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RESIDUS QUADRATIQUES 35

4 Sip=4+1,pa £ _4_ ! résidusbiquadratiques (n° 4, VII).

5 Sip=28 + 1, — 1 est résidu biquadratique, ainsi que
4 et — -4 (id.). .
6° On démontre comme au n° précédent que, pour p = 4
. p—1

1, la congruence des résidus biquadratiques est x =1,
b] te) i

et, de la, que les p — 1 premiers entiers se partagent en
quatre classes d’un nombre égal de termes, qui sont les ra-
cines des quatre congruences
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EXERCICES.

I. Etant donné le théoréme de Fermat, si on appelle rési-
dus et non-résidus de p les nombres qui lui sont inférieurs
et qui donnent respectivement r"=1 et g™ = — 1, on a les
propositions suivantes : '

Le produit de deux résidus ou de deux non-résidus est
congru a un résidu et celui d'un résidu par un non-résidu
I'est & un non-résidu. |

Le nombre p a m résidus et m non-résidus™.

Les résidus sont les restes de la division par p des m pre-
miers carrés. ,

2. 51 p=4 4 1 divise a® = kb?, il divise aussi x® &= ky>.
Quelque soit &, p = 4 — 1 divise 2? + ky? ou x® — ky? Si
p divise a® — kb® et ¢® — [d?, il divise également 2% — aly®.
Sip ne divise ni 2% — ky® ni x? — ly?, il divise x? — Fkiy?®.
(Lagrange). |

3. B* — R étant divisible par A et R — r 'étant par p, p
divise ou ne divise pas A selon que r est résidu ou non-

! Soient n le nombre des résidus et ¢ celui des non-résidus. Les produits Pr, Pr/, ... don-

neront n non-résidus diftérents; par suite n < ¢. La multiplication de P par les ¢ non-résidus
dannerait ¢ résidus différents. Donc » Zyvetn—=v=rn.

Cette démonstration est beaucoup plas simple que celle de Matrot (J. E. 1893, p. 74).
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résidu. Ce théoreme sert, dans certains cas, a décomposer
les grands nombres en leurs facteurs. (Gauss?). '

4. Le produit des résidus est =1 et celui des non-résidus
==+ 1, selon que p =4 = 1. De la, le théoréme de Wilson,
que représente la congruence

p—1)t4+1=0,
et cette autre congruence, due a Libri,

(——-———p—”!+a”_250;

a

5. S1 p =4 — 1, m ! = =1 selon que p a un nombre im-
pair ou un nombre pair de résidus inférieurs a g (Lejeune-
Dirichlet).

6.S1p=4+4 1, (m!? + 1 =0 (Lagrange).

7. p diyise toujours ra? — 1’'y? et pa® — p'y?, mais jamais
ra? — oy2 p =4+ 1 divise ra? 4 py? et non rx? 4 r'y? ni
2?4+ p'y?; le contraire a lieu pour p = 4 — 1. (Euler).

8. Si (b% — 4ac) est résidu, la congruence ax® 4+ bx + c¢=0
a deux racines (Gauss). Plis généralement, la méme chose
a lieu si a(b® — 4ac) est résidu (Cauchy).

9Slp—~4—|—1ona(1+p)(+p’).._2et81p 4

1,1+ )+ 7)..=2 (Stieltjes). '

10. Pour p = 4.+ 1, la suite 1 + g, 1 4 p’, ... comprend
P —1 résidus et autant de non-résidus. Sip =4 —1, lasuite

)
p+1
4

non-rési-

14+ 1 4+, ... comprend ——4—— 3 résidus et
dus (Stieltjes).

1 Ainsi on a 93019 = 3052 — 6; comme le montre la table des résidus, 6 n’est pas résidu des
nombres 7, 11, 13, 17, 31, 37, 41, 53, 61, 71, 79, 83: aucun de ces nombres ne divise donc 93019.

Or 2.93019 = 4322 — 586. Le reste 11 de la division de 586 par 23 est non-résidu de 23 ; donc
23 ne divise pas 93019. Le reste 27 de la division de 586 par 43 est de méme non-résidu de 43,
donc 43 ne divise pas 93019.

3.93019 = 5292 — 784 = 5292 — 282 = 501.257, d’ott 93019 = 167.257, ce qui termine le calcul.
Autrement, on continuerait ainsi . 5.93019 = 6822 — 29 ; or 29 n’est résidu d’aucun des nom-
bres 31, 37, 41, 43, 47, 61, 73, 79, 97, ... On déterminerait ainsi successivement d’autres facteurs
premiers impossibles 4 admettre et on n’aurait plus qu’a essayer les divisions par les quelques
facteurs inférieurs a /93919 qu’on n’aurait pu éliminer.

On voit lintérét qu’il y aurait & posséder une table des résidus des nombres premiers
jusqu’a 10.000, ou méme plus loin, comme le souhaitait Gauss.
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11. Si ni p — 1 ni m ne sont résidus, il y a au moins un
résidu r tel que — r» — 1 soit également résidu. (Matrot).

12. Appelons variation la succession d'un résidu (ou non-
résidu) et d’'un non-résidu (ou résidu). La suite 1,2,3, ... p —1,
présente un nombre pair ou impair de variations selon que
p =4 &= 1. (Stieltjes).

13. Si p == 4 — 1, la congruence x* = « a les deux raci-
ptt ~ | p—1 _
nesr=-4a ' ;sip=8-4DSetquea ° = 1, ses racines
I_’_"t_?’
sont x = =+ a ° (Legendre).
p—1
Sip—=84+5et que a * = — 1, les deux racines sont

pt3
r==a ° m! (Mathews).

4. Lemme de Gauss. Soit y le nombre des restes obtenus
en divisant par p les m premiers mulliples de «, et ne con-
servant de ces restes que ceux qui sont plus grands que m;
on a:

" = (— 1)

15. On a aussi, avec Eisenstein,

n :
A ——

et avec Liouville,

-
am — (___ ,l)nznl I (a/l, L a—k)p —1 .
-1

Dans cette derniére formule ¢ = 2n + 1 et « désigne une
racine imaginaire de I’équation a? — 1 = 0.
16. Le nombre p. est de méme parité que le produit

H("]l k h k 1
. p—ﬁ(ﬂré‘).

a—1
2

i variant de 1 a m et /& de 1 & (Kronecker).
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17. Appelons, avec Lagrange, Ew la partie entiére du nom-
bre non entier w, et posons

b—1
fla,b) :E%‘I‘ E 27?+ E ?’Tf' s ol +F——2;——— ,
2n
b = p + (471 — p— 2K 2[—)”> (—1) 7,
on aura :
fUb) =0, flat+b,b) =2 - L o fla,b)  (Tchebichef).
Pyeloy T3y - Ty, =a"m! (— 1)f(2a’p) (id.)
a™ == {— 1)}’(2471))-_:_27"(_ 1)f(a+P;P) (id.)
a™" = (— 1)/"(“:1)) ) (Gauss).

18. Etendre la notion des résidus aux restes de carrés di-
visés par<un nombre composé P. En particulier, si a est
résidu de p, il I'est de p". Le nombre p* a mp" résidus.
(Gauss).

Soit le nombre ‘P = ax?® + bxy 4+ cy?, ou x et y sont
premiers entre eux (b — 4ac) est résidu de P. (Gauss).

A. Ausry (Beaugency, Loiret).




	Exercices.

