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THEOREME DE FERMAT 433

taines de ses méthodes, particulierement dans la recherche
des diviseurs numériques!. D'un autre co6té, il a assez vive-
ment critiqué Wallis de s’étre servi de la simple induction
dans les démonstrations de son Arith. inf. pour quon ne
puisse croire qu’il avait agi de méme. La science, en s'éten-
dant et se perfectionnant, a perdu de sa simplicité, et il n’y
a guére lieu de s'étonner que les procédés élémentaires de
Frénicle, de S'-Croix et de Fermat nous échappent; et,
méme retrouvés, ils ne pourraient peut-éire plus nous ser-
vir, 'habitude étant perdue des longs calculs numériques
que ne craignaient pas d’entreprendre ces savants non en-
core habitués aux calculs de lalgebre, plus mécaniques et
moins suggestifs.

Nous terminons notre historique qui sera continué par
I'Euvre arithmétique d’Euler, de Lagrange, de Legendre et
de Gauss par celte remarque que Fermat ne parait avoir
étudié que dans Euclide, Diophante, Viéte et Bachet: ses
découvertes paraissent avoir été faites entre 1630 et 1638 et
avoir eu pour origine la considération des nombres parfaits
ainsi que diverses questions proposées par Frénicle.

DEuxiEME PARTIE

Etude élémentaire sur le théoréme de Fermat.

1. — Lemmes®1. L'expression a*— b¥est algébriquement di-
visible par a — b. De plus si k est pair, elle 'est par a + b;
st k est impair a* + b¥ est divisible par a + b.

En outre, st k est multiple de n, et dans ce cas la seule-
ment, a*—Db¥ estdivisible para®—b». Plus généralement, s7 6
est le p. g. c. d. deketden,abl —Dblsera le p. g. c. d. de
ak — bk et de a» — br. Et ainsi des autres expressions.

! Cependant, dans une lettre & Mersenne de 1643, il donne la décomposition en facteurs d’un
nombre de douze chiffres, qui lui avait été proposé.

2 Nous donnons ces différents lemmes pour rendre cet article tout a fait indépendant des
précédents (Ens. Math., 1907, pp. 24 et 286).

L’Enseignement mathém., 9¢ année ; 1907. 29
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I1 suit .de la qu’on a :
1) (e + bhF=a", ph—12 =1, bh — 1)t = 1 (mod.b)

II. Dans cette identité d’'Euler?

+b) o+ )=14+a+b(l +a) + ...+
14 a) ... 1+ k),

il viendra la formule

@) 1+ a

n
,-?:,

ro| =

n
changeons a, b, ¢, ... en T

des nombres figurés

3) 14 Cn,l + Cn—i—l,? + Cn+1,3 + ot C’l+V—1 — C”’*“’*";

d’ou I'identité de Nicole,
1.2.3.n+2.3..(n4+1) 3.4 (n4+2 4+ ...+

ooy -0 — 1) = --n(z:j n)

(4)

a,b

est entier (Pascal). De plus, si p est premier, on a

(5) C,,=0 (Euler)
IV. On a:

{6) (@ + b)" =a" + C, a" b+ .. +

Cppq @71 + G, 0" (Briggs)
‘d’oh, a cause de (5), si p est premier,
(7) (@ + bP = aP + bP (Euler)
V. Posons
A =xlx—1) ... (x—n+1)+Ax.. (x —n+ 2) +
+ Mz (x —1) + x

A,B,...L, M désignant des coeflicients qu’il n’est pas indis-

pensable de déterminer, on aura :

1 Pour d’autres applications de cette identité, voir Progreso Matematico, 1900, p. 401 et

Mathesis, 1907, p. 147.
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x"+1——xn:x(x——1) ve [ —n) + Ax ... (x——n—{—i);l— e
Mz (x — 1) (x — 2) + 2 (x — 1);

d’ol, sommant de x =14 x = p — 1, et posant

sp=1F 4 2F 4 3F 4 (p— 1),

_pelpmn=t) g pelponl

Sp41 — Sun = n -+ 2 ; n+ 1
p - (p=3  p.. (p—2)
M 3
Par suite si
n<p— 1,
on a:
Sn-{—i Sp =01
Or
31:P(P2“"1) =0,
donc
S = 0, Sg = 0,
(8) s, =0 (n<p—1)
(9) : Sp1 =T (p—1!
V1. Supposons que la congruence du n°® degré F(x) =0
ait n 4+ 1 racines, et soient @, 0, ... ¢cles p — n — 2 non-

racines ; la congruence du (p — 2)° degré

(x — a) (@ — b) ... (x — ¢) F(2) = 0
aurait évidemment p — 1 racines. Or soit AxP—? { Bxr—3
+ ... + Lz + M = 0 cette derniére congruence ; eny faisant

successivement x — 1, 2, 3, ... p — | et faisant intervenir le
lemme V, on aurait en sommant,

M(p—1) =0 ou —M=0

ce qui ne peut avoir lieu que si M = 0, chose impossible,

~ puisque le produit M de toutes les racines ne peut étre mul-

tiple de p. .
Il est donc impossible que la congruence F (x) = 0 ait
plus de n racines.

1 Quand le module n’est pas explicitement indiqué, il s’agit du nombre premier p.
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Cor. St la congruence F(x)= 0 a n racines et que son
premier membre puisse se décomposer en deux facteurs en-
tiers f(x), ¢(x),dedegrés k£ et n — k, les deux congruences
ont respectivement k£ et n — k racines. (Lagrange).

VII. Posons

0<AhE1<S, M EB=n',n>n,
k(A —n'a)® + (B — n'6)? = n'n",

et prenons a et b tels qu’on ait
A—n’a<£>B——n’b;
il viendra

rn k‘_l__i 7 ’ LI 1" ’
n'n" < A n*<n? dou n"<n.

Or, en tenant compte de cette identité d’Euler
(10) (kA2 == B?)(kA’2 &= B?) — (kAA’ TF BB/)2 = & (AB’ — A’B)?,
on a :

(n’) (n'n") = (kA% == B? — kAA’n’ F BB/n/) & k (BA’ — AB'n

d’ou, en remplacant A% + B? par nn’,
nn' = (n — FAA’ = BB')? & % (BA’ — AB)? .

On a ainsi un second multiple de n inférieur au proposé,
et de la forme o2 =+ £f32.

Opérant de méme sur cette expression, on en firera un
troisieme multiple nn” de la méme forme et ainsi de suite,
jusqu’a ce qu’on arrive au nombre n lui-méme, puisque les
nombres n, n’, n", ... sont de plus en plus petits. Le nombre
n est donc de 'une des formes ka? & y2 ou x? = ky?.

Ainsi les diviseurs de A* 4+ 3B2? de A% + 2B? et de A? 4 B?
sont respectioement' des formes x* -4 3y?, x% + 2y%et a? + y2.
Ceux de A? — 3B? peuvent se mettre sous l'une des deux for-
mes x? — 3y?, 3x? — y2% Et, a cause des identités

2 — 2y = 2(x — )2 — (x — 29)?

x? — 5y? =5 (x — 2y)? — (22 — 5y)?,

L
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on peut encore dire que les diviseurs de A* — 2B? et de A* —
5B? peuvent se metire respectivement sous les formes x* — 2y*
et x* — Hy?.

Le principe de cette démonstration est di a Lagrange, qui
a prouvé ainsi que fout diviseur d’une somme de quatre carrés
est lui-méme une somme de quatre carrés. Euler avait ouvert
la voie, en essayant de démontrer de cette maniére les cas
de A% + B? de A® + 2B? et de A% 4 3B2.

2. — Les nombres «, b étant premiers entre eux, on peut
se demander quelles sont les propriétés des restes obtenus
en divisant par b les multiples ou bien les puissances de a.
L’étude du premier cas a fait l'objet de notre précédent ar-
ticle. Le second cas va nous occuper; mais auparavant, il
convient de montrer, par quelques exemples, comment on

peut souvent abréger le calcul direct des restes.

1° Soit a trouver R g—g . La division des nombres 7, 7%, 74,
78, 76, 732 7% 7128 donne les restes 7, 49, 343, 478, 288,
255, 284, — 110, — 79 ; donc

N = . 284,79 = — 1 (mod. 641) (Euler)

2° Trouver le reste de la division de 3% par 13. On a
3% = 1(mod. 13), et comme 1000 = 1 (mod. 3), il s’ensuit
3199 = 3 (mod. 13). (Gauss). |

3° Soit a trouver les restes des puissances de a = 189 di-
visées par b = 191.

On trouve directement les restes 1, 189, 4, 183, 16, 159,
64, 63, ... On a ainsi:

2" =a®*—a’, dot &=a"—a', a®=0a—a?, ... (mod. 191)

De méme, pour b =19 et @ = 3, 4, 5, 6, on pourra utiliser
les relations. '
2 4+-1=0, a®>—-a—1=0, a?—a—1=0,

a® 4 2=0 ~ (mod. 19) (Desmarets)

0
4° Enfin nous ferons remarquer que, pour les restes des
: b+ 1
puissances de g = —— ., ona:

20 1=0,2Fa=0,2+ta =0, .. (mod. b)
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3. — Si'a est premier avech, il y atoujours danslaprogres-
ston a, a%, a3 ... aP—' au moins un terme at qui, divisé par
b donne le reste 1. Les restes suivants se reprodutsent périodi- .
quement. (Euler 1759). Aucun reste n’étant nul, parmi les &
premiers restes, il y en a au moins deux qui sont égaux.
Posons en conséquence :

x

a ¢, a’=c¢, ilviendra Y@ ¥ —1)=0 (mod. b)

I

ce qui démontre la premiére partie de la proposition. La
deuxiéme se vérifie en observant que de ¢! =1, a" = «
(mod. &), on tire a‘!t” = « (mod. b).

Cor. 1. Si t estle gaussien' de a, tous les restes qui pré-
cédent sont différents. Autrement le raisonnement de tout a
I'heure ferait voir qu’il y a une puissance plus petite qui
donne le reste 1, et ¢ ne serait pas le gaussien de a.

II. De ce qu’on peut toujours écrire a‘ =1 (mod. b), on
conclut que tout entier @ premier avec b a toujours un as-
socié a — a*—', c'est-a-dire un nombre tel que aa = 1
(mod. b).

I1l. @ et ¢ étant premiers avec b, on peut toujours écrire

dd=1,cF =1, dou & —c =kb (mod. b)

ll

multipliant par ¢ et posant ca’~—! = x, kc = y (mod. D), cette
équation devient

(a) ax — by = ¢,

Ainsi, a et ¢ étant premiers avec b, on peut toujours trou-
ver un nombre x < b, tel que la relation « ait lieu.

Autrement. Les b nombres

b—2 b—1

b—1 b2 ab'“Bc‘*, a"cb~3, ac , C

a , a ¢,

sont incongrus a4 6 : il y en a donc au moins deux qui sont
congrus entre eux. Posons en conséquence :

= 1b—h — gk ~14h b ~k—Fh (mod. b)

Hl

ce qui donnera

(B) = a" | (mod. b)

1 Exposant de la plus petite puissance de @ qui donne a® =1 (mod. b).
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I1 existe donc un nombre & inférieur a b permettant de satis-
faire a (8). Le reste de la démonstration s’achéve comme

tout a 'heure.

IV. 8¢ ax=1 (mod. b), x est forcément un multiple du
gaussien t. '

V. Les ¢ restes sont évidemment premiers avec le divi-
seur b, de sorte que si, avec Gauss, on désigne par ¢ (0) le
nombre des entiers plus petits que & et premiers avec lui,
onat <= g(0). |

Sit < ¢(b), soient 1, «, «", ... les ¢ restes, et 8, y, d, ...
les autres nombres inférieurs a4 0 et premiers avec lui. En
divisant par b les nombres 5. Ba, B2', ", ... on aura ¢ restes
différant entre eux et différents des premiers, puisque, en
posant, par exemple,

aff—‘:‘a af = « (mod. b)

Ea' — Ba = ﬁaf(ag"f—— 1), « — Bu=al (a8 — B) (mod. b)

ne peut se réduire a un multiple de b ; car a8—/n’est ni =1
(mod 0), ni = 3 (mod. b), puisque g — /' < t et que le reste
correspondant ne peut étre que «, ou o', ou «”, ...

Opérons de méme sur les restes v, 0, ... nous finirons par
épuiser complétement la suite des nombres < b et premiers
avec lui. Celte suite est donc partagée en groupes de ¢ ter-
mes et par suite o (b) est un multiple de ¢. Par conséquent ¢
est égal a ¢ (6) on a un diviseur de ¢ (b). (Euler 1758).

4. — Théoréme d’Euler. Si les nombres a et b sont pre-
meuers entre eux, on a :

(11) at® =1 | (mod. b)

En effet ¢ (b) est un multiple de ¢, d'aprés le corollaire qui
précede. {

5. — Théoréme de Fermat. Si b est un nombre premier p,
onao(p)=p —1, dou

(12) &7V =1,

Autrement. De (7) on tire :

@+ 1 —af =0,
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d'ou, en changeant successivement x en @ — 1, a — 2, ... 3,
2, 1 et additionnant, la relation

(13) al@®~ ' —1) =0,

identique a (12). (Euler 1748).

Cor. 1. Quel que soit ’entier x, on a:
(14) o —x=0. (Euler)

La grande importance du théoreme de Fermat résulte de
ce fait caractéristique que la congruence (14) quoique non
identique, est satisfaite pour x quelconque. Il fait partie du
petit nombre de ces vérités simples et fécondes, — telles
qu'en géométrie, le théoréme de Pythagore et celui des tri-
angles semblables, — lesquelles, condensant en une seule
idée un grand nombre de principes en apparence distincts,
— parce que la faiblesse de notre intelligence nous empéche
de voir qu’ils n’en font souvent qu’un seul vu sous des as-
pects différents, — nous permettent de ménager nos eflorts
dans la conquéte de nouvelles vérités et d’envisager de nou-
veaux buts. Aussi les diverses généralisations élémentaires
qui ont été données de ce théoreme sont-elles restées & peu
prés sans emploi et ne présentent-elles guére d’autre inté-
rét que celui d’exercices isolés.
~II. Puisque p — 1 est un nombre impair, on a, en posant
p=2m + 1:

(15) (@™ + 1) (@™ — 1) =0

Les deux facteurs du premier membre ne peuvent avoir
d’autre facteur commun que 2; on a donc:

(16) a® 4+1=0o0ua”—1=0

1. Théoréme de Wilson. De (9) et de (12), on tire

(17) p—1l+1=0

IV. 1° Supposons p = 4g + 1 et soit x = @ une des non-
racines de (x + 1)2 -— x2¢ = 0. Puisque (@ + 1) — a* = 0, 1l
s’ensuit que (@ + 1)% 4+ a? = 0. Ainsi p = 4 4 1 divise tou-
jours une somme de deux carrés. D'ailleurs aucun nombre
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premier p = 4 — 1 ne peut diviser 2* + y*: en effet on a:
a?—'— yp—1 = 0; donc en posant p = 2m + 1, on voit que
(x2)™ 4+ (y*™ ne peut étre = 0. Or cette expression est divi-
sible par x? 4+ y? puisque m est impair; donc a fortiori p ne
peut diviser % 4+ y? (Euler). |

2° Selon que u et ¢ sont de méme parité ou de parité diffé-
rente, u? + uv 4+ 02 peut se mettre sous I'une ou 'autre des
deux formes

u — v\2 o U v\2 '2u+v)2 3(u>2.
(2->+3( z) ml( 2 LAY
Donc si £ — @ est une non-racine de (x 4 1)** — 2?» = 0, le
nombre p — 6k + 1 étant premier, on aura:

o + 1% — a?] [(a +1)4k+(a+1J2ka2k+a4k]
.—_(a—l—l)Gk——aﬁkEO; '

donc p == 6 + 1 divise y? + 3z% (Euler).

V. Chacune des congruences 2™ + 1 =0, 2" —1=0am
racines (lemme VI).

La congruence x? —! — 1 = 0 a les p — 1 racines 1. 2, 3,...
p— 1, ou si I'on veut, les nombres =+ 1, =2, + 3,...&= m.
De 14, les relations

(18) @—ummmmm—p+n_ww”+1zo

(19) . (x> — 1) (xze—é)...(a;z—iwzz)—xp—l—{—150.

Ces deux congruences, bien que du degré p — 2, ont
p — 1 racines: elles sont donc identiques, et, en les déve-
loppant, les coeflicients seront tous = 0 (Lagrange).

VI. Plus généralement, si fest un diviseur de p — 1, la
congruence 2/ — 1 = 0 a f racines (Euler). Ainsi selon que
p=4=F1, la congruence x* — 1 = 0 a deux ou quatre ra-
cines.

VII. 1° Soit p = 4¢g + 1, on aura pour certaines valeurs de x,
x?¢ +1=0.

donc p =4 + | divise une somme de deux carrés et est par

suite une somme de deux carrés. (Fermat). On utilise le lemme
VII.
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2° Soit p = 8¢ + 1, il viendra
0 =a% + 1 = (x%¢ = 1) = 29 (x)?

par conséquent p =8 + 1| divise certains nombres des deux
formes y* + 222 et par suite il est de ces deux formes. (Lemme
VII). »

3° Soit p =8¢ + 3; la valeur & = 2 rend incongru a p le
second facteur du prodult (g +14 1) (x4t — 1), puisqu’il
est alors de la forme 2y% — 1, laquelle ne convient pas a la
forme 8¢ + 3, que y soit pair ou qu'il soit impair. On a donc:

0=2%+1 4 1 =241,

ce qui fait voir que les nombres premier 8 + 3 sont diviseurs
de nombres de la forme 2y? 4 ©® et par suite sont de la méme
forme.

4° Soit p = 89—}—7 on a: :
0 = (28T 4 45188 T8 . 1),

p ne peut diviser 2%+? 4 1, ni par suite 2¢+* 4+ 2 car il
serait de la forme 272 4+ 2, qui ne peut se réduire a la forme
8¢ + 7. On a, par conséquent:

0=2%t4t __9=42_29,

1l

Donc¢ les nombres premiers 8 + 7 sont diviseurs de
y2 — 222 et sont de la méme forme. ‘

5° La cornparaison de ces quatre théorémes fait voir que
leurs réciproques sont vraies.

6° Si p =3 4 1, la congruence a® — 1 = 0 a trois racines,
puisque son premier membre divise x?—! — 1. Soit @ une de
ces racines; on aura:

e —N(@+a+1)=0 dov a?+a+1=0 et (2a + 12+ 3=0.

Donc tout nombre premier 3 + 1 divise z® 4 3y?, et par
suite est de la méme forme. |

7° Smt p=>5-+4 1;il v1endra en appelanta une des racines
de 2° — 1 =0,

(@ —1)(a* + a® + a* + a + 1) = 0, dott (2¢* + a + 2)* — 5a? = 0.
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Donc fout nombre premier 5 + 1 divise x* — dy*, et par
suite est de la méme forme.
8° Enfin soit p = 7 + 1 etsoit« une racine de 2" — 1 = 0;
il viendra -
(2a* +a® —a — 2" + 7(a® + a)* = 0.

Donc tout nombre premier 7 + 1 divise x* + 7y
Ces démonstrations sont dues a Euler (1°, 2°. 7° et 8°) et a
Lagrange (3°, 4° et 6°). Gauss a fait voir que A et A" désignant
certains polynomes entiers en @, selon que p==4 41, on
a: \
a? — 1

67 7 — A? &= pA’?,;
a— 1 P

mais la lo¢ de réciprocité, qui sera donnée plus tard, dispense
d’entrer dans plus de détails a ce sujet.
6. — Si ¢t est le gaussien de @, p estde la forme t2 + 1
(Euler). En effet ¢ divise p -— 1, donc p =1 (mod. ¢).
or.1. Sit est premier, tout facteur premier impair de
a' — 1, qui ne lest pas de @ — 1 est de la forme 2¢2 4 1. De
plus, il est de la forme quadratique x* — ay?, car de a* —1

= 0, on tire
t1\2
( _;>—a':—’0
a

II. Si¢ est premier, tout facteur premier de 2t — 1 est de
de la forme 2¢4 + 1 (Fermat), et de 'une des formes 8 «+ 1,
car il divise 2!+ — 2, qui est de la forme 2% — 2. (Euler).

Ainsi les facteurs premiers de 23! — 1 étant & la fois 62 + 1
et 8 &= 1, on trouvera aisément qu’ils appartiennent a 1'une
des formes 248 4 1, 248 4 63. Essayant la division par les
nombre premiers de ces deux formes, Euler s’est assuré que
281 — 1 est premier, comme l'avait aflirmé Fermat.

IlII. Tout diviseur impair p de a‘+ 1 est de la forme
-2th 4+ 1. En effet p divise a* — 1; or il ne divise aucun
nombre a® — 1, ou n serait diviseur de 2¢, car il diviserait
aussl a‘ — 1, ce qui ne peut étre, puisqu’il divise a* + 1, et
que les deux nombres a' — 1 et @' + 1 n’ont d’autre diviseur
commun que 2.

Application. Fermat avait pensé que la formule 22" + 1 ne
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renferme que des nombres premiers. Euler a prouvé ainsi
I'inexactitude de cette proposition. Les diviseurs de 23% -+ 1
sont de la forme 64 4+ 1; or les nombres premiers de cette

forme < /2% 1 1 sont 193, 257, 449, 641... Essayant la di-
vision de 23?2 4 1 par ces nombres, on trouve qu’elle réussit
avec 6411 '

Depuis, on a trouvé de méme que pour n =5, 6, 9, 11, 12,

18, 23, 36, 38, le nombre 22" + 1 est composé. Il y en a pro-
bablement une infinité dans ce cas.

Cette méthode d’Euler a été 1'objet d'importantes exten-
sions. Voici la plus simple, due & Ed. Lucas: les diviseurs de
2% 4 1 sont de la forme 128 + 1 (7, Appl.). Onadonc a consi-
dérer seulement les nombres premiers de cette forme, dont
le premier est 641. L'examen des diviseurs a exclure est
ainsi considérablement réduit.

1. — Résidus et non-résidus. Le reste de ladivision de a™par
p est, comme on sait, 1 ou — 1. Le nombre a est appelé ré-
sidu de p dans le premier cas et non-résidu dans le second ?:
la raison de ces dénominations est que, suivant qu'on a a™ =
—+ 1, on peut ou on ne peut écrire x? = a. En effet:

1° Supposons qulon put écrire x® = a avec a” = — 1, on
aurait ~

2?7 = g™

E' - 1 ]
- pp—1 — 1+ 4 nest d sid
ce qui est faux, car x?»—' = 1; a n’est donc pas un residu.

2° Soit a™ =1, on a la congruence
p—1 m—
X — ==

qui a p — 1 racines. Or le premier membre est divisible par
2% — a, donc la congruence x? — a = 0 a deux racines, et a
est résidu. |

Cor. 1. Le produit de plusieurs nombres est un résidu ou
un non-réstdu selon que le nombre des non-résidus qui entrent
‘comme facteurs dans ce produit est pair ou impair.

1 On pent 8tre surpris que Fermat, qui avait fait tous les frais de cette démonstration, enait
laissé I’honneur a Euler. D’aprés Plana, il ne parait pas avoir non plus remarqué les deux for-
mes des diviseurs de 2' — 1. (Mém. sur la th. des n, Turin, 1859.)

—1

2 Nous rappelons que partout m est mis pour £

i IR
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II. La congruence

(a) 2 —ay =05

est tcujours possible (Lagrange). 1l faut démontrer qu’au
moins un résidu de p est de la forme ay® + b, ou que la
congruence |

(B (ay? + b)m =1

pou toujours avoir lieu. Or la congruence conjuguée (ay® +
by = — 1 est du degré p — 1 et ne saurait avoir p — 1 ra-
cines. Elle a donc au moins une non-racine, qui satisfait a
(B) et par suite a (a). |

III. S1 p=4 + 1, @ et — a seront ensemble résidus ou
non-résidus. S1 p = 4 — 1, 'un est résidu et 'autre non-ré-
sidu. On a en effet, selon 'un ou P'autre cas,

am(— a)m — + (a“’)m

IV.1°S1 p =8 4+ 1, on aura:

2yt = x? dou 27yl = P 1,

ou bien
(18) 9™ = 1 (p=81)
2°S1 p =28 4 3, on aura:
.
22 = — a?, dou 27yPl = _ gP~l=_11,
Donc
(19) =, (p =8+ 3)

3°S1p =8+ 5, p ne peut étre de la forme x> — 2y*; on
ne peut donc écrire 27 =1 et par suite on a:

(20) 2" = — 1. (p =8 + 5)

4° En résumé on a:

"
(21) 2" = (—1) 8

Applications. 1° Selon que p est de l'une des formes 8 += 1
ou de lune de celles-ci 8 4 3, p divise 2 — 1 ou 2™ 4 1.
(Euler.) ‘ '
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2° Soit p = 8hk + 1 un diviseur premier de 2** 4 1 (6, 11I).
k est pair; autrement, en élevant a la puissance de degré
impair k£ la congruence 2*» =1, on aurait 2" = — 1 ce qui
ne peut étre puisque 2 est résidu de p. Ainsi tout diviseur
de 2*» + 1 est de la forme 162 4 1. (Ed. Lucas.)

8. — Racines primitives. On appelle racine primitive de p
un nombre dont les p — 1 premiéres puissances divisées
par p donnent pour restes la totalité des nombres 1, 2, 3, ...
p— L

Le nombre premier p a ¢(p — 1) racines primitives (Euler).
Démonstration de Gauss. 1° Décomposons p — 1 en ses fac-
teurs premiers, et soit p — 1 =2%a%bPc7 ... soit g une des

p—1
non-racines de x “ =1, et posons
p—1
. o
g% = A, dou AY =gl l=1,

L’exposant de toute puissance inférieure de A congrue a
l'unité doit diviser a* et elle ne peut étre que de la forme

o—k .
A® . Or ce nombre ne peut étre congru a 1, puisque son
multiple
Al @
— O
ne l'est pas: on peut donc toujours trouver un nombre A tel

que a* soit congru a l'exposant de la plus petite puissance
congrue a 1 (gaussien de A).

2° Soient B, C, ... les nombres formés de la méme maniére
avec b8 ¢, ... et posons (ABC...))=1. L'un des facteurs
. .. —1
premiers de p — 1, a par exemple, divise donec £ — , et par
suite
p—1
() AB..) ¢ =1.
B ¢ « . p—1
Or les nombres 67, ¢7, ... divisent'——, donc on a:
p—! P!
B?%® =1, C*?% =1,
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et par suite, a cause de ()

p—1

.Aa

I

. . . —_— 1 . = 1 )
a® diviserait donc £ , ce qui est faux, car 2=~ pest
a aa—}—l .

pas entier. Le nombre p — 1 est donc le gaussien de (AB...).
3°! Soit R la racine primitive (AB...) dont l'existence vient
d’étre prouvée. Sidestle p. g. c. d. dep — 1 et de 2, on a:

p—1 h
]

(R?) 0 —=(ROP—'1=1. |
Si 6> 1, le gaussien de (R?) est < p — 1, et (R*) n’est pas
une racine primitive. Si 6 =1, / est premier avec p — 1 et,
en appelant ¢ le gaussien de (R*), on a:

RM — RY =1,

donc At est diviseur de p — 1 et ne peut étre que p — 1.

Ainsi (R*) sera racine primitive ou non selon que /£ sera
ou ne sera pas premier avec p — 1.

Cor. 1. a, b, c, ... désignant les nombres inférieursa p — 1
et premiers avec lui, les termes de la suite R, R%, R?, ... sont
congrus a toutes les racines primitives.

II. Conservant les mémes notations, on verra que parmi
les racines primitives, R, R% R? ... il y en a deux dont la
somme des exposants est égale a p — 1. Les racines primi-
tives sont donc associées et par suite leur produit est =1.
(Gauss.)

III. Lies racines non-primitives ne sont autres que les rési-
dus des puissances dont les exposants ne sont pas premiers
avec p — 1. Ainsi: 1°, 2 et 3 étant les facteurs premiers de
13 — 1, les racines non-primitives de 13 sont les résidus
quadratiques et les résidus cubiques de ce nombre.

2° 51 p est de la forme 2* + 1, (ce qui a lieu pour 1 = 2, 4,
8, 16), les racines primitives se confondent avec les non-ré-
sidus quadratiques.

3° Si A étant premier, p — 24 + 1 (les valeurs p=17, 11,

Cette troisieme partie de la démonstration avait été donnée antérieurement par Euler.
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23, 47, 59, 83, 107, 167, 179, 227, 263, ... sont dans ce cas),

les racines primitives sont également les non-résidus, saut
le non-résidu p — 1 = 2A.
p—! p—1
IV. Les racines de x ¢ =1,x °
non-primitives ; donc-la congruence

(xP—1T —1)X

ce o) (T o)

donne toutes lesracines primitives, X désignantla congruence
ayant pour racines les racines communes aux facteurs du
dénominateur. ' |

=1, ... sont toutes

Quandp—1 est de la forme 2%q%, on a:
P:}
p—1 x ? 41
X=x 2 —1 dou p=t — — 7’
xZa + 1

pour la congruence des racines primitives. Le premier mem-
bre divisant x?—!— 1, la congruence a toutes ses racines,
lesquelles sont ainsi au nombre de ‘ |

p—1 p——’l.
2 2a

Par exemple, pour p = 13 on trouve la congruence x* — x? 4
1 = 0, dont les quatre racines, 2, 6, 7, 11. sont les racines
primilives de 13. (Cauchy.)

Exercices.
I. Posons
19+ 29 437 fnf=s,, 17 —2704387 — . hafl =g,
on aura:
Tong = = 0, dans tous les cas ;
P — 0 , n impair et ¢ pair ;
Sp—1,g = 0, netgqgimpairs, n > ¢q; (mod. n).

= 0, n et g pairs;
» 4

) |
sn,q 48, 1

2

~—
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2. Tout nombre premier, autre que 2 et 5, divise une infi-
nité de nombres formés de chiffres 9 (Crelle) ou de chiffres 1

(Plateau).
3. On a: , |
Cpit,ney = 0 (mod. n) (D. André.)
Cpy =1 | (Catalan.)
(pq) ! multiple de (¢!)? p! (Weill,)

4. 1° Si le gaussien ¢ de a est un nombre pair 27, a® donne

le reste b — 1, ainsi que &’*", a®*" | ... Autrement a’ ne
pourrait étre = 1 (mod. b). »

2° Si ¢ est impair, & — 1 ne fait pas partie des ¢ restes.
(Euler.)

3° Si ¢ est pair, on a &'t = — &7 (med. b). _.

4° Si a? = 1 (mod. b) et que p soit un nombre premier, p
divise ¢. (Euler.)

5° Si b est un nombre premier de la forme 4 4 1, Zne peut
étre impair puisque — 1 fait partie des ¢ restes.

5. 1° a™ et at—" étant évidemment associés,‘les restes qui
en proviennent en divisant par b, sont associés deux a deux,
sauf le reste b — 1 quand il a lieu.

2° Si a est associé de @ relativement a b, les deux pério-
des de restes de a* et de o* sont formées de mémes nombres
dans des ordres inverses. En effet, soit a® — o'—" = ¢(mod. b),
il viendra a‘ -— (aa)'—" = ca*—" ; donc ¢ = 0.

3° La somme des ¢ restes est congru a b (Gauss). On le
voit en faisant la somme

A +a' 4+ + ..+ att.

4° Le produit des ¢ restes est = = 1 (mod. b) selon que test
pair ou impair. Ce produit est en effet congru au produit
a'a® ... a'—! (Gauss).

6. S1 ' =r et a/+8=rs (mod. b), on a: a8 =s (mod. b.
(Euler). ,.

7. A + M étantincongru ap, la congruence Agr—' 4 ... 1
M = 0 ne saurait avoir toutes les racines 1, 2, ... p — 1, car

L’Enseignement mathém., 9¢ année ; 1907. 30
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en y faisant successivement x -= 1, 2, 3, ... p — 1 et addition-
nant, on aurait A + M = 0, a cause de (8) et (9).

8. La période de la fraction décimale provenant de la divi-
sion de @ par p a un nombre de chiffres qui est un diviseur
de p — 1 (Gauss).

9. On a:
@a+bd+cH+ ...+ =ad +b 4 + ... + . (Gauss,

Cette relation se démontre, d’aprés Serret, en changeant

successivement dans (7) b en b + ¢, etc. | '
10. La solution de la congruence gr = k est x = kgP—2.
En général soit gx — hy = k. Décomposons / en ses fac-

teurs premiers et soit 2= a®bf ... ; (1 — g* ")“est divisible

par a*, (1 — gbgl)fs I’est par Z)ﬁ , ... ; donc on a:
G=1—(1—g %1 — gb-l)p o=1—kH

d’ou

x = Gkt , y = Hk.

Cette solution est due a Gauss. On a aussi, avec Libri,

B
1

8 il

A, B, ... désignant des entiers quelconques.
11. Si @ et b = a — k sont premiers avec p, on a:

&1 —pp—1
k

=0.

12. Si a* = b* on ne peut avoir a*—! = b*—1 car il s’ensui-
vrait a*—!' b= b*=a* et a=b. On ne peut donc écrire
ar—2? = br—2, et les restes de la division de x?—? par p don-
nent la série 1,2, 3, ... p — 1.

Un peut donc toujours écrire x?—? = a, et cette congruence
a une racine unique.

De la la relation ax = «¢—! = 1. Ainsi le nombre a a tou-
jours un associé, qui est unique.

13. 1° Sia*=1, on a:

m—=/,". car 0=«

— 1

o 2'”——15&

m (am . am) -.
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" Plus généralement, si @ est une racine de Axx + ... + M~

= (), son associé « en est une de Mx* 4+ ... + A=0, ce
qu'on démontre en posant x¢{ = 1 et multipliant la premiére
congruence par .

2°Sia“=1,o0na:
AP~k = o1,
3° Les restes des divisions de a?—* et de a*—! par p sont
associés. .
14. Si k& est premier avec p — 1, on peut toujours résoudre
la congruence x* = r (Sophie Germain). En effet si on avait,
& pal
par exemple, a*= b*, en posant ky — (p — 1)z =1, cette
congruence deviendrait
a =" dou @PTVEHL = plp—NIl Gy a=,

ce qui est absurde.
On voit d'ailleurs que la valeur de x n’est autre que le
reste { de la division de r¥ par p, puisqu’on a:

k

gt = (p9)k = Hp—D3t1 =2, doun x=E¢.

~

15. Démontrer les relations suivantes :

. . ' —2
2P*2£m+1; (p—?)p—")E‘m; <p?*:’1>1’ == 2 -

m__ p__l_——i_>m .
9 (‘2 ,

T 1\m . P(P'—U —_
(P_: > =1, (pour p = 4 1); = 1EO;
\ P
qd0—2P—b =1 .
sp——l,_p—l =—1; Sp——-l,p =0; 251}1,])—1 =—1; Sm , P — =0;

St p1 =05 Sy, ,FaRa+ AP =05 6,  + 2o =0;

Cag1,p — (2¢ + 1P F 0 ; Sim, 24 = 0 (pour 2a < p — 2) ;

p—1 = (p — 1) =0 (I, selon que a est pair ou impair) ;

e ) 6

. q, ... 7, nombres premiers.

.

e
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16. Soient p, ¢, r, ... s, des nombres premiers qui ne di-
visent pas a et tels que p — 1 soit multiple de ¢ — 1, de
r—1, ... de s — 1; a? — a . est divisible par le produit

pqr ... sa (Euler). En effet a?—' — 1 peut s’écrire
@1 —1. ou (aPy—1—1, .

En outre le produit suivant est entier
(a1 — (1 + 2 - +. )

17. Soit p — 1L = gr. Si Aa? = Bb?, A, a, B et b étant pre-
miers avec p, on aura: A” = B". (Euler.) En effet Arqr—1 —
Brop—*' est divisible par Aa? — Bb? et par suite par p, de
méme que A’gP—! — A76P—'. On a ainsi 67—!(A7 — B") = 0.

On a des cas particuliers intéressants avec A —= b =1,
B=b6=1, B=1, etc.

18. 1° Si fet g sont deux facteurs de p — 1 ayant ¢ comme
p. &. ¢. d. on pourra poser fu — gv = ¢, d’ou, si on désigne
par @ une racine commune de x/ — 1 =0 et de xf — 1 =0,
il viendra 1 = & = a®#*** = 4*. Donc les racines de a¢ — 1
= 0 sont les racines communes aux deux congruences don-
nées.

Ainsi si fet g sont premiers entre eux, les deux con-
gruences n'ont d’autre racine commune que 1.

Si g =p — 1, la congruence &/ — 1 =0 n’a pas d’autres
racines que celles de #* — 1 = 0. On peut ainsi se contenter
d’étudier la congruence a* — 1 =0, ou ¢ est un diviseur
premier de p -— 1.

Autre exemple. & et [ désignant deux facteurs premiers de

r—1 r—1
p — 1, les racines communes a x e l=0etax ' —1
p—1

= 0 sont celles dex ®* —1=0.

2° Soient %, [, ... les facteurs premiers de f. Si a est une

L ’

non-racine des congruences x”* —1=0,2"' —1=0, ... les
solutions de &' — 1 = 0 sont 1, a, a?, ... a/—!'. Supposons en
effet qu'on ait a° = a?, d’'ou a*=°=1; en appelant 6 le p. g.

c. d. de d — c et de f, on peut écrire:
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fr —(d—cz=10 dou 1= (@) = a@ =92 +0 = a9 ;

I~
il
=
Q«q ‘

- . . . b . k .
on aurait ainsi 'une ou 'autre des relations a”™ — 1

— 1 =0, contrairement a ’hypothése.
‘ p—1
30 Si gk = r, on aura rf o= 1, donc, en divisant les puis-
sances r, r%, 7% ... par p, on trouvera le reste 1 avant rP—"
Les résidus de p sont dans ce cas, puisque 2 est un facteur
premier de p — 1.
4° Supposons o* = 1 et soit ¢ le p. g. c. d. de h et de p — 1.

On aura:
hp — (p— 1)y =0 dou A =a™ =1 et xP 1 —al=0.

Le premier membre de cette derniére congruence est di-
p—1 p—1

visible par x 9 __ 4. donc la congruence x O __ 4=0a
—1 .

P g racines.
Soit h =2, 0na 6 = 2 et la valeur « = — 1 répond ou ne

répond pas & la question selon que p = 4 =+ 1; donc, dans
les mémes cas, la congruence 2? 4 1 =0 a ou n’a pas de
racines. |

5° Soit ¢ le gaussien de a. La division de a, a2, ... a’par p
donne pour restes les ¢ racines de x#* — 1 =0 et par suite
les périodes des restes sont formées des mémes nombres.

Ainsi la période de m restes comprend tous les résidus.

Pour p =19, les puisqances des nombres 5, 6, 9, 16, 17
donnent des périodes composées des nombres 1, 4, 5, 6, 7,

9, 11, 16, 17.

6° Euler, a qui sontdues, en principe, toutes ces proposi-
tions, remarque aussi que :

Si a* = (" et si @ n’est pas multiple de p, on a:

p—1 rp—1

ar " — Ba h =9,

si ab" = c*, on peut écrire :

ax = d* et ad" P

Il
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19. Si la congruence F(x) =0, de degré n < p — 1, a n
racines, F (z) est un diviseur de @?—! — 1. Si elle en a %,
(k < n), F(x) et xP—! — 1 ont un diviseur commun du degré
k. (Gauss.) | |

20. 1°S1 p — 1 est le produit de ¢ par un nombre impair
el que a soit incongru avec p, on ne saurait avoir 27 + a?
= 0. (Euler.) Posons en effet =1 — q?—1 =0, on ne peut
avoir x?—' — qr—1= (), ni a fortiori,-x? + a?=0.

2°Si p — 1 est le produit de g par un nombre pau p di-
vise x% + 1.

Awnsi p =13 divise & + 1, 2% + 1, 2® 4+ 1, 2% + 1, ce qui
revient a dire que 12 est reS1du linéaire, quadratique, cu-
bique et sextique de 13.

p==4+ 1divise 2 +1; p —8 + 1 divise a* + 1; p =
16 4 1 divise a® + 1; ... p — 1 est donc résidu quadratique
de p =4 — 1. résidu biquadratique de p —8 4 1, résidu
octigue de p —= 16 4 1. ...

21. S1 p =4 — 1, on peut toujours trouver x et y tels que
x* 4+ y?* 4+ 1 =0. (Euler.) Démonstration de Lagrange. Po-
sons

x = T+ + A
a? + (p* + 1)

Y= ()4 )m —1 =
=[0* + 1) =1 [0+ 9=t + (0 + Y2 . 1]

=P — 2Py 1)

L'expression y’ étant du degre p—3 en y, 7= =0, et par

suite Y =0, ont au moins deux non-racines. De méme, ¥y
étant ainsi déterminé, X peut devenir incongru a p pour
deux valeurs au moins de x. On peut ainsi déterminer « et
y de maniere que XY soit incongru a p. Or on a identique-
ment : ‘

@+ + )XY = @7 — 1) Y 4 [p? + 1P —1].
Le second membre est = 0, puisque x < p et que, quel que
soit ¥, p nedivise pas 2 + 1. Donc p divise le premier mem-

bre et par suite 22 + y* 4 1, s1 x et y ont les valeurs déter-
minées plus haut.
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22. Tout nombre premier p =4 4 1 divise une somme de
deux carrés; tout nombre premier p =4 — 1 divise une
somme de trois carrés. (Euler.) Seconde démonstration de
Matrot. On a: -

(@) - | 2 —1=0 ou 2™+ 1=

Sp—l m = 0

par conséquent moitié des nombres 1, 2, 3, ... p — 1 satisfont
4 I'une des congruences (a) et 'autre moitié a l'autre. Soit

p =4 + 1 et soit @ une racine de la seconde (a): le premier

‘ , p —1

membre est une somme de deux carrés, car alors m = ~—-—-
est pair.

Soit p =—= 4 — 1. Considérons deux nombres consécutif &,

b + 1, satisfaisant 'un & la premiére («), I'autre a la seconde,

chose toujours possible, puisque 1 fail partie des m nombres

qui vérifient la premiére. Cela posé, on a:
e - —1=0, (b F1=0. (7)
Multipliant (8) par b et () par b + 1, puis ajoutant, il vient :

prtl g b+ nmtt+1=0.

Les exposants m -+ 1 sont pairs, car dans ce second cas, m
est impair. |

23. Tout diviseur d'une somme de ,quatre carrés est lui-
méme une somme de quatre carrés (Lagrange). Démonstra-
tion analogue a celle du lemme VII.

On tire de la le théoréme de Bachet, en se servant des pro-
positions de I'exercice précédent.

24. Les \diviseurs premiers de a® 4 &* sont de la forme
2th + 1. (Euler).

25. Les diviseurs de 22 — 1 sont de 'une des formes

8ph + 1, 8ph +2(2 1) p + 1 (p == 411)
(Plana)

26. Si p =4 + 1 divise a? &= kb2, il divise un autre nom-
bre de la forme 2% ky® Sip =4 —1 divise a® + kb2, i

n’en divise aucun de la forme x* == ky?, et, quel que soit [, il
divise 22 + ly? ou 2% — ly?.
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a Si p divise des nombres appartenant aux formes a? — ky?,
— ly?. 1l en divise egalement un appartenant a:la forme
— kly®.
Sl p ne divise ni 2? — ky? ni x® — ly?, il divise 22 — kly®.
27. Voici un exemple de 'emploi des imaginaires dans la
théorie des nombres.

1° On a:
1 4+ ¥ = (2?7 == — 22",
d'ou pour p =4 + 1
r=El
M4+ =(—1)* 1xi2.

Développant le premier membre et comparant les parties
réelles, il vient

H

1 rp=x1

2" =1 ou 2" = (— 1)

P
(— 1)

+H

d
d

p+1
4
c’est-a-dire selonqu'onap —=8 =1 oup = 8 &+ 5(Lebesgue).

2° Pour p=3 + 1, on a:

2 est donec résidu ou non selon que est pair ou impair,

Ly =3P =1(-1
d’ou

S
t
S
5

|
\

(—3m =t (—1)°* 27 =+ (—1) * ==%1.

Donc — 3estrésidudep — 3 4 letnonrésidudep =3 — 1.
Comme (=4 3)m = (— 1)m 3™ 3 est résidu de 12 == 1 et non
résidu de 12 -+ 5, (Libri.)

28. Solent p un non résidu dep et k£ un diviseur de p + 1;
la congruence

(x + Vo) (x— 5"

Ve ,
‘a k— 1 racines. (Lagrange.) En effet le premier membre est
un diviseur de celui de la congruence

(x + Ve P+ — (@ — Vo P!
Ve |

0,

Hi
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laquelle est du degré p et a p racines, puisque son premier
membre développé devient

2(p + 1) (& + 20™) = 2(p + 1) (&' — ).
29. Vérifier que 27 — 1 est divisible par
23, 47, 233, 228, 431, 439, 167, 263,

pour p = 11, 23, 29, 37, 43, 73, 83, 131,

Les deux premiers et le quatriéme cas sont de Fermat, les
aulres d’Euler. ‘

On se sert, pour cette vérification, de la méthode d'Euler,
n® 2, 1°.

29. Démonstration du théoréme de Fermat, par la supposi-
tion de b premier, dans les n” 3 et 4.

Formons le tableau
i

1, a, a?, a3, ... a =1,
B, 2a, 242, 248, ... - 2a' =2,
3, 3a, 3a?, 3a®, ... 3al = 3,

p—1,(p—1a, (p—1)a*, (p —1)a® ... (p———1)at—’—__:p—1.

Si ka’ = lag, on a: ka't0 = [as+b6. Donc si un terme de la
l¢ rangée est congru a un de ceux de la k¢, ces deux rangées
sont identiques, & l'ordre prés des termes. La k¢ rangée
contenant ftermes différents, il y a donc ¢ rangées identiques
a la ke, et les termes des autres rangées sont entiérement
différents des premiers. Supposons que la premiére de ces
autres rangées soit la /¢ : il y aura de méme ¢ rangées iden-
tiques a celle-ci et leurs termes différeront de ceux des
autres. La premiere des p — 1 — 2¢ rangées non éliminées
fournira également ¢ — 1 autres rangées identiques. Et ainsi
de suite: on voit que les p — 1 rangées seront disposées en
groupes de f termes identiques chacun. (Desmarets.)

30. Déduire le théoréme d’Euler de celui de Fermat. On a:

k—1

gf—1 = (mod. p) , a?—0r = (mod. p?) , ... aP—1p E-’l(mod.pk}

soit b =pfgs ..., p, q désignant des nombres premiers. On
peut écrire: |
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dp=vp = __ 4 = 0 (mod. p/) , a4 7 _1=o0 (mod. ¢f), ...

Posons ¢ (b) = (p — 1) p— (¢ — 1) g8—* ... Les premieré
membres des congruences qui précedent sont tous diviseurs

de a¥® — 1 : donc, en multipliant,

a¥® — 1 = 0 (mod. b).

Or on sait que la fonction ¢ (b) représente celle quia été
désignée par o (b). Cette démonstration est d’Euler.

31. Le nombre des solutions > 0 et < p de la congruence
ax® — by? =cestp = 1 selon que (ab) est résidu ou non
résidu. (Libri.) |

32. Le nombre des termes de la période décimale de%

n’est autre chose que le gaussien de 10, de sorte que si la
période a p — 1 chiffres, 10 est racine primitive de p (Gauss.)
Ceci a lieu pourp =7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113,
131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313...

33. Si @ est une racine non primitive, aucun reste prove-
nant de la division des puissances de a n’est racine primi-
tive. Car de a* =1 et a® = r, on tire rt = 1.

- 34. On n’a pas de' méthode générale pour découvrir les ra-
cines primitives d’'un nombre premier donné. L'exemple
suivant, de Gauss, montrera suffisamment le procédé préco-
nisé par cet illustre géométre. Soit p == 73 ; l'essai du nom-
bre 2 donne 2°=1, donc 2 n’est pas racine primitive. Es-
sayons le nombre 3, qui ne fait pas partie de la période qu’on
vient d’obtenir: on trouve 3'*=1; 3 n’est pas non plus ra-
cine primitive, mais on tire de ces résultats cette relation

9 12\ 36
(2,,5 49) == (mod. 73)

qui suggere 'essai de b4, dont la période ne comprend pas
le nombre 5. Ce dernier, essayé, fait voir que c'est une ra-
cine primitive.

Les remarques suivantes facilitent la recherche dans cer-
tains cas.

1° p étant de la forme 4 — 1, si m est le gaussien de R.
— R est racine primitive. (Jacobi.)

o gy g e o s o
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2° p étant & + 1, m le gaussien de a et R®?=a, R et — R
sont racines primitives. (Id.) \

3° p étant 8 + 5, m le gaussien de a et R*= —a, R est
racine primitive. (Id.) |

4° Si p=3g + 1, que g soit le gaussien de a et que R®
= a, R est racine primitive. (Id.) |

5° R est généralement racine primitive quand p = 8g + 5,
si R2= —1; quand p=16¢ + 9, si a’=—1 et R®*=a;
quand p = 12¢ + 1. Si R4+?=R¥+!' —1; quand p = 6g
+ 1, q désignant un nombre non multiple de 3, si a? = == 1,
¥ = —1 et R= =+ ab. (Desmarets.)

35. Si R est racine primitive, — R 1'est ou ne I'est pas se-
lon que p = 4 == 1 (Cauchy).

Dans le premier cas, si A est pair, (— R)*» = R*; s1 h est
impair, (— R)**t™ = — R**+™ = R*, puisque — R est non-ré-
sidu.

Dans le second cas, R étant non-résidu, — R est résidu et
par suite racine non primitive.

36. On a:

R 4 R¥ L R* . pRPNe=s, .

Le premier membre est = — 1 si @ est multiple de p — 1
et dans le cas contraire, il est = 0, puisqu’il peut s’écrire
RiP—1e _ 1

R®.
R% —1

De méme ona R*R*R® ... R*—1 = (p — 1)! Or le premier
membre est égal a Rem = — 1.

On a ainsi d’autres démonstrations desthéorémes de Libri
et de Wilson. La seconde est d’Euler.

37. Soit 6 le p. g. c. d. de p — 1 et de h; la division des

puissances 1%, 2%, 3% ... par p donne L _; ! pestes différents

: Y o —1
(Euler). Si R est une racine primitive, les B—é—— restes de 1,

RY, R*, R%, ... RIP=10 sont tous différents et se reproduisent
périodiquement. Soit R§ =r, r peut prendre toutes les valeurs
de 1 a p — 1, et comme on peut écrire rx — (p — 1) y =6,
on a:
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() = PNy +0 =r6 — ReO,

x est évidemment premier avec p — 1, donc le reste de r®
prend toutes les valeurs 1, 2, 3, ... p — 1, et on peut mettre
rau lieu de 7%, On peut donc dire que r* ales mémes valeurs
que Rsb,

En particulier, si 2 est premier avec p — 1, ilya p—1

o . . 1 :
restes différents. Sih = 2, ily en aP—Q- — m, qui sont les

résidus quadratiques. En général, le nombre des résidus de

. , —1
puissances fiemes est PT .

A. Ausry (Beaugency, Loiret).

SUR LES PROJECTIONS DES DROITES
PERPENDICULATRES

(A propos d’un récent article de M. Lehr?t).

Dans divers ouvrages sur la géométrie descriptive on ne
fait presque aucune mention des projections de deux droites
perpendiculaires. Méme dans les récentes Legons sur la
Géométrie descriptive de M. Loria, qui contiennent un grand
nombre de particularités trés intéressantes, on ne trouve que
quelques indications sur cette question. Je me propose de
développer ici une démonstration simplifiée de la condition
donnée par M. LeHr. pour les projections de deux droites
perpendiculaires (théoreme I1I™¢ de l'article cité).

Les projections orthogonales g'g”, A'A" de deux droites g
et i étant données, menons par le point commun des pro-
jections horizontales et par l'intersection des projections
verticales deux droites m et n perpendiculairement a la di-
rection de la ligne de terre. Nous obtiendrons ainsi deux
triangles que 'on peut considérer comme deux projections
d’un tétraedre ABCD. Les arétes AB et CD sont toujours per-

1 [’Enseign. math., IXe année, p. 119; 1907.
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