999 inférences.

Nous nous représentons ires bien ces inférences sans les
faive. Tl suffit d’écrire 9999 fois de suite :

« P est vrai de n, donc P est vraie de n 4+ 1 ».

en mettant successivement a la place de n les 9999 premiers
nombres, dans leur ordre naturel.

Se représenter des implications sans les faire, cela peut
s'appeler intuition logique. Le principe d’induction est donc
I'expression d’une intuition logique.

Un tel principe est indémontrable. Si en effet il existait
une démonstration, la conclusion de la derniére inférence
serait: « donc P est vraie d'un nombre quelconque », or au-
cune de nos inférences n'aboutit a une pareille conclusion.

« Mais, objectera le lecteur, ceci tient & ce que vous avez
défini les nombres par récurrence; si vous aviez donné
une définition générale du nombre, le principe d'induction
eut été une conséquence de cette définition générale. » |

Avant deréfuter cette objection, je reviens sur la définition
d'une classe par récurrence.

Supposons que par une certaine régle on puisse faire cor-
respondre a un objet x, un autre objet f{x); # sera alors le
signe de cette correspondance. Je suppose que cette cor-
respondance possede les deux propriétés suivantes.

1° Les correspondants de deux objets distincts sont distincts.

2° 1l existe un objet @, qui n’est le correspondant d’aucun
aulre,

.
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Je définirai une classe K comme il suit: j’y mettrai I'objet
a, U'objet f(a), I'objet ff(a) et en général quand j’y mettrai
un objet, j'y mettrai aussi son correspondant.

Si je désigne par f, (@), ce que j'obtiens en répétant n fois
Popération £, la classe K se composera de « et de tous les
objels f, (@), n étant n’importe quel nombre.

Cette maniére de définir la classe K suppose la notion de
nombre. '

Mais on peut éviter cela.

On définira la classe K comme il suit :

§ 1° La classe K contient «:

§ 2° Si la classe K contient b, la classe K contient f(b);

§ 3° Toute classe G qui contient «, et qui ne peut contenir
aucun objet b de la classe K sans contenir f (), contient la
classe K ou lui est identique.

Dans ces phrases il n'est plus question de nombres. D’autre
part la partie § 3° de cet énoncé équivaut au principe d’'in-
duction compléte. Effectivement, soit P une proposition sur
laquelle on sait

1° Que P est vraie de «;
2° Que si P est vraie de .r, P est vraie de f (x/.

Soit G la classe d’objets pour laquelle P est vraie; alaide
de la partie § 3° de 'énoncé ci-dessus, on démontre que G
contient la classe K. Ce paragraphe 3° équivaut donc au prin-
cipe d'induction complete.

Il semble done, au 1°* abord que les paragraphes 1°, 20, 3¢
donnent de la classe K une définition générale, en sorte que
toute définition par récurrence peut étre réduite 2 une défi-
nition générale.

Regardons les choses de plus pres.

Une définition générale de K, c'est une condition néces-
saire et suffisante pour qu’un objet .t DONNE TOUT SEUL ap-
partienne a K.

La définition ci-dessus ne satisfait pas a cette condition:
Pour démontrer que & appartient a K, 1l faut considérer les
objets @ f(a) fz (@) . . . etc. jusqu’'a ce qu’on en ilrouve un
idenlique a 0. La définition ne nous donne pas le moyen de
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procéder autrement. Pour montrer que bappartient ala classe,
il faut le relier a «. ,

Ceci réfute alors l'objection donnée plus haut. On pour-
rait démontrer le principe d’induction si I'on donnait une
définition générale du nombre. Mais les définitions générales
du nombre qu’on a tenté de donner sont comme la définition
de la classe K donnée ci-dessus, elles ne sont qu'apparentes.
Par un ingénieux tour de phrase on peut faire disparaitre
certains mots tels que : «et ainsi de suite» ou bien des noms
de nombre.

Cela ne transforme pas en définition générale une défini-
tion par récurrence. |

J'ajouterai quelques mots relatifs a la récurrence. Soit A
une classe, et f le signe d’'une correspondance univoque et
réciproque: '

Univogue cela veut dire :

Stx =y, flx)="[ly) .
Réciprogue cela veut dire:

Si flx) =1fly), =y
Le signe = signifie 'identité. » ,
Je définirai la classe f(A) comme il suit: sixest un A, f(x)

estun f (A), si z est un f(A) il existe un xtel que f(x) est
identique a z, et x est un A.

Je puis alors former une série de classes
A, A, f(A) ... (A,

Je pourral appeler totalité de ces classes une classe K de-
finie comme il suit:

x appartient & la classe K s'il existe un entier n tel que x
appartient a £, (A), ou bien si x est un A.

La partie commune a toutes ces classes sera une classe o
définie commeil suit:

x appartient & la classe w, six estun A, et si xépp‘artient
aussi & la classe f, (a) quel que soit n.

Ces définitions sont utilisées dans la démonstration du
théoréme de Cantor Bernstein, que je n’examinerai pas ici.
Il'y figure la notion de nombre entier. On peut I'éliminer en
quelque sorte par une tournure de phrase appropriée, mais,

- et A

SS..
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comme dans ce qui précéde on ne transforme pas pour cela
une définition par récurrence en définition générale.

Peut-on démontrer que les axiomes de la logique et de
I'Arithmétique ne sont pas contradictoires. 1l est clair que
ces axiomes ne sont pas condradictoires, puisqu’ils sont vrais
mais il y a une autre facon de poser la question.

Dans la logique symbolique de M. Peano, on adopte un cer-
tain nombre de signes, signifiant ef, ou, impligue, est, non,
etc. Certaines régles de transformation des propositions sont
alors vraies, et 'on peut raisonner en appliquant ces régles.

Parmi ces regles il y en a d’irréductibles entre elles, c’est
a dire qui ne peuvent se démontrer les unes par les autres,
sans spécifier le sens attribué aux signes. Les autres se dé-
duisent de celles-la. La question de la compatibilité des axio-
mes peut alors se poser ainsi. En adimettant ces regles, et
en raisonnant d’aprés elles, on ne peut pas arriver a conclure
la fausseté de 'une d’elles. Cela peut-il se démontrer sans
spécifier le sens des signes? 1l s’agit de montrer qu’en com-
binant des ‘signes d’aprés certaines lois on ne peut pas ar-
river a obtenir certaines combinaisons.

A cela il n’y a rien d’absurde. Dans I'étude de certains
jeux, sur 'échiquier par exemple, on trouve des propositions
analogues. Mais le principe d’induction complete reste en
dehors de la question. Il faut en effet 'admettre dans ces
sortes de démonstrations. Il faudra en effet faire voir que,
si aprés n applications des regles on n’arrive pas a une con-
tradiction, on n'y arrivera pas par n -4 { applications. On
ne saurait donc démontrer, par ce procédé, le principe d’in-
duction complete, ou la non contradiction de ce principe.

Voici maintenant la conclusion de ce petit travail sur la lo-
gique: Ce qu'on nomme le principe d'induction présente un
caractere trés particulier ; ce n’est pas un principe destiné a
légitimer des inférences, comme sont les autres principes. 1l
énonce la possibilité de faire un nombre d'inférences pou-
vant croitre indéfiniment. |

Ce principe est indémontrable, il est 'expression d'une in-
tuition logique. J. Ricuarp (Dijon).

et i s S
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