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THEORIE ELEMENTAIRE DES RESIDUS

QUADRATIQUES

Avant-propos. — Par suite de la création de nombreux
journaux scientifiques dans le courant du XIXe siècle, de
doctes et ingénieux pionniers se sont attachés de plus en plus
et dans un grand nombre de directions, à* poursuivre surtout
le défrichement de l'immense champ mathématique, dont la

production a pris ainsi une intensité inquiétante pour l'avenir
de la science : il est certain que dans cent ans, bien des
étendues cultivées aujourd'hui, seront délaissées, à cause de

leur isolement ou de leur aridité. Mais on peut affirmer que
les deux parties qui en forment l'entrée, ou, si l'on veut,
l'initiation -4—la géométrie et l'arithmétique —seront toujours
l'objet d'une culture de plus en plus suivie et iront se
généralisant de plus en plus, jusqu'à l'absorption de la plus
grande partie du reste.

De la première de ces deux sciences, on possède des traités

élémentaires, aujourd'hui, bien près de toute la perfection

désirable. Quant à la seconde, en dépit de nombreux
écrits qui en traitent, elle est loin d'être aussi connue que le
mériteraient son extrême importance, l'élégance de ses
propositions, l'attrait que lui ont reconnu tous ceux qui s'y sont
livrés, enfin la beauté des problèmes non encore résolus et
d'une foule d'autres qu'il serait facile de se poser et peut-être
de résoudre, si les efforts d'un plus grand nombre d'intelligences

étaient dirigés dans cette voie. La faute n'en serait-
elle pas aux traités, même élémentaires, où elle est exposée,
lesquels visent trop haut et abordent dès le début des questions

trop générales? Et ne conviendrait-il pas, si on veut
arriver à la vulgariser, d'en illustrer au moins les théories
initiales par des applications et des exercices choisis, qui
soutiendraient l'intérêt du lecteur sans le rebuter et lui mon-
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treraient rapidement et mieux que toute explication, l'esprit
de la théorie des nombres, son but et sa méthode?

Gela nous a fait penser qu'une série d'études sur les
éléments de l'arithmétique pourrait servir la cause que nous
défendons, savoir la vulgarisation de cette belle théorie, en
contribuant à la production d'un traité véritablement élémentaire.

Nous donnons ici la première de ces études.
t. — On appelle résiclus quadratiques du nombre premierp,

les restes de la division par /;, des carrés entiers non
multiples de p. Ainsi les nombres i, 3, 4, 9, 10, 12 sont les résidus
de 13, et 2, 5, 6, 7, 8, I L en sont les non-résidus.

Dans la première partie de ce mémoire, il ne sera question
que de résidus quadratiques ; nous pouvons donc nous borner,

pour abréger, à dire simplement résidus.
Posons p 2 m + 1 ; il y a m résidus de p et on les détermine

eu divisantpar p les m premiers carrés entiers (Euler). En
effet si pour 0 <C a < b <[ m, on avait les deux congruences

1

a2=r, b2 EE /', il s'ensuivrait (a-j-b) {a—b) 0, ce qui est
impossible, puisque a + b et a — b sont inférieurs à p et par-
suite premiers avec lui.

Divisant par p les carrés supérieurs à m2 puis ceux
supérieurs à p2, on retrouve symétriquement puis périodiquement

les mêmes restes, quisqu'on a (p — a)2 a2 et [hp + a)2

~ cl2. Il n'y a donc que m résidus.
On désignera les résidus parles lettres /', r', r", et les

non-résidus par celles-ci, p, p p",
2. — Les produits d'un résidu quelconque par les m résidus

sont congrus à ces mêmes résidus, 'clans un certain ordre
(Euler). On voit d'abord que le produit cle deux résidus est

congru à un résidu, car de r a2, r' b2, on conclut
rr [ab)2. D'ailleurs les deux relations r'r" r, r r"' r
entraîneraient la suivante r r" r!r'\ d'où, contrairement
à l'hypothèse r" rw. On obtient donc ainsi tous les m
résidus.

1 La congruence a — b, qui s'énonce a congru à b, indique que a diffère dé b d'un multiple

de p, ou que p divise la différence a-b.
Ainsi (p -f- af a11, ce qui résulté de ce que (p -f ci)11— a11 est divisible par (p -j- ct) — a
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Cor. I. Ainsi les m produits rr', /v", sont congrus

aux m résidus, et on peut écrire

rr.rr'.rr"... r.r'.r"...
d'où

(1) rm l.
Cor. II. Le produit d'un résidu par les m non-résidus sont

congrus à tous les non-résiclus, et ceux d'un non-résidu par
les m non-résidus sont congrus aux m résidus (Gauss). Le
produit/'/} est incongru aux m produits rr, rrf, : il est donc

congru à un non-résidu. De même le nombre pp' ne peut
être congru à aucun des produits pr, pr', pr", tous
congrus à des non-résidus.

D'ailleurs les produits rp, rp', rp", sont incongrus entre
eux, de même que les produits pp, pp', pp", Les premiers
sont donc congrus aux m non-résidus et les seconds aux m
résidus.

3. — De pp /*, on tire pmp'm rm 1 : on a donc
pm I ou — 1.

Cor. I. On a donc toujours am= Ht 1, d'où, en quarrant,
cette congruence, qui constitue le Théorème de Fermât,

(2) 1.

Cor. II. Puisqu'on ne peut avoir p =x?, on ne saurait avoir
non plus pm xp~~1 1 : on a donc

(3)
'

g>1 ~ — 1

Ainsi le nombre a est résidu ou non-résidu selon que am

est 1 ou — 1. Cette importante proposition s'appelle le
critérium d'Etiler.

Cor. III. Puisque 1 est toujours résidu, on peut toujours
trouver deux nombres x et £ tels qu'on ait rx 1 et p\ 1,

et cela d'une seule manière.
Le nombre x (ou £) est dit l'associé de r (ou de p). Ainsi

tout nombre a inférieur à p, a son associé, c'est-à-dire un
nombre y tel que ay 1.
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Posonsab c ; en multipliant par la congruence 1 ay,
on aura cy b : on peut donc trouver un nombre y inférieur
à p et tel que cy' b.

Ces deux importants théorèmes sont dus à Euler. Parmi
les nombreuses applications qui peuvent en être faites, nous
indiquerons la suivante, qui nous sera utile plus loin.

Si la valeur a cle x, inférieure à p, satisfait à la congruence

Ax2 + Bx + C 0, il y a une autre valeur de x,
également plus petite que p, qui y satisfait, et il n'y en a

pas d'autre. Les deux congruences A.r2 + Bx + C 0,
AaÀ + Ba C 0 donnent par soustraction

A [x2 — a2) -j- B (x — a) 0

d'où, comme m — a est un nombre premier avec /?,

A [x -}- a) -f- B — 0

Or on a vu plus haut que cette congruence est toujours
possible.

On appelle racine de la congruence du ne degré Axn +
Bx2 -p + Lx + M 0, tout nombre plus petit que p et
qui, mis à la place de x, satisfait à cette congruence. On
peut donc dire que la congruence du premier degré Ax + B 0

a toujours une solution unique et que celle du second degré a
cleux racines ou n'en a pas.

On étendrait aisément ce théorème au cas général et on
arriverait ainsi à une proposition importante, due à Euler et
à Lagrange.

Cor. IV. Le produit de plusieurs entiers plus petits que p
est congru h un résidu ou à un non-résidu selon que le nombre

des non-résidus qu'ils comprennent est pair ou impair.
(Euler).

Cor. V. Si le produit ab est résidu, a et b sont tous deux
résidus ou tous deux non-résidus.

Cor. VI. Posons rm ï pm — 1 : on aura [p— r)m ± 1

et (p — p)m 1 selon que m est pair ou impair. Donc si
P — 4 + l1, les nombres a et p-a sont ensemble résidus ou

1 Par ce symbole, 4: + 1, nous entendons un multiple de 4 augmenté de 1.
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non-résiclus. Si p ~ 4 — 1, les deux nombres a et p-a sont
Vun résidu et Vautre non-résidu.

4. — La question de décider si un nombre donné a est
résidu ou non-résidu de p peut se traiter, indépendamment de

toute théorie, dans certains cas très simples. Ainsi : 1° on a

(a2)m ocp~~l 1 ; donc tout carré est congru à un résidu, ce

qui suit de la définition des résidus.
2° On a (p —l)m (— l)m. Ainsi selon que p 4 ± 1, on a :

(4) (p - ir ±i
3° Soit a 2. Si p 4 + 1, m est pair et le produit des

m premiers multiples de 2 peut s'écrire

2'" ml[2.4.6... m])(p )]
m

2.4.6 m (~P~T-Z)(~' ' ' (- 3> ^ (~ 4)
2

Si p 4 — 1, m est impair et on a

[2.,.o

P_±}

m (— 1)
4

Par conséquent
p_±é

(5) 2m (— 1)
4

(pour 4 ± 1).

Or -— diffère d'un nombre pair de L__— daiis le pre-
D -4- 1

înier cas, et de 1 dans le second cas, puisque les deux

différences sont ^ 1 ^
0

1
et ^ 3- ^ 1

• La formule (5)
4 2 4 2 v '

peut donc s'écrire, quel que soit le cas,'
p2 — i

(6) 2'"= (— 1)
'8

p2 |2 est donc résidu ou non selon que le nombre ^— est

pair ou impair.
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4° Soit cl 3 ; p peut prendre seulement l'une des formes
6 + 1 ou 6 — 1. Dans le premier cas, on a

3 '"ml— [3.6.9 ...m] | ~(p— {p ~ 4) {p " ;

[(/> + 2) (p+ 5) +
m

!»!(- i)3;
d'où

p— 1

(7) 3'" (- 1)
6

— 6 + 1)

De même dans le second cas,

3 m [3.6... (m — "2)] \(p — m) (p -j- 3 — m) (p — 2)]

[(p + 1) (p + 4) (p + in — 1)]

P + i
6

EE m) 1-1)
d OÙ

P±J
(8) 3'" (- 1) (p 6 — 1)

5° Soit cl p — 2 : on a visiblement :

p2__l ^ p — L (p — 1) (p -f 5)

(p -2)'» (_ 2)m2'" (— 1)'" (— 1)
8

— (— 1J
8

;

ou bien
(P — 'P iP — 3)

(9) (p-2)m=(-l)8
De la même manière, on trouvera :

p — 1 p — 1 2p — 2

(10) — 3)"' (— 1)
6

(-1)
2

=(-1)
3

1/^ 6+ 1).

2p — l
(11) (p — 3)'"' (— 1)

3

=6-1).
Cor. /. On a [p — t)m 1, si p — 4 -b 1. Donc dans ce cas

on peut trouver un nombre f tel que f2=p — 1, ou f2 -(- 1

0. De là successivement,

(f± l)2 ± 2f, (f± lp — 4, (f ± lfl (— 4)"'
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Ainsi .un nombre premier p 4 + 1 divise au moins deux
nombres assignables de chacune des formes x2 + 1, y4 + 4,
z8 — 16, w16 + 64, Par exemple, soit p 13, on aura

f— 5 : clone 13 divise 616 + 64 et 416 -h 64. La possibilité
d'écrire y* + 4 0 pour p 4 + 1, a été signalée d'abord
par Sophie Germain.

De plus on a : (fx zb y)2 + (fy q= x)2 0 ; donc p 4 + 1

divise une infinité de sommes de deux carrés premiers entre
eux (Fermât).

Cor. II. D'après (6), 2 est résidu de p 8 ± 1 et non-
résidu de p 8 ± 3. D'après (9), p — 2 est résidu si p — 8 + 1

ou 8 + 3 et non-résidu si p 8 — 1 ou 8 + 5.

m est pair ou impair en même temps que 1—-— et, dans

les mêmes cas, p 12 + 1 ou 12 + 7. Donc, d'après (7),

pour p — 12 + 1, (± 3)w

pour p — 12 -j- 1;î (± S)m

résidu et

On verra de même que, à cause de (8), 3m ± 1 selon que
p 12 — 1 ou 12 + 5. Par suite, dans les deux cas, on a

(— 3)m EE — 1.

Ainsi, selon que p 6 =L 1, il a — 3 pour résidu ou non-
résidu, c'est-à-dire qu'il divise ou ne divise pas x2 + 3(2).

Cor. III. Soit f2 a 0. Si x est le reste de la division
cle fy par p, il viendra x2 + ay2 0. Donc si p divise un
nombre f2 + a il en divise aussi une infinité de la forme
x2 -f- ay2. On résoudra ainsi la congruence x2 + ay2 0 en

posant y 1,2,3, et x fy.
D'ailleurs pour a 1,2,3, on voit que p — 4 + 1 divise

une infinité de sommes de deux carrés ; p 8 =b 1 une infinité
de nombres de la forme x2 — 2y2 ; p 6 + 1 une infinité de

nombres de la forme x2 + 3y2 ; etc. (Ferjnat).
Cor. IV. Si p 4 — 1, (p — ï)rn — 1 ; donc on ne saurait

dans ce cas poser/'2 p — 1 ou f2 + 1 0, ni.^2 + y2 0,

1 : 3 et — 3 sont1 résidus ;

— + 3m ± (— 1) -P 1 : 3 est non-

— 3 résidu.

1 Pour abréger 011 écrit souvent — a, au lieu de p — a.
2 On veut dire par là que p divise un certain carré augmenté de 3, ou bien qu'il n'y a

aucun carré qui augmenté de 3, fasse un nombre divisible par p.
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x et y étant premiers entre eux. Par conséquent, p — 4 — 1

ne divise aucune somme de deux carrés premiers entre eux,
ce qui permet d'affirmer que les diviseurs premiers d'une
telle somme sont tous de la forme 4 + 1(^, (Fermât).

De même aucun nombre premier 6 — 1 ne divisant x2 + 3,
ni par suite x2 -f- 3y2, il s'ensuit que tous les diviseurs
premiers de x2 -F 3y2 sont de la forme 6 + 1.

Cor. V. Tout nombre premier p 4 — 1 divise une somme
de trois carrés dont run est l'unité (Euler). La série 1,2,3,...
p — 1 commençant par un résidu et finissant par un non-
résidu, il y a au moins un résidu r suivi d'un non-résidu
p — /' + 1. Par suite, p — r — 1 est un résidu et on peut
écrire :

x2 =Ë r y2 — — r — 1 d'où x2 + j2 + 1 0

Cor. VI. Soit à résoudre jx2 + ky2 0. Cherchons le nombre

c tel quejc k\ il viendra x2 + cy2 0. Posant x yz,
le problème est ramené à résoudre z2 c 0 ; il est
possible par conséquent si — c est résidu.

Cor. VII. Soit p 8 + 1 ; — 1 est résidu, de même que 2

et — 2 : on peut donc écrire :

f2 + 1 0 d'où (f ± lj2 ± 2f

Ainsi 2f et — 2f sont résidus; et comme 2 et — 2 le sont
eux-mêmes, le nombre /'l'est également. On peut donc poser

:

k2 ~ f, d'où k± — J g* 2 h2 — 2 g* 4 f — 4

en posant
g ks — k (2) h ks -}- k j f± 1

La possibilité de trouver un nombre k tel que A4 +1=0,
pour p 8 + 1(8), a été démontrée d'abord par Gauss.

1 Euler démontre ainsi cette proposition: p 4r — 1 ne saurait diviser a;2 + y2 sans divi-
p-1 p-1

y
sera; -f- y qui est multiple de x2 -f y1 puisque m est impair. Or cette divisibilité est
impossible puisque, à cause du théorème de Fermât, p divise x^ ^

— + 4

2 Soit kB -J- a 0; a est l'associé de 1c. De là k2~ k4a2 — a2 et (a ± k)2~àz 2ka 3±2.» Si p 8 + 5, on a également f2 -j- 1 ES 0, {f± 1)2 H- 2f, puisque p est 4.- + 1 ; (2f) estdonc résidu, mais 2 étant alors non-résidu, /Test également et on ne peut plus écrire k2 — fni par suite k4 — 1. "
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On remarquera d'ailleurs avec Euler et avec Gauss, que si,

pour p z=z 4 + 1, a4 /', les nombres (— a)4, (/^)4, (— /^j4
sont également ~ /* et sont incongrus entre eux, car, autrement,

de fa ± a, on conclurait f= riz 1, ce qui est impossible,

puisque f2 — 1. De plus il n'y a que ces quatre
nombres dans ce cas, car les deux congrues a2 — x2 0 et
a2 + x2 0 ne peuvent avoir chacune plus de deux racines,
et par suite la congruence a4 — x4 0 ne peut en avoir plus
de quatre.

Ainsi p 8 + 1 divise quatre nombres de chacune des
formes g4 — 4, j4 k et k4 -f- G On pourra appliquer tout
cela au cas de p 17, qui donne f= 4 ou 13, g 6 ou 11,

1=1 ou 10, j 5 ou 3, ou 12 ou 14, k 8.

Cor. VIII. Soient p 8 + 1, k4 — 1 ; on résoudra
x4 + y4 0 en posant x 1,2,3, y k, 2k, On peut
donc dire, avec Euler, que tout nombre premier de la forme
8 + 1 divise de plusieurs manières une somme de deux
bicarrés.

On résoudra x2 zh 2y2 e 0 en posant ak A d'où A4 -f- a4

E 0 ou bien (A2 zfc a2)2 q= 2 (Aa)2 0.

En général si p divise actn + ß, en posante/?/ x, on voit
qu'il divise également axn + ßy11. Réciproquement si p
divise oca11 + ßbn, il divise aussi axn + /S, ce qu'on vérifie en

posant a ßx.
Cor. IX. D'après II, le nombre premier p 6 + 1 divise

un certain nombre s2 + 3. Ecrivons d'après cela

(oc) (s — 1f -f 2 (.s — 1) -1-4 0.

Soit n l'associé de (,s — 1) ; multiplions la relation (a) par
n2 et posons 2n a — 1 — ß ; il viendra :

'

a2 + a -f 1 0 ß2 -f ß + 1 0 d'où «I — 1 0, ß3 — 1 0

(ß + l)2 S3 a2 - ß (oc —j— if ß2 a', a2 + ß2 + oeß 0

s ~ ß — a g 2ß -f 1 s — 2« — 1 (s ± l)8 ± 8

oeß (fit + 1) ß + 1) 1 (a + t)3 (ß + i)3 - 1

(a ± 1) (ß + 1) ± 5 (a - 1) (ß - 1) 3
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Soit a un entier inférieur à p ; posons a<x= x, aß
d'où

a2 -j- x2 -f- ax 0 a2 -j- y2 -|- ay 0 x2 -f- y2 -f- xy 0 ;

si on écrit a3 r, il viendra :

x9 j3 7* # -f- a; + y 0 ax -J- xj -f- J# 0 axy ~ r

«2 xj x2 «j y2 ~ax, a2 + ^'2 + J2 0 (ax + /3j)2 + (aj + ßx)2 — 1

(a ± 1) (x ± 1) (j =t 1) r ± 1 (a + x) (x -f" j) iy + a) — r •

On voit, entre antres choses, que a et ß sont des résidus
associés ; qu'il en est de même de a + 1 et ß 4- 1 ; que p
divise, de plusieurs manières, une somme de trois carrés ;

qu'il divise aussi une somme assignable de quatre carrés,
ainsi que les sommes de deux cubes (s + l)3 + (s — l)3 et
(« - l)8 + {ß - 1)3.

On pourra appliquer ces formules au cas de p 19, qui
donne s 4, a 13, a 17, ß 11.

5. — Résidus cubiques. Par extension de la notion des
résidus, on appelle résidus cubiques, biquadratiques, les
restes provenant delà division par p des cubes, des bicarrés,

; quelques résultats sont assez simples pour trouver place
dans un exposé élémentaire.

1° 11 est inutile d'aller au-delà des m premières divisions
puisque [p — a)3 + a3 0 ; deux cubes à égales distances de
m sont donc complémentaires à p. En particulier, 1 et — 1

sont toujours résidus cubiques.
2° Si r est résidu cubique, il en est de même de /*2, et

réciproquement, car de .x3 r, on tire (,x*2)3 r2.

3° Si p 6 — 1, les p — 1 premiers entiers sont tous
résidus cubiques, car si on pouvait écrire a3 — b3 0, il viendrait

a2 -f b2 + ab 0. d'où (2a + b)2 + 3b2 0 : or cette
expression n'a pas de diviseurs de la forme 6 — 1. (n° 4, II
et III).

4° Si p — 6 + 1, il y a trois valeurs, 1, a, /3, de xY qui
donnent x3 l(n° 4, X) et il n'y a que celles-là, puisque la

congruence x2 + x + 1 0 ne peut avoir que deux racines.

L'Enseignement mathém., 9e année ; 1907. g
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Ces trois racines sont d'ailleurs inégales, car autrement, de

a ß, on tirerait ß a2 ß2 et ß 1.

De même, si az=r, il n'y a que les nombres #, ax, a[3,
dont les cubes soient congrus à Les /? — 1 premiers
cubes se partagent donc en groupes de trois donnant le même

ö — lreste quand on les divise par p. Il y a donc ^— résidus

cubiques.
5° Si /' est résidu cubique, p divise x3 + ry3 et z3 + r2y3.
Euler connaissait à peu près tout ce qui précède.
6° La multiplication du résidu cubique r par tous les

résidus cubiques donne ces mêmes résidus dans un certain
ordre. De là, les relations

p_-\
3

rr .rr rr"... r .r r"... et r =1

Les résidus cubiques ne sont donc autres que les racines

r-i
de la congruence x

3
1

p-i jp-i
Les deux congruences x

3

a et x
3

ß ont égalera
\ment chacune ^— racines ; elles sont distinctes des pré-

p icédentes et ce sont par conséquent les 2 g— non-résidus

cubiques.
6. — Résidus biquadratiques. 1° En élevant au carré les

résidus, on obtiendra les résidus biquadratiques et ceux-ci
doivent évidemment être choisis parmi les résidus : on les
trouvera donc en se bornant à diviser par p les* m premiers
bicarrés.

Soit a2 r ; si p 4 — 1, l'un des nombres ± a est
résidu, quel que soit /• ; donc dans ce cas, tous les résidus
sont en même temps résidus biquadratiques.

2° Si r est résidu biquadratique, r2 et r3 le sont également.
3° Si p 8 ± 1, on peut écrire a2 — 2, d'où aï 4,

as 16, a16 256, Donc, dans les mêmes cas, 2 est
résidu quadratique, 4 résidu biquadratique, 16 résidu octique,

de p.



RÉSIDUS QUADRATIQUES 35

4° si/» 4 + l,/pa p-~1 résidusbiquadratiques(n°4,YII).

5° Si /? — 8 + 1, — 1 est résidu biquadratique, ainsi que
4 et — 4 (id.).

6° On démontre comme au n° précédent que, pour
p-i

- - 4

+ 1, la congruence des résidus biquadratiques est x %>

et, de là, que les p — 1 premiers entiers se partagent en

quatre classes d'un nombre égal de termes, qui sont les
racines des quatre congruences

p—} p-1
X

4 E±1 Xth ± /

Exercices.

1. Etant donné le théorème de Fermât, si on appelle résidus

et non-résidus, de p les nombres qui lui sont inférieurs
et qui donnent respectivement r"*s~ 1 et pm —- 1, on a les
propositions suivantes :

Le produit de deux résidus ou de deux non-résidus est

congru à un résidu et celui d'un résidu par un non-résidu
Test à un non-résidu.

Le nombre p a m résidus et m non-résidus1.
Les résidus sont les restes de la division par p des m

premiers carrés.
2. Si p 4 + divise a2 zh kb2, il divise aussi x2 =F ky2.

Quelque soit k, p — 4 — 1 divise x2 + ky2 ou x2 — ky2. Si

p divise a2 — kb2 et c2 —- Ici2, il divise également x2 — aly2.
Si p ne divise ni x2 — ky2 ni x2 — ly\ il divise x2 — kly2.
(Lagrange).

3. B2 — R étant divisible par A et R — r l'étant par p, p
divise ou ne divise pas A selon que r est résidu ou non-

1 Soient n le nombre des résidus et v celui des non-résidus. Les produits pr, pr',
donneront n non-résidus différents; par suite n ^ v. La multiplication de P par les v non-résidus
donnerait v résidus différents. Donc et n v — m.

Cette démonstration est beaucoup plus simple que celle de Matrot (J. E. 1893, p. 74).
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résidu. Ce théorème sert, dans certains cas, à décomposer
les grands nombres en leurs facteurs. (Gauss1).

4. Le produit des résidus est q= 1 et celui des non-résidus
=±= 1, selon que p — 4 ± 1. De là, le théorème cle Wilson,

que représente la congruence

(p _ i) j + i o

et cette autre congruence, due à Libri,

(p-1)1 + ap-»=0;
«

5. Si p — k — l, m =h 1 selon que p a un nombre

impair ou un nombre pair de résidus inférieurs à (Lejeune-

Di rich let).

6. Si p 4 + 1, [m !)2 + 1 0 (Lagrange).
7. p diyise toujours rx2 — r'y2 et px2 — p'y2-> mais jamais

rx2 — py2. p 4 + i divise rx2 + py2 et non roc2 + r'y2 ni
px2 + p'y2 ; le contraire a lieu pour p 4 — 1. (Euler).

8. Si (b2 — 4ac) est résidu, la congruence ax2 + bx + c 0

a deux racines (Gauss). PRis généralement, la même chose
a lieu si a(b2 — 4ac) est résidu (Cauchy).

9. Si p 4 + 1, on a (1 + p) (1 + p') 2 et si p 4

— i, (1 + r) (t + r') 2 (Stieltjès).
10. Pour p 4.+ 1, la suite 1 + p, 1 + p', comprend

i—^— résidus et autant de non-résidus. Si p 4 — 1, la suite

1 + r, 1 + /*', comprend^-—3 résidus et ^ ^ 1
non-résidus

(Stieltjès).

1 Ainsi on a 93019 3052 — 6; comme le montre la table des résidus, G n'est pas résidu des
nombres 7, 11, 13, 17, 31, 37, 41, 53, 61, 71, 79, 83: aucun de ces nombres ne divise donc 93019.

Or 2.93019 4322 — 586. Le reste 11 de la division de 586 par 23 est non-résidu de 23 ; donc
23 ne divise pas 93019. Le reste 27 de la division de 586 par 43 est de même non-résidu de 43,
donc 43 ne divise pas 93019.

3.93019 5292 — 784 5292 — 282 501.257, d'où 93019 167.257, ce qui termine le calcul.
Autrement, on continuerait ainsi 5.93019 6822 — 29 ; or 29 n'est résidu d'aucun des nombres

31, 37, 41, 43, 47, 61, 73, 79, 97, On déterminerait ainsi successivement d'autres facteurs
premiers impossibles à admettre et on n'aurait plus qu'à essayer les divisions parles quelques
facteurs inférieurs à ^93019 qu'on n'aurait pu éliminer.

On voit l'intérêt qu'il y aurait à posséder une table des résidus des nombres premiers
jusqu'à 10.000, ou même plus loin, comme le souhaitait Gauss.
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11. Si ni p — 1 ni m ne sont résidus, il y a au moins un
résidu r tel que —- /•— 1 soit également résidu. (Matrot).

12. Appelons variation la succession d'un résidu (ou non-
résidu) et d'un non-résidu (ou résidu). La suite 1,2,3, ...p — 1,

présente un nombre pair ou impair de variations selon que
p 4 ± 1. (Stieltjès).

13. Si p 4 — 1, la congruence x2 a, a les deux raci-
p +1 p — i

nés x ± a ; si p 8 + 5 et que a 1, ses racines
P H~ 3

sont x ± a
8

(Legendre)«

Si p 8 + 5 et que a * — 1, les deux racines sont
p +3

x dz a
8 m\ (Mathews).

14. Lemme cle Gauss. Soit a le nombre des restes obtenus
en divisant par p les m premiers multiples de a, et ne
conservant de ces restes que ceux qui sont plus grands que m ;

on a :

am — (— ']/
15. On a aussi, avec Eisenstein,

t 2/irtTT
sin

a"1TT X-.JL.JL'i 2A"7t
s m

P

et avec Liouville,

a'n (- - 1

•

Dans cette dernière formule =2/1 + 1 et a. désigne une
racine imaginaire de l'équation ,%p— 1 0.

16. Le nombre p -est de même parité que le produit

n(?-£)(ï+M).
h variant de 1 a ni et h de 1 à Xp (Kronecker).
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17. Appelons, avec Lagrange, Ego la partie entière du nombre

non entier go, et posons

rM, E| + E^ + E^ + h-E-4-^'
2 71

K ~P + (4» — P ~(_1)E ^
'

on aura :

/'( 1 ,b)z=0 f(a + b,b)=z
~~ ' + /•(«,<.) (Tchebichef).
8

r0.i-î<(.r30...r#)M,S «»«!(- I/O«.') (id.)

a 1 /(2&>jP) 2m 1)^ + (id.

am (— (Gauss).

18. Etendre la notion des résidus aux restes de carrés
divisés par< un nombre composé P. En particulier, si a est
résidu de /?, il l'est de p11. Le nombre pn a mpn résidus.
(Gauss).

Soit le nombre P ax2 + bxy + cy2, où x et y sont
premiers entre eux (b2 — 4ac) est résidu de P. (Gauss).

A. Aubry (Beaugency, Loiret).


	THÉORIE ÉLÉMENTAIRE DES RÉSIDUS QUADRATIQUES
	Exercices.


