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4° si/» 4 + l,/pa p-~1 résidusbiquadratiques(n°4,YII).

5° Si /? — 8 + 1, — 1 est résidu biquadratique, ainsi que
4 et — 4 (id.).

6° On démontre comme au n° précédent que, pour
p-i

- - 4

+ 1, la congruence des résidus biquadratiques est x %>

et, de là, que les p — 1 premiers entiers se partagent en

quatre classes d'un nombre égal de termes, qui sont les
racines des quatre congruences

p—} p-1
X

4 E±1 Xth ± /

Exercices.

1. Etant donné le théorème de Fermât, si on appelle résidus

et non-résidus, de p les nombres qui lui sont inférieurs
et qui donnent respectivement r"*s~ 1 et pm —- 1, on a les
propositions suivantes :

Le produit de deux résidus ou de deux non-résidus est

congru à un résidu et celui d'un résidu par un non-résidu
Test à un non-résidu.

Le nombre p a m résidus et m non-résidus1.
Les résidus sont les restes de la division par p des m

premiers carrés.
2. Si p 4 + divise a2 zh kb2, il divise aussi x2 =F ky2.

Quelque soit k, p — 4 — 1 divise x2 + ky2 ou x2 — ky2. Si

p divise a2 — kb2 et c2 —- Ici2, il divise également x2 — aly2.
Si p ne divise ni x2 — ky2 ni x2 — ly\ il divise x2 — kly2.
(Lagrange).

3. B2 — R étant divisible par A et R — r l'étant par p, p
divise ou ne divise pas A selon que r est résidu ou non-

1 Soient n le nombre des résidus et v celui des non-résidus. Les produits pr, pr',
donneront n non-résidus différents; par suite n ^ v. La multiplication de P par les v non-résidus
donnerait v résidus différents. Donc et n v — m.

Cette démonstration est beaucoup plus simple que celle de Matrot (J. E. 1893, p. 74).
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résidu. Ce théorème sert, dans certains cas, à décomposer
les grands nombres en leurs facteurs. (Gauss1).

4. Le produit des résidus est q= 1 et celui des non-résidus
=±= 1, selon que p — 4 ± 1. De là, le théorème cle Wilson,

que représente la congruence

(p _ i) j + i o

et cette autre congruence, due à Libri,

(p-1)1 + ap-»=0;
«

5. Si p — k — l, m =h 1 selon que p a un nombre

impair ou un nombre pair de résidus inférieurs à (Lejeune-

Di rich let).

6. Si p 4 + 1, [m !)2 + 1 0 (Lagrange).
7. p diyise toujours rx2 — r'y2 et px2 — p'y2-> mais jamais

rx2 — py2. p 4 + i divise rx2 + py2 et non roc2 + r'y2 ni
px2 + p'y2 ; le contraire a lieu pour p 4 — 1. (Euler).

8. Si (b2 — 4ac) est résidu, la congruence ax2 + bx + c 0

a deux racines (Gauss). PRis généralement, la même chose
a lieu si a(b2 — 4ac) est résidu (Cauchy).

9. Si p 4 + 1, on a (1 + p) (1 + p') 2 et si p 4

— i, (1 + r) (t + r') 2 (Stieltjès).
10. Pour p 4.+ 1, la suite 1 + p, 1 + p', comprend

i—^— résidus et autant de non-résidus. Si p 4 — 1, la suite

1 + r, 1 + /*', comprend^-—3 résidus et ^ ^ 1
non-résidus

(Stieltjès).

1 Ainsi on a 93019 3052 — 6; comme le montre la table des résidus, G n'est pas résidu des
nombres 7, 11, 13, 17, 31, 37, 41, 53, 61, 71, 79, 83: aucun de ces nombres ne divise donc 93019.

Or 2.93019 4322 — 586. Le reste 11 de la division de 586 par 23 est non-résidu de 23 ; donc
23 ne divise pas 93019. Le reste 27 de la division de 586 par 43 est de même non-résidu de 43,
donc 43 ne divise pas 93019.

3.93019 5292 — 784 5292 — 282 501.257, d'où 93019 167.257, ce qui termine le calcul.
Autrement, on continuerait ainsi 5.93019 6822 — 29 ; or 29 n'est résidu d'aucun des nombres

31, 37, 41, 43, 47, 61, 73, 79, 97, On déterminerait ainsi successivement d'autres facteurs
premiers impossibles à admettre et on n'aurait plus qu'à essayer les divisions parles quelques
facteurs inférieurs à ^93019 qu'on n'aurait pu éliminer.

On voit l'intérêt qu'il y aurait à posséder une table des résidus des nombres premiers
jusqu'à 10.000, ou même plus loin, comme le souhaitait Gauss.
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11. Si ni p — 1 ni m ne sont résidus, il y a au moins un
résidu r tel que —- /•— 1 soit également résidu. (Matrot).

12. Appelons variation la succession d'un résidu (ou non-
résidu) et d'un non-résidu (ou résidu). La suite 1,2,3, ...p — 1,

présente un nombre pair ou impair de variations selon que
p 4 ± 1. (Stieltjès).

13. Si p 4 — 1, la congruence x2 a, a les deux raci-
p +1 p — i

nés x ± a ; si p 8 + 5 et que a 1, ses racines
P H~ 3

sont x ± a
8

(Legendre)«

Si p 8 + 5 et que a * — 1, les deux racines sont
p +3

x dz a
8 m\ (Mathews).

14. Lemme cle Gauss. Soit a le nombre des restes obtenus
en divisant par p les m premiers multiples de a, et ne
conservant de ces restes que ceux qui sont plus grands que m ;

on a :

am — (— ']/
15. On a aussi, avec Eisenstein,

t 2/irtTT
sin

a"1TT X-.JL.JL'i 2A"7t
s m

P

et avec Liouville,

a'n (- - 1

•

Dans cette dernière formule =2/1 + 1 et a. désigne une
racine imaginaire de l'équation ,%p— 1 0.

16. Le nombre p -est de même parité que le produit

n(?-£)(ï+M).
h variant de 1 a ni et h de 1 à Xp (Kronecker).
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17. Appelons, avec Lagrange, Ego la partie entière du nombre

non entier go, et posons

rM, E| + E^ + E^ + h-E-4-^'
2 71

K ~P + (4» — P ~(_1)E ^
'

on aura :

/'( 1 ,b)z=0 f(a + b,b)=z
~~ ' + /•(«,<.) (Tchebichef).
8

r0.i-î<(.r30...r#)M,S «»«!(- I/O«.') (id.)

a 1 /(2&>jP) 2m 1)^ + (id.

am (— (Gauss).

18. Etendre la notion des résidus aux restes de carrés
divisés par< un nombre composé P. En particulier, si a est
résidu de /?, il l'est de p11. Le nombre pn a mpn résidus.
(Gauss).

Soit le nombre P ax2 + bxy + cy2, où x et y sont
premiers entre eux (b2 — 4ac) est résidu de P. (Gauss).

A. Aubry (Beaugency, Loiret).
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