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THEORIE ELEMENTAIRE DES RESIDUS
QUADRATIQUES

Avanr-propos. — Par suite de la création de nombreux
journaux scientifiques dans le courant du XIX® siécle, de
doctes etingénieux pionniers se sont attachés de plus en plus
et dans un grand nombre de directions, & poursuivre surtout
le défrichement de I'immense champ mathématique, dont la
production a pris ainsi une intensité inquiélante pour I'avenir
de la science : i1l est certain que dans cent ans, bien des
étendues cultivées aujourd’hui, seront délaissées, a cause de
leur i1solement ou de leur aridité. Mais on peut affirmer que
les deux parties qui en forment l'entrée, ou, si l'on veut,
I'initiation «+ lagéométrie etl'arithmétique — seronttoujours
I'objet d'une culture de plus en plus suivie et iront se géné-
ralisant de plus en plus, jusqu'a l'absorption de la plus
ogrande partie du reste.

De la premiere de ces deux sciences, on possede des trai-
tés ¢lémentaires, aujourd’hui, bien prés de toute la perfec-
tion désirable. Quant a la seconde, en dépit de nombreux
écrits qui en traitent, elle est loin d’'étre aussi connue que le
mériteraient son extréme importance, I'élégance de ses pro-
positions, l'attrait que lui ont reconnu tous ceux qui s’y sont
livrés, enfin la beauté des probléemes non encore résolus et
d’une foule d'autres qu'il serait facile de se poser et peut-étre
de résoudre, si les efforts d'un plus grand nombre d'intelli-
gences étaient dirigés dans cette voie. La faute n'en serait-
elle pas aux traités, méme élémentaires, ou elle est exposée,
lesquels visent trop haut et abordent dés le début des ques-
tions trop générales? Et ne conviendrait-il pas, si on veut
arriver a la vulgariser, d’en illustrer au moins les théories
initiales par des applications et des exercices choisis, qui
soutiendraient I'intérét du lecteur sans le rebuter et lui mon-
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treraient rapidement et mieux que toute explication, I'esprit
de la théorie des nombres, son but et sa méthode? '

Cela nous a fait penser qu'une série d’études sur les élé-
ments de larithmétique pourrait servir la cause que nous
défendons, savoir la vulgarisation de cette belle théorie, en
contribuant a la production d'un traité véritablement élémen-
taire. Nous donnons ici la premiére de ces études.

L. —Onappelle résidus quadratigues dunombre premier p,
les restes de la division par p, des carrés entiers non mul-
tiples dep Ainsilesnombres 1, 3, 4, 9,10, 12 sontles résidus
de 13, et 2, b, 6, 7,8, 11 en sont les non-résidus.

Dans la premiere partic de ce mémoire, il ne sera question
que de résidus quadratiques; nous pouvons donc nous bor-
ner, pour abréger, a dire simplement résidus.

Posons p=2m +1; il y a m résidus de p et on les déter-
mineendivisant parp lesmpremaiers carrés enliers (Euler). En
effet si pour 0 < a < b < m, on avaitles deux congruences
a*=r, b®*=r, 1l s'ensuivrail (a+40) (a—0) =0, ce qui esl im-
possible, puisque @ 4 b et @ — b sont inlérieurs a p et par
suite premiers avec lui.

Divisant par p les carrés supérieurs a m? puis ceux supé-
rieurs a p% on retrouve symétriquement puis périodique-
ment les mémes restes, quisqu’on a (p — a)* = a® et (kp + a)?
= «*. Il n'y a donc que m résidus.

On désignera les résidus par les lettres », /', 1", ... et les
non-résidus par celles-ci, p. o', p”, ...
2. — Les p/'oduz'ts d’un résidu quelcongue par les m résidus

sont congrus « ces mémes résidus, dans wun certain ordre
(Euler). On voit d’abord que le produit de deux résidus est

7

congru a un résidu, car de r = a?, ' = 0% on conclut
ri’ = (ab)®. D’ailleurs les deux relations /1" = r 'r r
entraineraient la suivante /7" = /7", d’oli, contrairement

a I'hypothese »” = »”. On obtient donc ainsi tous les m ré-
sidus.

114

il

Py

|

! La congruence a = b, qui s’énonce a congru a b, indique que a différe de & d'un mul-
tiple de p, ou que p divise la différence a-b.

Ainsi (p 4+ @) = a®, ce qui résulté de ce que (p+ @) — @™ estdivisible par (p + @) — a-
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4

Cor. I. Ainsi les m produits rr, 7', rr”, ... sont congrus
aux m résidus, et on peut écrire

(4 PR
re.rr e’ o= o .

d’on
(1) =1 .

Cor. 11. Le produit d’un résidu par les m non-résidus sont
congrus a tous les non-résidus, et ceux d’un non-résidu par
les m non-résidus sont congrus aux m résidus (Gauss). Le
produit 7p est incongru aux m produits rr, rr’, ... : il est donc
congru a un non-résidu. De méme le nombre pp ne peut
étre congru a aucun des prodmts ey pr ,p/ . tous con-
grus a des non-résidus.

D’ailleurs les produits rp, 7p’, rp”, ... sontincongrus entre
eux, de méme que les produits p, pp’, pp”, ... Les premiers
sont donc congrus aux m non-résidus et les seconds aux m
résidus.

3. — De po’ = r, on tire p"p = "= 1: on a donc
o= lou=—1. :

Cor. 1. On a donc toujours a”= =+ 1, d’ou, en quarrant,
cette congruence, qui constitue le Théoréme de Fermat,

(2) a —1=1.

/7. Pui , . B . -
r. [1. Puisqu on ne peut avolr p = %, onne sauraitavoir
non plus p™ = xP~* = 1: on a done

(3) =1

Ainsi le nombre a est résidu ou non-résidu selon que a™
est = 1 ou = — 1. Cette importante proposition s’appelle le
critérium d’Euler.

Cor. III. Puisque 1 est toujours résidu, on peut toujours
trouver deux nombres x et £ tels qu'on ait rx = 1 et g€ = 1,
et cela d’'une seule maniére.

Le nombre x (ou &) est dit lassocié de r (ou de p). Ainsi
tout nombre a inférieur a p,a son associé, c’est-a-dire un
nombre y tel que ay = 1.
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Posons ab = ¢ ; en multipliant par la congruence 1 = ay,
on aura ¢y = b: on peul donc trouver un nom bre y inférieur
a p et tel que cy = b.

Ces deux importants théorémes sont dus a4 Euler. Parmi
les nombreuses applications qui peuvent en étre faites, nous
indiquerons la suivante, qui nous sera utile plus loin.

Si la valeur a de x, inférieure a p, satisfait a la congru-
ence Ax? + Bx + C =0, il y a une autre valeur de x, éga-
lement plus petite que p, qui y satisfait, et il n'y en a
pas d’autre. Les deux congruences Ax® + Br + G =0,
Aa* 4 Ba + C = 0 donnent par soustraction

Alx* —a*>) +B(x —aj =0,
d’ou, comme x — « est un nombre premier avec p,
Alx+a)4+B=0.

Or on a vu plus haut que cette congruence est toujours
possible.

On appelle racine de la congruence du n°® degré Ax" +
Bx? 4+ ... + Lx + M = 0, tout nombre plus petit que p et
qui, mis a la place de x, satisfait a cette congruence. On
peutdoncdire que la congruence du premier degré Ax + B=0
a toujours une solution unique et que celle du second degré a
deux racines ou n’en a pas.

On étendrait aisément ce théoreme au cas général et on
arriverait ainsi a une proposviti(’)n importante, due a Euler et
a Lagrange.

Cor. IV. Le produit de plusieurs entiers plus petits que p
est congru a un résidu ou a un non-résidu selon que le nom-
bre des non-résidus qu’ils comprennent est pair ou impair.
(Euler).

Cor. V. 8t le produit ab est résidu, a et b sont tous deux
résidus ou tous deux non-résidus.

Cor. VI. Posons =1, pm»= —1:onaura (p—rjm=+1
et (p — p)" = == 1 selon que m est pair ou impair. Donc si

— 4 4 1%, les nombres a et p-a sont ensemble résidus ou

! Par ce symbole, 4 4 1, nous entendons un multiple de 4 augmenté de 1.
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non-résitdus. St p =4 — 1, les deuxr nombres a et p-a sont
Cun résidu et Uautre non-résidu.

4. — La question de décider si un nombre donné « est ré-
sidu ou non-résidu de p peut se traiter, indépendamment de
toute théorie, dans certains cas trées simples. Ainsi: 1° on a
(%™ = a?—' = 1 ; donc tout carré est congru 4 un résidu, ce
qui suit de la définition des résidus.

2°0Ona(p—1)"=(— 1) Ainsiselon que p=4 +1,0ona:

(%) (p—1"==1.

3° Soit « =2. Si p =4 4 1, m est pair et le produit des
m premiers multiples de 2 peut s’écrire

2" m! = (2.4.6... m] l:( —B—g—é> <p —~I—)~—2_——7> e p—3) (p——’l):l

nt

3N/ p—7 3
52.4.6...111(—]-)———2——)<-—p . />...(—3) (—1)=m! (—1)>

Sip=4—1, mestimpair et on a.
¢

BT e [ | () WPty

= 2.4.6...P;3<--1L;> (-J’—'-Q-"f> or (= 8} (—1)

p+1
= m!(—1) ‘
Par conséquent
. rPFl
(5) 2" = (— 1) L (pourp — 4 = 1).
2 p —
Or 2 — 5 ! differe d'un nombre pair de ©—— , dans le pre-
p+1

mier cas, et de , dans le second cas, puisque les deux

T

ey ' —1 —1 — 3 1
différences sont £ . L 5— et P Z PZ— . L formule (5)

peut donc s’écrire, quel que soil le cas,’

. pEi—1
/ ‘ 2)}2._ . ,1 -8
(6) | = (— 1)

. 2. —1
2 est donc résidu ou non selon que le nombre 14 est

pair ou impair.
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4° Soit @ = 3 ; p peut prendre seulement 'une des formes
6 + 1 ou 6 — 1. Dans le premier cas, on a

)@*@@—HJ

N

5
3"m! =1[3.6.9...m] [(p - £—§———> o p—

d’ou

3

(7) g = (—1) ° . (p=6+1)

De méme dans le second cas,
3"m! =[3.6...(m—2)][[p—m)(p+3—m).. (p—2]
(p+1(p+4..(p+m—1]

pt!
.6
m! (— 1) ,

d’ou
ptt
(8) g = (—1) . (p =6 — 1)

5 Soita=p—2:o0na visiblement :

: pr—1 +p—1 (p—"1(p+53)
m m n o n 8 N 8
(p—2)"=(—2)"=2" (—1)" =(—1) = (— 1)

ou bhien _
(p —1)(p—3)
8

(9) (p—2"=(—1)

De la méme maniére, on trouvera :

1) (p—3)"=(—1) ' (—1) =1 > . (p=6+1l

(11) (p— 3" = (—1) . (p=6—1).

Cor.l. Ona(p —1)"=1,s1 p =4 -+ 1. Donc dans ce cas
on peut trouver un nombre ftel que f2=p — 1, ou f2 4+ 1
= 0. De la successivement,

(fEaP=x2f, (fElp=—4, (£ )" = (—4".
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Ainsi.wn nombre premier p — 4 + 1 divise au moins deux
nombres assignables de chacune des formes x* 4+ 1, y* 4 4,
28 — 16, w'® 4 64, ... Par exemple, soit p = 13, on aura
[=>5: donc 13 divise 6 4 64 et 4'° - 64. La possibilité
d’écrire y* + 4= 0 pour p =4 + 1, a été signalée d’abord
par Sophie Germain.

Deplusona: (fr £y)?+ (fy Fx)*=0; donc p=4 + 1
divise une infinité de sommes de deux carrés premiers entre
eux (Fermat). ~

Cor. II. D’apres (6), 2 esl résidu de p =8 =1 et non-
résidude p =8 == 3. D’aprés (9), p — 2 estrésidusip=—8 + 1
ou 8 + 3 et non-résidusi p —=8 — 1 ou 8 + 5.

p—1
6

les mémes cas, p =12 + 1 ou 12 + 7. Donc, d’aprés (7),

, et, dans

m est pair ou impair en méme temps que

pour p =12 4+ 1, (= 3)" = 1: 3 et — 3 sont! résidus ;

pour p =12 4+ 7, (£ 3)" =+ 3" =+ (—1) = 1: 3 est non-

) résidu et — 3 résidu.

On verra de méme que, a cause de (8), 3" = =+ 1 selon que
p =12 — 1 ou 12 4 5. Par suite, dans les deux cas, on a
(— 3 = — 1.

Ainsi, selon que p =6 =1, il a — 3 pour résidu ou non-
résidu, c’est-a-dire qu’il divise ou ne divise pas x% + 3(2).

Cor. I1l. Soit f? + a = 0. Si x est le reste de la division
de fy par p, il viendra x? 4+ ay® = 0. Donc si p divise un
nombre % 4 a il en divise aussi une infinité de la forme
x? 4 ay?. On résoudra ainsi la congruence x* 4 ay® = 0 en
posant y = 1,2,3, ... et x = fy. .

D’ailleurs pour @ = 1,2,3, ... onvoit que p = 4 4 1 divise
une infinité de sommes de deux carrés; p==8 == 1 une infinité
de nombres de la forme x® — 2y%; p =06 -+ 1 une infinité de
nombres de la forme x* + 3y?; etc. (Fermat). |

Cor. [V.Sip—=—4—1,(p —1)»= — 1, donc on ne sau-
rait dans ce cas poserf2=p—Ilouf?4+1=0na?+ y?2 =0,

1 Pour abréger on écrit souvent — a, au lieu de p — a.
2 On veut dire par la que p divise un certain carré augmenté de 3, ou bien qu'il n’y a
aucun carré qui augmenté de 3, fasse un nowmbre divisible par p.
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x et y étant premiers entre eux. Par conséquent, p =4 — 1

ne divise aucune somme de deux carrés premiers entre eux,
ce qui permet daffirmer que les diviseurs premiers d’une
telle somme sont lous de la forme 4 + 1(%). (Fermat).

De méme aucun nombre premier 6 — 1 ne divisant 22 4 3,
ni par suite 2 + 3?2, 1l s’ensuit que tous les diviseurs pre-
meers de x* 4 3y? sont de la forme 6 + 1.

Cor. V. Tout nombre premier p =4 — 1 divise une somme
de trots carrés dont l'un est 'unité (Euler). La série 1,2,3,...
p — 1 commencant par un résidu et finissant par un non-
résidu, il y a au moins un résidu r suivi d'un non-résidu
p=r + 1. Par suite, p — r — 1 est un résidu et on peut
écrire :

=_—7r—1, dot a®+1?4+1=0.

Cor. VI. Soitarésoudre jx? + ky* = 0. Cherchons le nom-
bre c tel que je = k: ilviendra 2% + cy? = 0. Posant & = yz,
le probléme est ramené a résoudre z2 4+ ¢ = 0; il est pos-
sible par conséquent si — ¢ est résidu.

Cor. VII. Soit p =8 + 1; — 1 est résidu, de méme que 2
et — 2: on peut donc écrire :

f24+1=0, d’on (f =12 == 2f.

Ainsi 2f et — 2f sont résidus; et comme 2 et — 2 le sont
eux-mémes, le nombre /" I'est également. On peut donc po-
ser :

k2= f, dou 1'45—’],0'2;‘:2,122:——2,;;454,]'45—4,

o

en posant
E§=F—k(®, k=B Lk, j=fE1.

La possibilité de trouver un nombre % tel que 4* 4 1 = 0,
pour p =8 + 1(°), a été démontrée d’abord par Gauss.

! Euler démontre ainsi cette proposition: p = % — 1 ne saurait diviser z2 + %2 sans divi-
-1 -1 . ; 4 . s :

ser x + yp qui est multiple de x? 4+ y2 puisque m est impair. Or cette divisibilité est
impossible puisque, & cause du théoréme de Fermat, p divise xp_l — yp_l.

2 Soit k3 + o = 0; « est l'associé de k. De 13 k2= Ho?=— aZet (ot == k)2== 2kt ==+ 2.

8Sip = S —|-.5, on a également f2 4 1 =0, (f == 1)2 = == 2f, puisque p est %& + 15 (2f) est
done résidu, mais 2 étant alors non-résidu, fest également et on ne peut plus éerire k2= f,
ni par suile k4= —1.

S i
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On remarquera d’ailleurs avec Euler et avec Gauss, que si,
pour p =4 4+ 1, a* = r, les nombres (— a)*, (fa)t, (— fa,*
sont également = r et sont incongrus entre eux, car, autre-
ment, de fa = = «a, on conclurait /= =41, ce qui est lmpos-
sible, puisque f2 = — 1. De plus il n’y a que ces quatre
nombres dans ce cas, car les deux congrues a® — x* = 0 et
@® 4+ x* = 0 ne peuvent avoir chacune plus de deux racines,
et par suile la congruence a* — x* = 0 ne peut en avoir plus
de quatre.

Ainsi p = 8 + 1 divise quatre nombres de chacune des
formes g* — 4, j* + 4 et k* 4+ 1. On pourra appliquer tout
cela au cas de p = 17, qui donne /=4 ou 13, g =— 6 ou 11,
[= T oul0, j="50u3, ou 12 ou 14 k = 8.

Cor. VIII. Soient p = 8 + 1, = — 1; on résoudra
x* 4+ y* = 0 en posant x = ,1,4,3, oy =k, 2k, ... On peut
donc dire, avec Euler, que tout nombre premier de la forme
8 + 1 divise de plusteurs maniéres une somme de deux bi-
carrés.

On résoudra x? 4 2y% = 0 en posant ah = A d’ou A* 4 «*
= 0 ou bien (A2 &= a?? = 2 (Aa)? = 0.

En général si p divise aa” 4+ (3, en posant ay = x, on voit
qu’il divise également ax® + By". Réciproquement si p di-
vise aa® + f3b", il divise aussi ax™ 4+ (3, ce qu’on vérifie en
posant a« = f3.

or. IX. D’apreés 11, le nombre premier p =6 4 1 divise
an certain nombre s? 4- 3. Ecrivons d’apreés cela

(o) (s—1P2+2(s—1)+4=0.

Soit n l'associé de (s — 1) ; multiplions la relation (a) par
n® et posons 2n = « = — 1 — ; il viendra
‘a2+a+1_=_0,[52+;3+150, doi & —1=0, 8 —1=0,

B+1P=l=p, (a«+1P=pF=a, L24+p 4+ af=0,
s=f—a=20+1=—2a—1, (sE1p=+38

W=+ B+)=1, («4+1P2=B+1P=—1,

et BFlh=Xs, (a—1(B—1)=3
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Soit @ un entier inférieur a p; posons aa = x, af =Y,
d'ott : e |
&+ attax=0, a2+y'+ay=0, 22+ 4 29=0;
si on écrit @® = r, 1l viendra :
cat=93=r, a—}-x—l—yE_O, ax + xy +ya=10, axy=r,
A=xy, =ay, Y=ax, a®+ 2+ y*=0, (ax £ By)? + (ay F Lx)’=—1
faxl)(zx=1)(y=l)=rx1, (at+x)(x+y)(y+a=—r.

On voit, entre autres choses, que a et 8 sont des résidus
associés; qu’il en est de méme de o + 1 et 3 4+ 1; que p
divise, de plusieurs manieres, une somme de trois carrés :
qu’il divise aussi une somme assignable de quatre carrés,
ainsi que les sommes de deux cubes (s 4+ 12 4+ (s — 1)® et
o — 1) + (8 — 1)°. -

On pourra appliquer ces formules au cas de p =19, qui
donne s == 4, n =13, « = 17, B = 11.

5. — Résidus cubiques. Par extension de la notion des ré-
sidus, on appelle résidus cubiques, biquadratiques, ... les
restes provenant de la division par p des cubes, des bicarrés,

.5 quelques résultats sont assez simples pour trouver place
dans un exposé élémentaire.

1° 11 est inutile d’aller au-dela des m premiéres divisions
puisque (p — a)® 4+ a®*= 0 ; deux cubes a égales distances de
m sont donc complémentaires & p. En particulier, 1 et — 1
sont toujours résidus cubiques.

2° Si r est résidu cubique, il en est de méme de 72, et ré-
ciproquement, car de x® = r, on tire (x?)® = r2.

3° St p=16—1, les p — 1 premiers entiers sont tous ré-
sidus cubiques, car si on pouvait écrire a® — b* = 0, il vien-
drait a® 4+ 0% 4+ ab=0. d’ou (2a 4 b2 + 3b6%2= 0: or cette
expression n'a pas de diviseurs de la forme 6 — 1. (n° 4, II
et 11I). |

4 Si p == 6 + 1, il y a trois valeurs, 1, «, 8, de x, qui
donnent x® = 1(n° 4, X) et il n’y a que celles-la, puisque la
congruence x* 4 x + 1 = 0 ne peut avoir que deux racines.

L’Enseignement mathém., 9¢ année ; 1907. 3
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Ces trois racines sont d’ailleurs inégales, car autrement, de

a =3, on tirerait 3 =a? = B2 et f = 1. '
De méme, si a®=r, il n'y a que les nombres a, aa, af,
dont les cubes soient congrus & r. Les p — 1 premiers

cubes se partagent donc en groupes de trois donnant le méme

- —-—1 ., .
reste quand on les divise par p. Il y a donc £ 5— résidus

cubiques.
5° Si r est résidu cubique, p divise x® + ry®et 2% 4 r?y®.
Euler connaissait a peu prés tout ce qui précéde.

6° La multiplication du résidu cubique » par tous les ré-
sidus cubiques donne ces mémes résidus dans un certain
ordre. De la, les relations

3
re.rr e r.ror L. et r =1 .

If

Les résidus cubiques ne sont donc autres que les racines
p—1 |
. :
de la congruence x

i

—

1.

p—1 »—

Les deux congruences r = g el X

B = 1
3

= (8 ont égale-

ment chacune

racines ; elles sont distinctes des pré-
, 4 p—1
cédentes et ce sont par conséquent les 27—

5 non-résidus

cubiques.

6. — Résidus biquadratiques. 1° En élevant au carré les
résidus, on obtiendra les résidus biquadratiques et ceux-ci
doivent évidemment étre choisis parmi les résidus: on les
trouvera donc en se bornant a diviser par p les.m premiers
bicarrés.

Soit a?=1r; si p—=4 — 1, 'un des nombres =+ a est ré-
sidu, quel que soit r; donc dans ce cas, tous les résidus
sont en méme temps résidus biquadratiques.

2° Si r est résidu biquadratique, 72 et 73 le sont également.

3° Si p = 81, on peut écrire a* = — 2, d'ou a* = 4,
ad = 16, a'® = 256, ... Donc, dans les mémes cas, 2 est ré-
sidu quadratique, 4 résidu biquadratique, 16 résidu octique,
... de p. |
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4 Sip=4+1,pa £ _4_ ! résidusbiquadratiques (n° 4, VII).

5 Sip=28 + 1, — 1 est résidu biquadratique, ainsi que
4 et — -4 (id.). .
6° On démontre comme au n° précédent que, pour p = 4
. p—1

1, la congruence des résidus biquadratiques est x =1,
b] te) i

et, de la, que les p — 1 premiers entiers se partagent en
quatre classes d’un nombre égal de termes, qui sont les ra-
cines des quatre congruences

|

®
il
H
)
I
H

'S

EXERCICES.

I. Etant donné le théoréme de Fermat, si on appelle rési-
dus et non-résidus de p les nombres qui lui sont inférieurs
et qui donnent respectivement r"=1 et g™ = — 1, on a les
propositions suivantes : '

Le produit de deux résidus ou de deux non-résidus est
congru a un résidu et celui d'un résidu par un non-résidu
I'est & un non-résidu. |

Le nombre p a m résidus et m non-résidus™.

Les résidus sont les restes de la division par p des m pre-
miers carrés. ,

2. 51 p=4 4 1 divise a® = kb?, il divise aussi x® &= ky>.
Quelque soit &, p = 4 — 1 divise 2? + ky? ou x® — ky? Si
p divise a® — kb® et ¢® — [d?, il divise également 2% — aly®.
Sip ne divise ni 2% — ky® ni x? — ly?, il divise x? — Fkiy?®.
(Lagrange). |

3. B* — R étant divisible par A et R — r 'étant par p, p
divise ou ne divise pas A selon que r est résidu ou non-

! Soient n le nombre des résidus et ¢ celui des non-résidus. Les produits Pr, Pr/, ... don-

neront n non-résidus diftérents; par suite n < ¢. La multiplication de P par les ¢ non-résidus
dannerait ¢ résidus différents. Donc » Zyvetn—=v=rn.

Cette démonstration est beaucoup plas simple que celle de Matrot (J. E. 1893, p. 74).
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résidu. Ce théoreme sert, dans certains cas, a décomposer
les grands nombres en leurs facteurs. (Gauss?). '

4. Le produit des résidus est =1 et celui des non-résidus
==+ 1, selon que p =4 = 1. De la, le théoréme de Wilson,
que représente la congruence

p—1)t4+1=0,
et cette autre congruence, due a Libri,

(——-———p—”!+a”_250;

a

5. S1 p =4 — 1, m ! = =1 selon que p a un nombre im-
pair ou un nombre pair de résidus inférieurs a g (Lejeune-
Dirichlet).

6.S1p=4+4 1, (m!? + 1 =0 (Lagrange).

7. p diyise toujours ra? — 1’'y? et pa® — p'y?, mais jamais
ra? — oy2 p =4+ 1 divise ra? 4 py? et non rx? 4 r'y? ni
2?4+ p'y?; le contraire a lieu pour p = 4 — 1. (Euler).

8. Si (b% — 4ac) est résidu, la congruence ax® 4+ bx + c¢=0
a deux racines (Gauss). Plis généralement, la méme chose
a lieu si a(b® — 4ac) est résidu (Cauchy).

9Slp—~4—|—1ona(1+p)(+p’).._2et81p 4

1,1+ )+ 7)..=2 (Stieltjes). '

10. Pour p = 4.+ 1, la suite 1 + g, 1 4 p’, ... comprend
P —1 résidus et autant de non-résidus. Sip =4 —1, lasuite

)
p+1
4

non-rési-

14+ 1 4+, ... comprend ——4—— 3 résidus et
dus (Stieltjes).

1 Ainsi on a 93019 = 3052 — 6; comme le montre la table des résidus, 6 n’est pas résidu des
nombres 7, 11, 13, 17, 31, 37, 41, 53, 61, 71, 79, 83: aucun de ces nombres ne divise donc 93019.

Or 2.93019 = 4322 — 586. Le reste 11 de la division de 586 par 23 est non-résidu de 23 ; donc
23 ne divise pas 93019. Le reste 27 de la division de 586 par 43 est de méme non-résidu de 43,
donc 43 ne divise pas 93019.

3.93019 = 5292 — 784 = 5292 — 282 = 501.257, d’ott 93019 = 167.257, ce qui termine le calcul.
Autrement, on continuerait ainsi . 5.93019 = 6822 — 29 ; or 29 n’est résidu d’aucun des nom-
bres 31, 37, 41, 43, 47, 61, 73, 79, 97, ... On déterminerait ainsi successivement d’autres facteurs
premiers impossibles 4 admettre et on n’aurait plus qu’a essayer les divisions par les quelques
facteurs inférieurs a /93919 qu’on n’aurait pu éliminer.

On voit lintérét qu’il y aurait & posséder une table des résidus des nombres premiers
jusqu’a 10.000, ou méme plus loin, comme le souhaitait Gauss.
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11. Si ni p — 1 ni m ne sont résidus, il y a au moins un
résidu r tel que — r» — 1 soit également résidu. (Matrot).

12. Appelons variation la succession d'un résidu (ou non-
résidu) et d’'un non-résidu (ou résidu). La suite 1,2,3, ... p —1,
présente un nombre pair ou impair de variations selon que
p =4 &= 1. (Stieltjes).

13. Si p == 4 — 1, la congruence x* = « a les deux raci-
ptt ~ | p—1 _
nesr=-4a ' ;sip=8-4DSetquea ° = 1, ses racines
I_’_"t_?’
sont x = =+ a ° (Legendre).
p—1
Sip—=84+5et que a * = — 1, les deux racines sont

pt3
r==a ° m! (Mathews).

4. Lemme de Gauss. Soit y le nombre des restes obtenus
en divisant par p les m premiers mulliples de «, et ne con-
servant de ces restes que ceux qui sont plus grands que m;
on a:

" = (— 1)

15. On a aussi, avec Eisenstein,

n :
A ——

et avec Liouville,

-
am — (___ ,l)nznl I (a/l, L a—k)p —1 .
-1

Dans cette derniére formule ¢ = 2n + 1 et « désigne une
racine imaginaire de I’équation a? — 1 = 0.
16. Le nombre p. est de méme parité que le produit

H("]l k h k 1
. p—ﬁ(ﬂré‘).

a—1
2

i variant de 1 a m et /& de 1 & (Kronecker).
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17. Appelons, avec Lagrange, Ew la partie entiére du nom-
bre non entier w, et posons

b—1
fla,b) :E%‘I‘ E 27?+ E ?’Tf' s ol +F——2;——— ,
2n
b = p + (471 — p— 2K 2[—)”> (—1) 7,
on aura :
fUb) =0, flat+b,b) =2 - L o fla,b)  (Tchebichef).
Pyeloy T3y - Ty, =a"m! (— 1)f(2a’p) (id.)
a™ == {— 1)}’(2471))-_:_27"(_ 1)f(a+P;P) (id.)
a™" = (— 1)/"(“:1)) ) (Gauss).

18. Etendre la notion des résidus aux restes de carrés di-
visés par<un nombre composé P. En particulier, si a est
résidu de p, il I'est de p". Le nombre p* a mp" résidus.
(Gauss).

Soit le nombre ‘P = ax?® + bxy 4+ cy?, ou x et y sont
premiers entre eux (b — 4ac) est résidu de P. (Gauss).

A. Ausry (Beaugency, Loiret).
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