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taines de ses méthodes, particulièrement dans la recherche
des diviseurs numériques 1. D'un autre côté, il a assez vivement

critiqué Wallis de s'être servi de la simple induction
dans les démonstrations de son Arith. inf. pour qu'on ne
puisse croire qu'il avait agi de même. La science, en s'éten-
dant et se perfectionnant, a perdu de sa simplicité, et il n'y
a guère lieu de s'étonner que les procédés élémentaires de

Frénicle, de Ste-Croix et de Fermât nous échappent; et,
même 'retrouvés, ils ne pourraient peut-être plus nous servir,

l'habitude étant perdue des longs calculs numériques
que ne craignaient pas d'entreprendre ces savants non
encore habitués aux calculs de l'algèbre, plus mécaniques et
moins suggestifs.

Nous terminons notre historique qui sera continué par
Y Œuvre arithmétique d'Euler, de Lagrange, de Legendre et
de Gauss par cette remarque que Fermât ne paraît avoir
étudié que dans Euclide, Diophante, Viète et Bachet: ses
découvertes paraissent avoir été faites entre 1630 et 1638 et
avoir eu pour origine la considération des nombres parfaits
ainsi que diverses questions proposées par Frénicle.

Deuxième Partie

Étude élémentaire sur le théorème de Fermât.

1. — Lemmes*l. L'expression ak— bke,?£ algébriquement
divisible par a — b. De plus si k est pair, elle l'est par a -f- b ;

si k est impair ak + bk est divisible par a -f b.
En outre, si k est multiple de n, et dans ce cas Ici seulement,

ak—bk est divisible /?«ran —bn. Plus généralement, si 0

est le p. g. c. cl. de k et de n, a® — bô sera le p. g. c. cl. de
ak — bk et de an — bn. Et ainsi des autres expressions.

1 Cependant, dans une lettre à Mersenne de 1643, il donne la décomposition en facteurs d'un
nombre de douze chiffres, qui lui avait été proposé.

2 Nous donnons ces différents lemmes pour rendre cet article tout à fait indépendant des
précédents [Ens. Math., 1907, pp. 24 et 286).

L'Enseignement mathém., 9e année ; 1907. 29



434 A. AVBRY

Il suit de là qu'on a :

(1) (a + bh)k EEE ak [bh — i)U 1 (M — l)2**1 — 1 (mod. 4)

II. Dans cette identité d'Euler1

(2) (1 + a)( 1 + Ä) (1 + Z) 1 + a + b(\ + a) + +
/(I + a) (1 + k)

changeons a, b, c, en ^ il viendra la formule

des nombres figurés

(3) 1 + c«,i + cn + i,2 + cw+i,3 +
d'où l'identité de Nicole,

(4) 1.2. 3...72 -f 2.3... (w + 1) -f 3.4... (w + 2) -f -f

III. Le nombre

n a(a — 1) (tat — 2) (a — b -f- 1)
^a,b— y\

est entier (Pascal). De plus, si pest premier, on a

(5)
'

CÄ„=0 (Euler)

IV. On a :

(6) [a+ b)'1+ ^«,1
^ ^ ~t~

+ C„,„6re (Briggs)

d'où, à cause de (5), si p est premier,

(7) (a -f- b)p EE a? -f- bp (Euler)

V. Posons

x11 — x{x — 1) (# — n -f- 1) -{- Ax (x — n 4- 2) -j- •••

Mx (x — 1 -f- x

A, B, L, M désignant des coefficients qu'il n'est pas
indispensable de déterminer, on aura :

1 Pour d'autres applications de cette identité, voir Progreso Matematico, 1900, p. 401 et
Mathesis, 1907, p. 147.
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x"+1

— x" x(x— 1) !.!• - - n) + Aa- + 1)

Ux (x— 1) (x— 2) + x (x —1) ;

d'où, sommant de x1 à x~= — 1, et posant

Sk=lk + 2k+ 3k + :. + (P - l)k

_ s
P - (P" ~ 0 A P ~ ra)

+ +1 n 1 n ji _|_ 2 n -}- 1

Mf lf-3|
4 o

Par suite si

on a :

Or

donc

n<p — 1

— P^P—1) 0— 2 _

52 0, S3 r=: 0,

(8) ° (n<p— 1)

(9) 1)1

YI. Supposons que la congruence du ne degré F (x) 0

ait n + 1 racines, et soient a, b, c les p — n — 2 non-
racines ; la congruence du (p — 2)e degré

(x — a) (x — b) (x — c) F (x) EE 0

aurait évidemment p — 1 racines. Or soit Ax?~2 P Bxp~3

-f + Lx + M 0 cette dernière congruence ; en y faisant
successivement x 1, 2, 3, p — I et faisant intervenir le
lemme Y, on aurait en sommant,

M (p — 1) EE 0 ou — M EE 0

ce qui ne peut avoir lieu que si M 0, chose impossible,
puisque le produit M de toutes les racines ne peut être
multiple de p.

Il est donc impossible que la congruence F [x) 0 ait
plus de n racines.

1 Quand le module n'est pas explicitement indiqué, il s'agit du nombre premier p.
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Cor. Si la congruence F(#) 0 a n racines et que son
premier membre puisse se décomposer en deux facteurs
entiers f(x) y(x), de degrés k et n — k, les deux congruences
ont respectivement k et n — k racines. (Lagrange).

VII. Posons

0 < A ± 1 < 5 AA2 ± B2 nn' n > n'

k (A — n'a)2 ± (B - n'bf n'n",

et prenons a et b tels qu'on ait

n'
A — n'a B — n'b ;

2* \il viendra

n'n" <
^

~T~ ^,2 ^ ^'2 d'où n' •

4

Or, en tenant compte de cette idenlité d'Euler

(10) (AA2 ± B2) [kA'2 ± B'2) (kAA' =p BB')2 ± k (AB' — A'B)2,

on a :

(un') (n'n") z= (A*A2 ± B2 — kAA'n' q= BBV)2 ± A (BA' — AB')2rc'2

d'où, en remplaçant kA2 d= B2 par nn

un" — (n — AAA' qp BB')2 ± A (BA' — AB')2

On a ainsi un second multiple de n inférieur au proposé,
et de la forme a2 =1= kß2.

Opérant de même sur cette expression, on en tirera un
troisième multiple nn'" de la même forme et ainsi de suite,
jusqu'à ce qu'on arrive au nombre n lui-même, puisque les
nombres n, n!, nrf, sont de plus en plus petits. Le nombre
n est donc de l'une des formes kx2 zh y2 ou x2 dz ky2.

Ainsi les diviseurs de A2 -f- 3B2, de A2 -f- 2B2 et de A2 + B2

sont respectivement des formes x2 + 3y2, x2 + 2y2 et x2 + y2.
Ceux de A2 — 3B2 peuvent se mettre sous Vune des deux formes

x2 — 3y2, 3x2 — y2. Et, à cause des identités

x2 — 2y2 — 2 (x — j)2 — (x — 2j)2

x2 - 5j2 — 5 (x - 2j)2 — (2x — 5j)2



THÉORÈME DE FERMAT 437

on peut encore dire que Les diviseurs de A2 — 2B2 et de A2 —
5B2 peuvent se mettre respectivement sous les formes x2 — 2y2

et x2 — 5y2.
Le principe de cette démonstration est dû à Lagrange, qui

a prouvé ainsi que tout diviseur d'une somme de quatre carrés
est lui-même une somme de quatre carrés. Euler avait ouvert
la voie, en essayant de démontrer de cette manière les cas
de A2 + B2. de A2 + 2B2 et de A2 + 3B2.

2. — Les nombres <2, b étant premiers entre eux, on peut
se demander quelles sont les propriétés des restes obtenus
en divisant par b les multiples ou bien les puissances de a.
L'étude du premier cas a fait l'objet de notre précédent
article. Le second cas va nous occuper; mais auparavant, il
convient de montrer, par quelques exemples, comment on
peut souvent abréger le calcul direct des restes.

7160
1° Soit à trouver R — La division des nombres 7, 72, 74,

641

78, 736, 732, 764. 7328 donne les restes 7, 49, 343, 478, 288,
255, 284, — 110, — 79; donc

7,60 _ _ 284.79 — 1 (mod. 641) (Euler)

2° Trouver le reste de la division de 31000 par 13. On a
38 l(mod. 13), et comme 1000 1 (mod. 3), il s'ensuit
33000 3 (mod. 13). (Gauss).

3° Soit à trouver les restes des puissances de a — 189
divisées par b 191.

On trouve directement les restes 1, 189, 4, 183, 16, 159,
64, 63, On a ainsi :

a7 a6 — a° d'où a8 a7 — a1 a9 a8 — a2 (mod. 191)

De même, pour b 19 et a 3, 4, 5, 6, on pourra utiliser
les relations -

2 a2 + 1 0 a2 — a — 1 0 a2 — a — 1 0,
a2 -f- 2 0 (mod. 19) (Desmarets)

4° Enfin nous ferons remarquer que, pour les restes des
i b dz 1

puissances de a —~ on a :

2a ± 1 =E 0 2a2 ± a m 0 2as ± a2 5 0 (mod. b)
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3. — Si a est premier avec b, il y a toujours dans laprogrès-
sion a, a2, a3, ab — 1, au moins un terme at qui, divisé par
b donne le reste 1. Les restes suivants se reproduisent périodi-
quement. (Euler 1759). Aucun reste n'étant nul, parmi les b

premiers restes, il y en a au moins deux qui sont égaux.
Posons en conséquence :

ax ~ c ay EE c il viendra ay(ax~~y— 1) EE 0 (mod. b)

ce qui démontre la première partie de la proposition. La
deuxième se vérifie en observant que de a1 ~ 1, an a
(mod. 6), on tire al + n a (mod. b).

Cor. I. Si t est le gaussien1 de a, tous les restes qui
précèdent sont différents. Autrement le raisonnement de tout à

l'heure ferait voir qu'il y a une puissance plus petite qui
donne le reste 1, et t ne serait pas le gaussien de a.

II. De ce qu'on peut toujours écrire a1 t (mod. b), on
conclut que tout entier a premier avec b a toujours un
associé a a*—1, c'est-à-dire un nombre tel que aa ï
(mod. b).

III. ci et c étant premiers avec b, on peut toujours écrire

a1 55 1 c* ~ 1 d'où a{ — cs kb (mod. b)

multipliant par c et posant cat~~1 x, kc y (mod. b), cette
équation devient

fa) ax — by — c

Ainsi, a et c étant premiers avec b, on peut toujours trouver

un nombre x < b, tel que la relation a ait lieu.
Autrement. Les b nombres

a*-1, /-2c /-V, ^-3, ach~\ ch~x

sont incongrus à b : il y en a donc au moins deux qui sont

congrus entre eux. Posons en conséquence :

ak-\cb-k _ ak -1+V ~k-h (mod. b)

ce qui donnera

(ß) ch ah (mod. b)

1 Exposant de la plus petite puissance de a qui donne ax 1 (mod. b).
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Il existe donc un nombre h inférieur à b permettant de satisfaire

à (ß). Le reste de la démonstration s'achève comme
tout à l'heure.

IV. Si ax 1 (mod. b), x est forcément un multiple du

gaussien t.
Y. Les t restes sont évidemment premiers avec le diviseur

ô, de sorte que si, avec Gauss, on désigne par 9 (b) le
nombre des entiers plus petits que b et premiers avec lui,
on a t cp (b).

Si t < <p(b), soient 1, a, les t restes, et /3, 7, d,

les autres nombres inférieurs à b et premiers avec lui. En
divisant par b les nombres /3, /3a, ßa ßa\ on aura t restes
différant entre eux et différents des premiers, puisque, en

posant, par exemple,
af EE a aß TE a' (mod. b)

aucune des expressions suivantes, où / < g < t,
fia' — fia ~ fiaf(aß~~l— 1) a! — fia. EE af [aß f— fi) (mod. b)

ne peut se réduire à un multiple de b ; car a%~f n'est ni 1

(mod 6), ni ß (mod. è), puisque g — f t et que le reste
correspondant ne peut être que a, ou a', ou a",

Opérons de même sur les restes 7, $, nous finirons par
épuiser complètement la suite des nombres <( b et premiers
avec lui. Cette suite est donc partagée en groupes de t
termes et par suite 9 (b) est un multiple de t. Par conséquent t
est égal à 9 (b) on à un diviseur de (p{b). (Euler 1758).

4. — Théorème d'Euler. Si les nombres a et b sont
premiers entre eux, on a :

(11) EE. 1 (mod. b)

En effet 9 (b) est un multiple de £, d'après le corollaire qui
précède.

5. — Théorème cle Fermât. Si b est un nombre premier p,
on a 9 (p) p — 1, d'où

(12) aP-X TT 1

Autrement. De (7) on tire :

(X + 1 )P — XP EE 0
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d'où, en changeant successivement ^en a — 1, a —2, 3,

2, 1 et additionnant, la relation

(13) a(aP~l — 1) Er 0

identique à (12). (Eu 1er 1748).
Cor. I. Quel que soit l'entier x, on a :

(14) xp — x Er7 0 (Euler)

La grande importance du théorème de Fermât résulte de

ce fait caractéristique que la congruence (14) quoique non
identique, est satisfaite pour x quelconque. Il fait partie du

petit nombre de ces vérités simples et fécondes, — telles
qu'en géométrie, le théorème de Pythagore et celui des

triangles semblables, — lesquelles, condensant en une seule
idée un grand nombre de principes en apparence distincts,
— parce que la faiblesse de notre intelligence.nous empêche
de voir qu'ils n'en font souvent qu'un seul vu sous des

aspects différents, — nous permettent de ménager nos efforts
dans la conquête de nouvelles vérités et d'envisager de

nouveaux buts. Aussi les diverses généralisations élémentaires
qui ont été données de ce théorème sont-elles restées à peu
près sans emploi et ne présentent-elles guère d'autre intérêt

que celui d'exercices isolés.
II. Puisque p — 1 est un nombre impair, on a, en posant

p — 2m + 1 :

(15) (am + P (am — 1) 0

Les deux facteurs du premier membre ne peuvent avoir
d'autre facteur commun que 2 ; on a donc :

(16) am + 1 0 ou am —1^0

III. Théorème de Wilson. De (9) et de (12), on tire

(17) {p — 1) + 1 0

IV. 1° Supposons/) 4/ + 1 et soit x — a une des non-
racines de (x + 0- Puisque (<a l)4? — a4? 0, il
s'ensuit que [a + ï)2q + d2q 0. Ainsi p 4 + 1 divise

toujours une somme de deux carrés. D'ailleurs aucun nombre
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premier p — 4 — 1 ne peut diviser x2 + y2 ; en effet on a :

xp —1 — yP~~1 0 ; donc en posant p 2m + 1, on voit que
(^2yn _j_ (y^m ne peut être 0. Or cette expression est
divisible par x2 + y2 puisque m est impair; donc a fortiori p ne

peut diviser x2 + y2 (Euler).
2° Selon que u et v sont de même parité ou de parité

différente, u2 + uv + v2 peut se mettre sous l'une ou l'autre des

deux formes

(•_-) + ,(!+•)• „ (*+-7+ .£)'.
Donc si x a est une non-racine de (.x + l)2" — x2n 0, le
nombre p — 6k + 1 étant premier, on aura :

[(a + l)2^ — a2k] [(a -f 1 fk + (a + l)2k a2k + aik]

— (a _j_ 1)6Â: _ a6k 0 ;

donc p — 6 + 1 divise y2 + 3^;2 (Euler).
V. Chacune des congruences xm + 1=0, xm— 1 0 a m

racines (lemme VI).
La congruence xp~x — 1 0 a les p — 1 racines 1, 2, 3,...

p — 1, ou si l'on veut, les nombres zh 1, ± 2, ± 3, ...± m.
De là, les relations

(18) (x — 1) (x — 2)... [x — p + 1) — xp ~~'1 + 1 0

(19) (x2 — 1) (x2 — 4)... (x2 — m2) — xp ~'1 + 1 0

Ces deux congruences, bien que du degré p — 2, ont
p — 1 racines: elles sont donc identiques, et, en les
développant, les coefficients seront tous 0 (Lagrange).

VI. Plus généralement, si / est un diviseur de p — 1, la

congruence x?— 1 0 a / racines (Euler). Ainsi selon que
p — 4+1, la congruence x4 — 1 0 a deux ou quatre
racines.

VII. 1° Soitp 4<7 + 1, on aura pour certaines valeurs de x,
x2q + 1 0.

donc p 4 + 1 divise une somme de deux carrés et est par
suite une somme de deux carrés. (Fermât). On utilise le lemme
VII.
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2° Soit p 8q + 1, il viendra

0 oc*g -|- 1 — [x2q + l)2 + 2q +2

par conséquent p 8 + 1 divise certains nombres des deux
formes y2 ± 2z2 et par suite il est de ces deux formes. (Lemme
VII).

3° Soit p — 8q + 3; la valeur x 2 rend incongru à p le
second facteur du produit (.^ + 1+ 1) +4? + 1 — 1), puisqu'il
est alors de la forme 2y2 — 1, laquelle ne convient pas à la

forme 8q + 3, que y soit pair ou qu'il soit impair. On a donc :

o 2*Î + 1
_j_ 1 — 2j2 + 1

ce qui fait voir que les nombres premier 8 + 3 sont diviseurs
de nombres de la forme 2y2 + z2 et par suite sont de la même

forme.
4° Soit p 8q + 7 ; on a :

0 (24? + 3
1) (24^ + 3

— 1)

p ne peut diviser 24? + 3 + 1, ni par suite 24?+4 + 2, car il
serait de la forme 2y2 + 2, qui ne peut se réduire à la forme
8q + 7. On a, par conséquent :

o 24? + 4
— 2 r2 — 2

Donc les nombres premiers 8 + 7 sont diviseurs de

y2 —- 2z2 et sont de la même forme.
5° La comparaison de ces quatre théorèmes fait voir que

leurs réciproques sont vraies.
6° Si p — 3 + 1, la congruence x3 —- 1 0 a trois racines,

puisque son premier membre divise xp— 1. Soit a une de

ces racines ; on aura :

[a — \) (a2 + a -f- 1) 0 d'où ci2 -f- a + 1 ö et (2a + l)2 + 3 0.

Donc tout nombre premier 3 + 1 divise x2 + 3y2, et par
suite est de la même forme.

7° Soit p 5 + 1 ; il viendra, en appelant a une des racines
de x5 —1 0,

(a — 1) (tf4 + + (Y1 + a + 1) 0, d'où (2a2 -|- a + 2)2 — 5a2 0
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Donc tout nombre premier 5 + 1 ' divise x2 — 5y2, et par
suite est de la même forme.

8° Enfin soit p 7 -f 1 et soit a une racine de x1 — 1 0;
il viendra :

Donc tout nombre premier 7 + 1 divise x2 + 7y2.

Ces démonstrations sont dues à Euler (1°, 2°, 7° et 8°) et à

Lagrange (3°, 4° et 6°). Gauss a fait voir que A et A' désignant
certains polynômes entiers en a, selon que p -- 4 d= l, on
a :

mais la loi de réciprocité, qui sera donnée plus tard, dispense
d'entrer dans plus de détails à ce sujet.

6. — Si ^ est le gaussien de a, p est de la forme th + 1

(Euler). En effet t divise p -- 1, donc p 1 (mod. t).

Cor. I. Si t est premier, tout facteur premier impair de

a1 — 1, qui ne l'est pas de a — 1 est de la forme 2th + 1. De

plus, il est de la forme quadratique x2 — ay2, car de cû — 1

0, on tire

II. Si t est premier, tout facteur premier de 2* — 1 est de

de la forme 2th + 1 (Fermât), et de l'une des formes 8 zt 1,

car il divise 2t+1 — 2, qui est de la forme x2 — 2. (Euler).
Ainsi les facteurs premiers de231 — 1 étant à la fois 62+1

et 8 ± 1, on trouvera aisément qu'ils appartiennent à l'une
des formes 248 + 1, 248 + 63. Essayant la division par les
nombre premiers de ces deux formes, Euler s'est assuré que
231 — 1 est premier, comme l'avait affirmé Fermât.

III. Tout diviseur impair p de a1 + 1 est de la forme
2th + 1. En effet p divise a2t— 1 ; or il ne divise aucun
nombre an— 1, où n serait diviseur de 21, car il diviserait
aussi a1 — 1, ce qui ne peut être, puisqu'il divise at + t, et
que les deux nombres a1 — 1 et a1 + 1 n'ont d'autre diviseur
commun que 2.

Application. Fermât avait pensé que la formule 22" + 1 ne

(2a3 -f a2 — a — 2)2 + 7 (a* + a)2 - 0

nP 1

4 - -1 A2 ± pk'2 ;

a — 1
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renferme que des nombres premiers. Euler a prouvé ainsi
l'inexactitude de cette proposition. Les diviseurs de 232 -h 1

sont de la forme 64 + 1 ; or les nombres premiers de cette
forme < [/232 + 1 sont 193, 257, 449, 641... Essayant la
division de 232 + 1 par ces nombres, on trouve qu'elle réussit
avec 641 *.

Depuis, on a trouvé de même que pour n 5, 6, 9, 11, 12,

18, 23, 36, 38, le nombre 22" + 1 est composé. Il y en a

probablement une infinité dans ce cas.
Cette méthode d'Euler a été l'objet d'importantes extensions.

Voici la plus simple, due à Ed. Lucas: les diviseurs de
2 32 -f 1 sont de la forme 128 + 1 (7, Appl.). On a donc à considérer

seulement les nombres premiers de cette forme, dont
le premier est 641. L'examen des diviseurs à exclure est
ainsi considérablement réduit.

7. —Résidus et non-résidus. Le reste de la division de am par
p est, comme on sait, 1 ou — 1. Le nombre a est appelé
résidu de p dans le premier cas et non-résidu dans le second 2:

la raison de ces dénominations est que, suivant qu'on a am

zh 1, on peut ou on ne peut écrire x2 a. En effet :

1° Supposons qu'on pût écrire x2 ~ a avec am — 1, on
aurait

xp-x — am - 1

ce qui est faux, car xp~ 1 1 ; a n'est donc pas un résidu.

2° Soit am 1, on a la congruence

XP-1 -am= 0

qui a p — 1 racines. Or le premier membre est divisible par
x2 — a, donc la congruence x2 — a 0 a deux racines, et a
est résidu.

Cor. I. Le produit de plusieurs nombres est un résidu ou
un non-résidu selon que le nombre des non-résidus qui entrent
comme facteurs dans ce produit est pair ou impair.

1 On peut être surpris que Fermât, qui avait fait tous les frais de cette démonstration, en ait
laissé l'honneur à Euler. D'après Plana, il ne paraît pas avoir non plus remarqué les deux formes

des diviseurs de 2^ — 1. (Mèm. sur la th. des n, Turin, 1859.)

P — 1
2 Nous rappelons que partout m est mis pour —-—
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II. La congruence
(«) x2 — ay2 .EE b

est toujours possible (Lagrange). Il faut démontrer qu'au
moins un résidu de p est de la forme ay2 ô, ou que la

congruence
(ß) («J2 + b)m ^ 1

pou toujours avoir lieu. Or la congruence conjuguée (ay2 -f-
b)m — 1 est du degré p — 1 et ne saurait avoir p — 1

racines. Elle a donc au moins une non-racine, qui satisfait à

(jS) et par suite à (a).

III. Si p 4 + 1, a et — a seront ensemble résidus ou
non-résidus. Si p 4 — 1, l'un est résidu et l'autre non-résidu.

On a en effet, selon l'un ou l'autre cas,

am (— a)m — ± (a2)m

IY. 1° Si p — 8 ± 1, on aura :

2f >== ^2 d'où 2my*-x EE xP-1
ou bien

(18) 2m 1 (p 8 ± 1)

2° Si p 8 -f- 3, on aura :

2f — x* d'où 2myp~1 — xP"1 — 1

Donc

(19) 2m=E-l. (^ 8 + 8)

3° Si p 8 + 5, p ne peut être de la forme x2 — 2y2 ; on
ne peut donc écrire 2m 1 et par suite on a :

(20) 2rn ~ 1 (/> 8 + 5)

4° En résumé on a :

p* — i
(21) (— 1)

8

Applications. 1° Selon que p de l'une des formes 8 -+- 1

ou de l'une de celles-ci 8 zt 3, p divise 2m 1 ou 2m -f 1.
(Euler.)
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2° Soit p 8hk -f- 1 un diviseur premier de 24Ä + 1 (6, III).
k est pair; autrement, en élevant à la puissance de degré
impair k la congruence 24Ä 1, on aurait 2m — 1 ce qui
ne peut être puisque 2 est résidu de p. Ainsi tout diviseur
de 24/l + 1 est de la forme 16h + 1. (Ed. Lucas.)

8. — Racines primitives. On appelle racine primitive de p
un nombre dont les p — 1 premières puissances divisées

par p donnent pour restes la totalité des nombres 1, 2, 3,

P— 1-

Le nombre premier p a <p(p •— 1) racines primitives (Euler).
Démonstration de Gauss. 1° Décomposons p — 1 en ses
facteurs premiers, et soit p — 1 2... soit g une des

p-i
non-racines de x a

1, et posons

p-i
g

a* A d'où Aa* g*"1 1

L'exposant de toute puissance inférieure de A congrue à

l'unité doit diviser aa et elle ne peut être que de la forme

Aa Or ce nombre ne peut être congru à 1, puisque son
multiple

p—1

A"*-1-*«
ne Test pas : on peut donc toujours trouver un nombre A tel

que aa soit congru à l'exposant de la plus petite puissance

congrue à 1 (gaussien de A).
2° Soient B, G, les nombres formés de la même manière

avec bß, c"*, et posons (ABC...)* 1. L'un des facteurs

premiers de p — 1, a par exemple, divise donc p 1, et par

suite

p- 1

(ot)
(AB...) a 1

Or les nombres èi3, c'P divisent 1, donc on a:

p— '

B a EL1 C =1,...
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et par suite, à cause de (a)

k a 1.

aa diviserait donc ce qui est faux, car - n'est
^ ^ aa+i

pas entier. Le nombre p— 1 est donc le gaussien de (AB...).
3°1 Soit R la racine primitive (AB...) dont l'existence vient

d'être prouvée. Si 0 est le p. g. c. d. de p — 1 et de A, on a :

p— 1 h

(RÄ) 0 zz (bJ)P-1 1

Si 6 > 1, le gaussien de (RA) est < p — 1, et (Rh) n'est pas
une racine primitive. Si 0 1, h est premier avec p — 1 et,

en appelant t le gaussien de (R71), on a :

Kht _ (R/y i
donc ht est diviseur de p — 1 et ne peut être que p — 1.

Ainsi (R71) sera racine primitive ou non selon que h sera
ou ne sera pas premier avec p — 1.

Cor. I. a, è, c, désignant les nombres inférieurs k p — 1

et premiers avec lui, les termes de la suite R, Ra, Rè, sont
congrus à toutes les racines primitives.

II. Conservant les mêmes notations, on verra que parmi
les racines primitives, R, Ra, Rè, il y en a deux dont la

somme des exposants est égale à p — 1 Les racines primitives

sont donc associées et par suite leur produit est ~ 1.
(Gauss.)

III. Les racines non-primitives ne sont autres que les résidus

des puissances dont les exposants ne sont pas premiers
avec p — 1. Ainsi: 1°, 2 et 3 étant les facteurs premiers de

13—1, les racines non-primitives de 13 sont les résidus
quadratiques et les résidus cubiques de ce nombre.

2° Si p est de la forme 2h + 1, (ce qui a lieu pour h 2, 4,
8, 16), les racines primitives se confondent avec les non-résidus

quadratiques.
3° Si h étant premier, p 2h + 1 (les valeurs p 7, 11,

Cette troisième partie de la démonstration avait été donnée antérieurement par Euler.
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23, 47, 59, 83, 107, 167, 179, 227, 263, sont dans ce cas),
les racines primitives sont également les non-résidus, saut
le non-résidu p — 1 2h.

p-i p-i
IV. Les racines de x a 1, x

b
1, sont toutes

non-primitives ; donc la congruence
[xP-1 - l)x 0

donne toutes les racines primitives, X désignant la congruence
ayant pour racines les racines communes aux facteurs du
dénominateur.

Quand p — 1 est de la forme 2waa, on a:
P--\

P_zl oc
2

+- 1
__ n

X =2 X 2a — 1 d'où P_zl ~ '

x 2a + 1

pour la congruence des racines primitives. Le premier membre

divisant x?~~ 1 — 1, la congruence a toutes ses racines,
lesquelles sont ainsi au nombre de

P - 1

_ P - 1.
2 îa

Par exemple, pour p — 13 on trouve la congruence x4 — x2 -f-
1 0, dont les quatre racines, 2, 6, 7, 11. sont les racines
primitives de 13. (Gauchy.)

Exercices.
I. Posons

lî _f_ 2? + 3? + -f- n« Snq 1* — 2? + 3* — ± râ ~
on aura :

q — 0 dans tous les cas ; j

EE 0 n impair et <7 pair ; /

sn__l q
0 n et q impairs, n q ; / (mod. 71),

~2 0
- neti Pairs ; \
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2. Tout nombre premier, autre que 2 et 5, divise une infinité

de nombres formés de chiffres 9 (Crelle) ou de chiffres 1

(Plateau).

3. On a :

4. 1° Si le gaussien t de a est un nombre pair 2t, ar donne

le reste 6—1, ainsi que at+T a2z:+r Autrement a1 ne

pourrait être 1 (mod. 6)..

2° Si t est impair, b — 1 ne fait pas partie des t restes.
(Eu 1er.)

3° Si t est pair, on a at+k — ar~~k (mod. b).
4° Si a? 1 (mod. b) et quep soit un nombre premier, p

divise t. (Euler.)
5° Si b est un nombre premier de la forme 4 + t, / ne peut

être impair puisque — 1 fait partie des t restes.
5. 1° a11 et a^11 étant évidemment associés, les restes qui

en proviennent en divisant par 6, sont associés deux à deux,
sauf le reste b — 1 quand il a lieu.

2° Si öl est l'associé de a relativement à 6, les deux- périodes

de restes de ax et de olx sont formées de mêmes nombres
dans des ordres inverses. En effet, soit ctn — 11 c(mod. b),
il viendra a1 — (aof~~n caf~n ; donc c ~ 0.

3° La somme des t restes est congru à b (Gauss). On le
voit en faisant la somme

4° Le produit des t restes est ± 1 (mod. b) selon que/est
pair ou impair. Ce produit est en effet congru au produit
a la2 al~~x (Gauss).

6. Si ccf r et af+% rs (mod. b), on a : aß s (mod. 6.
(Euler).

7. A + M étant incongru à/>, la congruence Axp~ 1 + +
M 0 ne saurait avoir toutes les racines 1, 2, p — 1, car

(D. André.)

(Catalan.)

(Weill.)

ac + a1 + a2 +

L'Enseignement mathém., 9e année ; 1907, 30
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en y faisant successivement x — 1, 2, 3, p — 1 et additionnant,

on aurait A + M 0, à cause de (8) et (9).
8. La période de la fraction décimale provenant de la division

de a par p a un nombre de chiffres qui est un diviseur
de p — 1 (Gauss).

9. On a :

(a -f- b -f- c + ••• ~h l)P à? -f- bp -f- cp -}- ••• ~h lP • (Gauss.)

Cette relation se démontre, d'après Serret, en changeant
successivement dans (7) b en b + c, etc.

10. La solution de la congruence gx k est x kgP~~2.

En général soit gx — hy k. Décomposons h en ses

facteurs premiers et soit h a^bß ; (1 —^""^est divisible

par (1 — gb~l)P l'est par b&, ; donc on a :

gG =r 1 - (î - ga~~Y(1- 1 - AH

d'où
x — GX: y — HÄ-

Cette solution est due à Gauss. On a aussi, avec Libri,

^ +1 k
8

A, B, désignant des entiers quelconques.
11. Si a et b a — A; sont premiers avec p, on a :

aP-1 - 1>P-x

—i— =°-
12. Si ak bk on ne peut avoir ak~~x bk~x car il s'ensuivrait

ak~x b bk ak et a b. On ne peut donc écrire
aP~2= bP~2, et les restes de la division de xp~2 par p donnent

la série 1, 2^ 3, p — 1.

On peut donc toujours écrire xp~2 S a, et cette congruence
a une racine unique.

De là la relation ax xp~ 1 1. Ainsi le nombre a a

toujours un associé, qui est unique.
13. 1° Si a* 1, on a :

am car 0 «2m - 1 (am -
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Plus généralement, si a est une racine de Axk M

0, son associé a en est une de M.#* + ••• + A 0, ce

qu'on démontre en posant #£ 1 et multipliant la première
congruence par %k.

2° Si 1, on a :

aP-k ^ gk i
^

3° Les restes des divisions de a?~k et de ak~~1 par p sont
associés.

14. Si k est premier avec p — 1, on peut toujours résoudre
la congruence xk ~ r (Sophie Germain). En effet si on avait, j

par exemple, ak=bk, en posant ky — {p— l)z ï, cette I

congruence deviendrait

aky ee bky d'où a(P-Vz + l b{r~1)Z \ 1

ou a b,
ce qui est absurde.

On voit d'ailleurs cjue la valeur de x n'est autre que le
reste £ de la division de ry par />, puisqu'on a :

%k — \ry)k — Ap 1)-2 + 1
r ~ xk d'où x — E

15. Démontrer les relations suivantes :

2p-2 m + 1 ; (p-î (^±1)'"'= ± 2 ;

(~x~) 1
• (Pour P*±1) ; 0 ;

p

a(b-»p-bs
sp—ifP—i — l ; 6p_i,ji 0 ; i — 1 ;

p ~ 0 ;

Vi.H 55 0 ; 52a, 7? + a^a + 1)/? 0 ; + (2«)^ Er 0 ;

+ + l)P + 0 ; sm,2a 0 (Pour 2a < /? — 2) ;

1

(/? — l)a 0 (ip selon que « est pair ou impair) ;

{n\p— i n\q — i /nV-1
v/ "^w + '+(77 1 (niod- /'?••• '•)

/?, q, 7% nombres premiers.
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16. Soient />, q, r, des nombres premiers qui ne

divisent pas a et tels que p — 1 soit multiple de q — 1, de

r — 1, de s — 1 ; ap — a est divisible par le produit
pqr sa (Euler). En effet ap~~x — 1 peut s'écrire

((fif-1 — 1 ou (aR)r_1 — 1

En outre le produit suivant est entier

i) (i +1 +...).
17. Soit p — 1 qr. Si Aai B A, a, B et b étant

premiers avec p, on aura: Ar Br. (Euler.) En effet AV1 —
Brbp~1 est divisible par Aa$ — Bb$ et par suite par /?, de
même que Arap~x — Arbp~x. On a ainsi bp—1 (Ar — Br) 0.

On a des cas particuliers intéressants avec A. b 17

B b 1, B 1, etc.
18. 1° Si fet g sont deux facteurs de p — 1 ayant g comme

p. g. c. d. on pourra poser fa — gv s, d'où, si on désigne
par a une racine commune de xf — 1 0 et de — 1 0,
il viendra 1 az. Donc les racines de az — 1

0 sont les racines communes aux deux congruences
données.

Ainsi si f et g sont premiers entre eux, les deux

congruences n'ont d'autre racine commune que 1.

Si g p — 1, la congruence xf — 1 0 n'a pas d'autres
racines que celles de Xs — 1 0. On peut ainsi se contenter
d'étudier la congruence xs — 1=0, où £ est un diviseur
premier de p — 1.

Autre exemple, k et l désignant deux facteurs premiers de
p —1 r_~l

p — 1, les racines communes à x k
— 1 0 et à x

1

— 1

p-i
0 sont celles de x kL. — 1 0.
2° Soient k, l, les facteurs premiers de f. Si a est une

L L
non-racine des congruences x k—1 0, x1 —1=0, les
solutions de xf — 1 0 sont 1, a, <22, af-~x. Supposons en
effet qu'on ait ac ad, d'où ad~c 1 ; en appelant 0 le p. g.
c. d. de d — c et de f on peut écrire :
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fy — (d — c) z 9 d'où 1 (J)y a{d~c)zJrB aß ;

L L

on aurait ainsi l'une ou l'autre des relations a — 1 0, a

— 1 0, contrairement à l'hypothèse.
p —1

3° Si ok r, on aura r k
1, donc, en divisant les

puissances r, r2, r3, par /?, on trouvera le reste 1 avant r*-1.
Les résidus de /> sont dans ce cas, puisque 2 est un facteur

premier de p — 1.

4° Supposons ah 1 et soit 0 le />. g", c. d. de h et de p — 1.

On aura :

hp — (p — 1) v EE 0 d'où aß EE EE 1 et xp 1

— a® H! 0

Le premier membre de cette dernière congruence est di-
p—i r—1

visible par .r 0
— «, donc la congruence x 0 —a 0 a

^ - 1

—s— racines.

Soit h — 2, on a 0 2 et la valeur « — 1 répond ou ne

répond pas à la question selon que p 4 ± 1 ; donc, dans
les mêmes cas, la congruence x2 1 0 a ou n'a pas de

racines.
5° Soit t le gaussien de a. La division de a, a2, a* par p

donne pour restes les t racines de xl — 1=0 et par suite
les périodes des restes sont formées des mêmes nombres.

Ainsi la période de m restes comprend tous les résidus.
Pour p 19, les puissances des nombres 5, 6, 9, 16, 17

donnent des périodes composées des nombres 1, 4, 5, 6, 7,
9, 11, 16, 17.

6° Euler, à qui sont dues, en principe, toutes ces propositions,

remarque aussi que :

Si ah ßh et si a n'est pas multiple de /?, on a :

r—1 p—i
ax h — ßa h ~ 0 ;

si abh ~ ch, on peut écrire :

axh EE dh ôt adh ~ yh
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19. Si la congruence ¥{x) 0, de degré n p — 1, a n
racines, F [pc] est un diviseur de ûcp-1 — 1. Si elle en a k,
(k < ri), F (x) et xp~1 —- 1 ont un diviseur commun du degré
k. (Gauss.)

20. 1° Si p -—1 est le produit de q par un nombre impair
et que a soit incongru avec p, on ne saurait avoir x* -(- °q

0. (Euler.) Posons en effet xp~~x — aP~1 0, on ne peut
avoir xp~ 1 — aP—1 0, ni a fortiori, x^ + aQ 0

2° Si p — 1 est le produit de q par un nombre pair, p
divise x2$ + 1.

Ainsi p — 13 divise x + 1, x2 + 1, x3 1, xG + 1, ce qui
revient à dire que 12 est résidu linéaire, quadratique,
cubique et sextique de 13.

p — 4 + 1 divise x2 + 1 ; p 8 + 1 divise x* + 1 ; p
16 + 1 divise xs + 1 ; p — 1 est donc résidu quadratique
de p 4 — 1. résidu biquadratique de p 8 + 1, résidu
octique de p 16 + 1.

21. Si p 4 — 1, on peut toujours trouver x et y tels que
x2 + y2 + 1 0. (Euler.) Démonstration de Lagrange.
Posons

_ + (f±_ _ 5A - x* + (,.2 + 1, — * * [J + V + -
Y (f+ l)"1 — 1 —

" [b2 + i) - i] [b2 + i)'"-1 + + i)'«-2
Y Y

L'expression ^ étant du degré p — 3 en y, 0, et par
suite Y 0, ont au moins deux non-racines. De même, y
étant ainsi déterminé, X peut devenir incongru à p pour
deux valeurs au moins de x. On peut ainsi déterminer x et

y de manière que XY soit incongru à p. Or on a identiquement

:

(x*+ f+ 1) XY =r (xP-*-1) Y + [(/ + l)P~l - 1]

Le second membre est 0, puisque x < p et que, quel que
soit y, p ne divise pas y2 + 1. Donc p divise le premier membre

et par suite x2 + y2 + 1, si x et y ont les valeurs
déterminées plus haut.
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22. Tout nombre premier p 4+1 divise une somme de

deux carrés; tout nombre premier p 4 — 1 divise une

somme de trois carrés. (Euler.) Seconde démonstration de

Matrot. On a:

(a) ocm — 1 — 0 ou xm -f- 1 0

sp— m — 0

par conséquent moitié des nombres 1, 2, 3, p — 1 satisfont
à Tune des congruences (a) et l'autre moitié à l'autre. Soit

p — 4 + 1 et soit a une racine de la seconde (a) : le premier
membre est une somme de deux carrés, car alors m —

est pair.
Soit p 4 — 1. Considérons deux nombres consécutif è,

b + 1, satisfaisant l'un à la première (a), l'autre à la seconde,
chose toujours possible, puisque 1 fait partie des m nombres
qui vérifient la première. Cela posé, on a :

(p) hm — î o (b + i)w + 1 0 • (y)

Multipliant (ß) par b et (y) par b + 1, puis ajoutant, il vient :

.bm+1 _j_ (fc _|_ ^p+ 1 + 1 0.

Les exposants m -f 1 sont pairs, car dans ce second cas, m
est impair.

23. Tout diviseur d'une somme de ^quatre carrés est lui-
même une somme de quatre carrés (Lagrange). Démonstration

analogue à celle du lemme VII.
On tire de là le théorème de Bachet, en se servant des

propositions de l'exercice précédent.
24. Les [diviseurs premiers de a1 + b1 sont de la forme

2th + 1. (Euler).
25. Les diviseurs de 2p —1 sont de l'une des formes

8ph 4- 1, 8ph 4- 2 (2 ± 1) p 4- 1 (p — A ± 1)

(Plana.)

26. Si p 4 4- 1 divise a2 ± kb2, il divise un autre nombre
de la forme 4= ky2. Si p 4 — 1 divise a2 ± kb2, il

n'en divise aucun de la forme x2 ky2, et, quel que soit l, il
divise x2 -f ly2 ou x2 — ly2.



456 A. AU BR Y

Si p divise des nombres appartenant aux formes x2 — ky2,
x2 — ly2. il en divise également un appartenant à la forme
x2 — kly2.

Si p ne divise ni œ2 — ky2 ni x2 — ly2, il divise x2 — kly2.
27. Voici un exemple de l'emploi des imaginaires dans la

théorie des nombres.
1° On a :

(1 + ifh (2ifh - — 22h,

d'où pour p 4 ± 1,

(1 + if (_ 1)
4

(1 ± i]2

Développant le premier membre et comparant les parties
réelles, il vient pjt1 p—A

(_ 1(
4 2m _ 1 ou 2m 4

_

I) I 1
2 est donc résidu ou non selon que r est pair ou impair,
c'est-à-dire selonqu'on a/) —8± i ou/? 8 zb 5(Lebesgue).

2° Pour p 3± 1, on a:

(1 j/T=ü)/> — i - t) 3 2 (1 ± i)

d'où
OL1 r—i

3)'» rr + (__ 1)
3 2P~X ± (— 1)

3 ± 1

Donc — 3 est résidu dep 3 + f et non résidu de/? 3 — 1.

Comme (zb 3)m (— l)m 3m, 3 est résidu de 12 dz 1 et non
résidu de 12 dz 5, (Libri.)

28. Soient p un non résidu dep et k un diviseur de p + 1 ;

la congruence
(g + 1/p )k ix — [/p k

0
VT

'

a k — 1 racines. (Lagrange.) En effet le premier membre est
un diviseur de celui de la congruence

(X + ~- \x - Vp )^ + 1

;

Vp
o,
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laquelle est du degré p et a p racines, puisque son premier j

membre développé devient

2 (p + 1) (x + xpm) 2 {p -j- 1) (pcp — x).

29. Vérifier que 2p — 1 est divisible par

23, 47, 233, 223, 431,'439, 167, 263,

pour p — 11, 23, 29, 37, 43, 73, 83» 131.

Les deux premiers et le quatrième cas sont de Fermât, les

autres d'Euler.
On se sert, pour cette vérification, de la méthode d'Euler,

n° 2, 1°.

29. Démonstration du théorème de Fermât, par la supposition

de b premier, dans les nos 3 et 4.

Formons le tableau

1, a, a2, a3, a1 1,

2, 2a, 2a2, -2as, 2 a1 2,

3, 3 a, 3 a2, 3a8, 3 a1 3,

— 1 )a (p — ï)a2 (p — î)a\ (p -- t) a*

Si kaf las, on a : kaf+§ la&+®. Donc si un terme de la
Ie rangée est congru à un de ceux de la ke, ces deux rangées
sont identiques, à l'ordre près des termes. La ke rangée
contenant ^termes différents, il y a donc t rangées identiques
à la ke, et les termes des autres rangées sont entièrement
différents des premiers. Supposons que la première de ces
autres rangées soit la he : il y aura de même t rangées
identiques à celle-ci et leurs termes différeront de ceux des
autres. La première des p — 1 — 21 rangées non éliminées
fournira également t — 1 autres rangées identiques. Et ainsi
de suite : on voit que les p — 1 rangées seront disposées en

groupes de t termes identiques chacun. (Desmarets.)
30. Déduire le théorème d'Euler de celui de Fermât. On a:

ap~1 1 (mod. p) Ép~l)p 1 (mod. p2) a^p~^Pk~~
%

^ 1 (mod. pk)

soit b=pfq$...,p, q désignant des nombres premiers. On
peut écrire :
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a{p-\}pf 1

_ i o (mod. pfj af.9-Vs g 1 — 0 (mod.

Posons (b)— (p—1)pf~x —1) qg—1 Les premiers
membres des congruences qui précèdent sont tous diviseurs
de a${b) — 1 : donc, en multipliant,

a$(*) - IeO (mod. b)

Or on sait que la fonction [p (b) représente celle qui a été

désignée par <p (b). Cette démonstration est d'Euler.
31. Le nombre des solutions ^ 0 et < p de la congruence

ax2 — by2 c est p -F 1 selon que [ab) est résidu ou non
résidu. (Libri.)

l32. Le nombre des termes de la période décimale de -P
n'est autre chose que le gaussien de 10, de sorte que si la

période a p — 1 chiffres, 10 est racine primitive de p (Gauss.)
Ceci a lieu pourp 7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113,
131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313...

33. Si a est une racine non primitive, aucun reste provenant

de la division des puissances de a n'est racine primitive.

Car de al 1 et ah r, on tire r* 1.

34. On n'a pas de* méthode générale pour découvrir les
racines primitives d'un nombre premier donné. L'exemple
suivant, de Gauss, montrera suffisamment le procédé préconisé

par cet illustre géomètre. Soit p — 73 ; l'essai du nombre

2 donne 29 1, donc 2 n'est pas racine primitive.
Essayons le nombre 3, qui ne fait pas partie de la période qu'on
vient d'obtenir : on trouve 312 1 ; 3 n'est pas non plus
racine primitive, mais on tire de ces résultats cette relation

/ 9 12\36
(2S9 ^ 1 (mod. 73)

qui suggère l'essai de 54, dont la période ne comprend pas
le nombre 5. Ce dernier, essayé, fait voir que c'est une
racine primitive.

Les remarques suivantes facilitent la recherche dans
certains cas.

1° p étant de la forme 4 — 1, si m est le gaussien de FL

— R est racine primitive. (Jacobi.)
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2° p étant 4 + 1, m le gaussien de a et R-2- a, R et — R

sont racines primitives. (Id.)
3° p étant 8 + 5, m le gaussien de a et R2 — a, R est

racine primitive. (Id.)
4° Si p — 3q 4- !> °[ue Ie gaussien de a et que R3

a, R est racine primitive. (Id.)
5° R est généralement racine primitive quand p 8g + 5,

si R2 — 1 ; quand p 16# + 9, si a2 — 1 et R2 a ;

quand p 12q + 1. Si R4? + 2 ~ R2<?+1 — 1 ; quand p 6q

+ 1, q désignant un nombre non multiple de 3, si a* ± 1,

&3 — 1 et R zL (Desmarets.)
35. Si R est racine primitive, — R l'est ou ne l'est pas

selon que p — 4 ± 1 (Gauchy).
Dans le premier cas, si h est pair, (— R)Ä R71 ; si h est

impair, (— R)^+m — r/^ puisque — R est non-résidu.

Dans le second cas, R étant non-résidu, — R est résidu et

par suite racine non primitive.
36. On a :

r* _p.R2a _j_ R3a sp__l a

Le premier membre est —• 1 si a est multiple de p — 1

et dans le cas contraire, il esl 0, puisqu'il peut s'écrire

R(/> — a — 1

De même on a R1 Pi2 R3 Rp—1 [p — 1) Or le premier
membre est égal à R= — 1.

On a ainsi d'autres démonstrations des théorèmes de Libri
et de Wilson. La seconde est d'Euler.

37. Soit 0 le p. g. c. d. de p — 1 et de A; la division des
^ -p ^ ^

puissances lh, 2h, 3h par p donne —g— restes différents

p \(Eu 1er). Si R est une racine primitive, les
&

restes de 1,

R0, R20, R30, R(r—i)0 sont tous différents et se reproduisent
périodiquement. SoitRs*=r, r peut prendre toutes les valeurs
de 1 hp — 1, et comme on peut écrire hx — (p — 1) y 0,

on a :
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(rx)h jJp-^Yy+B rB ^ #

0? est évidemment premier avecp— i, donc le reste de rx
prend toutes les valeurs 1, 2, 3, p — 1, et on peut mettre
r au lieu de rx. On peut donc dire que rh a les mêmes valeurs
que R^6.

En particulier, si h est premier avec p — 1, il y a p — 1

restes différents. Si h — 2, il y en a — m, qui sont les

résidus quadratiques. En général, le nombre des résidus de
p |

puissances hemes est —^— •

A. Aubry (Beaugency, Loiret).

SUR LES PROJECTIONS DES DROITES
PERPENDICULAIRES

(A propos d'un récent article de M. Lehr1).

Dans divers ouvrages sur la géométrie descriptive on ne
fa it presque aucune mention des projections de deux droites
perpendiculaires. Même dans les récentes Leçons sur la
Géométrie descriptive de M. Loria, qui contiennent un grand
nombre de particularités très intéressantes, on ne trouve que
quelques indications sur cette question. Je me propose de

développer ici une démonstration simplifiée de la condition
donnée par M. Lehr, pour les projections de deux droites
perpendiculaires (théorème lllme de l'article cité).

Les projections orthogonales g'g"} h'h"'de deux droites g
et h étant données, menons par le point commun des

projections horizontales et par l'intersection des projections
verticales deux droites m et n perpendiculairement à la
direction de la ligne de terre. Nous obtiendrons ainsi deux

triangles que l'on peut considérer comme deux projections
d'un tétraèdre ABCD. Les arêtes AB et CD sont toujours per-

1 L'Enseign. math., IXe année, p. 119; 1907.
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