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ÉTUDE ÉLÉMENTAIRE

SUR LE THÉORÈME DE FERMAT

Non hic... qui abaco numéros...
seit risisse. Pers. I.

Première Partie.

L'Arithmétique avant Fermât.

Le théorème de Fermât marque une ère décisive dans
l'histoire de la théorie des nombres. Jusque là, celle-ci était
surtout algébrique et consistait principalement dans l'analyse
indéterminée et dans la recherche et les applications des

identités, ce qui n'est qu'une partie, — importante il est
vrai, — mais accessoire de cette science. Un coup d'œil sur
l'histoire de l'arithmétique pure avant Fermât fera mieux
sentir l'importance des découvertes de ce grand géomètre 1.

Il fournira une introduction historique au théorème de Fer-
mat dont nous donnerons une étude élémentaire dans un
prochain article.

C'est dans l'école de Pythagore que paraissent avoir été
émises les premières considérations, — probablement plutôt

senlies que raisonnées, — sur les nombres premiers ou
composés, les nombres parfaits, amiables, etc., ainsi que sur
les irrationnelles et les formes quadratiques, dont l'avènement

fut préparé par diverses remarques sur les développements

des produits (a H= b)2 et (a + b)(a — ô), et par diffé-

1 Si nous écrivions une histoire de la théorie des nombres, il y aurait lieu de signaler celles
des nombres figurés, des nombres polygones, des suites sommables, des combinaisons, des
différences, de la formule du binôme, des suites récurrentes, des fractions continues, de la
théorie des équations, toutes choses que la théorie des nombres met à contribution. Mais notre
but est beaucoup plus modeste et ne vise que l'arithmétique proprement dite.

2 Les trois entiers x, y, z forment ce qu'on appelle un triangle rectangle en nombres entiers,
ou simplement un triangle; a: et y en sont les cathetes, z, Yhypotènuse. Les Egyptiens
s'étaient bien aperçus que le triangle 3, 4, 5 est rectangle, mais c'est Pythagore qui paraît
avoir démontré et généralisé cette proposition arithmético-géométrique.

L'Enseignement mathém., 9e année ; 1907. 28



418 A. AUBRY

rentes solutions de l'équation x2 y2 z2 2. On voit donc
posés, dès cette époque, les deux grands problèmes de la
théorie des nombres : la composition-arithmétique des nombres

et leur représentation par une forme. Les premiers
théorèmes étaient d'abord de simples remarques évidentes
trouvées fortuitement; de nouvelles propositions moins
évidentes durent être justifiées pour en montrer la généralité;
et c'est ainsi que peu à peu se créa le mode de présentation
des théories, mode qui acquit toute son ampleur chez Eu-
clide, et est encore suivi aujourd'hui dans les livres élémentaires.

Toutefois cette arithmétique se ressentait de son origine
géométrique : privée des secours de l'algèbre symbolique,
elle empruntait celui de la géométrie; aussi les énoncés
abstraits étaient-ils traduits graphiquement, et les démonstrations,

tout intuitives, facilitées par des raisonnements sur
des figures, ce qui empêchait la généralisation des
théorèmes. D'autre part, l'absence d'une bonne méthode de
numération rendait très difficiles les opérations numériques et

par suite l'étude des propriétés des nombres. On doit donc
d'autant plus admirer la théorie complète et rigoureuse de

l'arithmétique élémentaire qu'Euclide a insérée dans ses
Eléments et dont nous allons rappeler seulement les énoncés.

VII 1. Etant donnés deux nombres, retranchons le plus petit
du plus grand; agissons de même sur le reste et le plus

petit; et ainsi de suite: si nous arrivons au reste 1, les deux
nombres proposés sont premiers entre eux.

2, 3. Trouver la plus grande commune mesure de deux
grandeurs, de trois grandeurs.

5, 7. Tout diviseur de a et de b divise a + 1) et a — b.
16. ab ba.

23, 24, 25. Si a ^ b sont premiers entre eux, il en est de

même de ac et de bc, et réciproquement. De plus tout diviseur
de a est premier avec b.

26. Le produit de deux nombres premiers avec un troisième
Test avec ce dernier.

27. Si a et b sont premiers entre eux, tout multiple de a Test

avec b.
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28. Si a ^ b sont respectivement premiers avec a et ß, a«

l'est avec bß.
29, 30. Si a et b sont premiers entre eux, il en est de même

de an et de bn, ainsi que de a + b et de a. La réciproque est

vraie.
31. Tout nombre premier est premier avec un nombre qui

n'en est pas multiple.
32. Si un nombre premier divise ab, il divise a ou b.

35, 36, 38. Trouver le p. p. c. m. de plusieurs nombres.
37. Le p. p. c. m. de deux nombres divise tout multiple de

l'un quelconque de ces nombres.
41. Trouver le pluspetit nombre ayant des diviseurs donnés.

IX. 12. Tout nombre premier qui divise an divise a.

13. Si p est premier, aucun nombre plus petit ne divise pn.

14. Le produit de plusieurs nombres premiers n'est divisible
par aucun autre nombre premier.

15. Si les trois nombres a, b, c sont premiers dans leur
ensemble, et que b2 ac, chacun d'eux est premier avec la
somme des deux autres.

20. Les nombres premiers sont en plus grand nombre qu'un
nombre quelconque (en nombre illimité)1.

21 à 34. Théorie des nombres pairs et des nombres
impairs.

36. Si 2n — 1 est un nombre premier, son produit par 2n—1

est un nombre parfait.
X. Ce livre est consacré à la théorie des irrationnelles de

la forme \/a + ]/b, théorie qui a perdu tout intérêt depuis
l'adoption de la représentation algébrique des identités. Elle
se ramène aux divers cas de la relation

la -f- {/a2 — b2 la -- [/a2 — b2

V -—S + y —h ^ +
On y trouve aussi ce qui suit :

29, lemme 1. La solution générale du triangle est :

oc ~ ka2 — kb2, y 2kab 2 ~ ka2 -f kb2

1 La démonstration de ce théorème, qui repose comme on sait sur la considération de
l'expression 2 3 5 7 11 13 17 p 1, témoigne qu'Euclide savait que celle-ci peut ne
pas représenter un nombre premier.
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117. La diagonale du carré est incommensurable avec le
côté. Supposons qu'on puisse représenter le rapport de ces
deux grandeurs par celui des deux nombres a et b, qu'on
peut supposer premiers entre eux : on aura a2 — 2b2, ce qui
demande que a soit un nombre pair 2a, et par suite que b

soit impair. On aurait ainsi 4a2 2b2 ou 2a2 b2 et b serait
pair. Le nombre b serait ainsi pair et impair, ce qui démontre
l'absurdité de la supposition.

Après Euclide, on peut citer : la sommation de 2n et de
2n2, par Archimède; les études de ce dernier et d'Apollonius
sur la numération; le crible d'Eratosthène; et ces théorèmes,
probablement pythagoriciens, recueillis par divers auteurs :

2nz (.2n)2. (Epaphroditus.)
8tn + 1 est un carré. (Plutarque.)1
Si on partage les nombres impairs en groupes de 1, 2, 3,

termes, la somme de chaque groupe est un carré. (Nicomaque.)
La somme de deux triangulaires successifs est un carré.

(id.)
Tout carré est de Tune des formes 3 ou 3 + l2 et de Tune

des formes 4 ou 4 + 1. (Théon de Smyrne.)

Les fractions 4 4
> r* * • -

2a * tendent en os-' 1 7 2 7 5 7 1 2 a7 a -f «

cillant vers la valeur de \/2 (id.3)
Si on additionne les chiffres de la, somme de trois entiers

consécutifs dont le plus grand est un multiple de 3, puis les

chiffres de cette somme, et ainsi de suite, on arrivera au
nombre 6. (Jamblique.)

Quoique Diophante ait traité exclusivement par l'algèbre4
les questions qui nous sont restées de lui, il a au plus haut
point servi la cause du progrès de l'arithmétique : d'abord en

suggérant diverses théories sur l'existence ou le nombre des
solutions de ses problèmes, dont la plupart sont de véri-

+1)1 tn représente le ne triangulaire,

2 Multiple de 3 ou multiple de 3 augmenté de 1.

3 Ajoutons que c'est chez Théon qu'on voit la première idée des carrés magiques.
4 Son artifice le plus employé consiste à ramener le problème à rendre carré le nombre

n2 — b
a2 + ax b : il égale cette expression à {x -f n)2, ce qui lui donne x — ^

n étant un

nombre entier arbitraire. C'est la première idée de la méthode des coefficients indéterminés.
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tables théorèmes sur diverses équations quadratiques
indéterminées h souvent très difficiles et même encore aujourd'hui
inaccessibles à toute démonstration ; — ensuite par sa

considération des formes des diviseurs numériques. Il sait en effet

quun nombi'e 2n -j- 1 ne peut être une somme de deux
carrés si n est impair ; en outre il paraît admettre qu'on peut
décomposer un entier quelconque en une somme cle quatre
carrés (IV, 31) et savoir que les diviseurs d'une somme de

deux carrés premiers entre eux sont cle la forme linéaire 4+1
et de la forme quadratique x2 + y2, car il dit (V, 12) qu'un
nombre impair ne peut être une somme de deux carrés qu'autant

que, divisé par son plus grand facteur carré, le
quotient n'est pas de la forme 4 — 1, et (VI, 15) que l'équation
15x2 — 36 y2 ne peut avoir lieu parce que 15 n'est pas la
somme de deux carrés. — Il tente de résoudre ce problème :

de combien de manières un nombre donné peut-il être polygone,

c'est-à-dire de la forme +_+ bf p \\ connaît l'identité

de Fibonacci, car il observe (III, 22) que 65 peut se

décomposer en deux carrés de deux manières différentes,
parce que ce nombre est le produit de deux sommes de deux
carrés. Il donne d'ailleurs plusieurs identités algébriques
intéressantes, mais dont l'arithmétique ne saurait tirer parti.

Les Indiens ont beaucoup cultivé l'analyse indéterminée
des deux premiers degrés; leurs méthodes étaient du reste
plus générales que celles de Diophante, qui se contentait
d'une seule solution; et en outre ils recherchaient des solutions

entières, tandis qu'il suffisait au célèbre Alexandrin
que la sienne fût rationnelle. Au point de vue qui nous
occupe, il convient de citer: la résolution des équations
ax — by c et x2 — ay2 — 1 au moyen des fractions continues,

résolution qu'ils semblent avoir toujours crue
possible ; cette remarque que l'équation ax2 — y2 1 n'est
possible que si a est la somme de deux carrés, et la méthode
pour passer de la solution de l'équation x2— ay2 — i à celles
de x2 — ay2 b. Ces découvertes se trouvent, la première

1 Telles que la suivante: Trouver trois nombres tels qu'en augmentant ou diminuant leur
somme de chacun d'eux, on obtienne six carrés.
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chez Aryabhata, les autres chez Brahmegupta, qui en sont
peut-être les auteurs. C'est chez les Indiens qu'ont
probablement pris naissance la preuve par 9 et celles par 7 et par
11: la considération des résidus de puissances leur était du
reste familière.

L'arithmétique est redevable de quelques progrès aux
Arabes : ainsi Thebit ben fKorra a donné cette formule de
nombres amiables :

(3 2" — 1) (3 2n~1 — 1) 2n et (9 2n~l — 1) 2n ;

et un autre auteur dont le nom est inconnu, cette remarque
que toute hypoténuse est de F une des formes 12 + 1, 12 + 5,
et l'identité

(<a2 -f- &2)2 ± ^ab (a2 — b2) (a2 — b2 + lab)2

comme solution des équations simultanées

oc2 -f- y z2 oc
2 — y -z: w2

ou de l'équation unique 2x2 — z2 + m2. Diophante a été
connu d'eux vers l'an mil: c'est ainsi que Al-Kadjandi a

annoncé l'impossibilité de décomposer un cube en deux autres
cubes 1.

Les premiers algébristes italiens s'instruisirent chez les
Arabes, qui certainement ont quelque part dans les nouveautés

que Léonard de Pise (Fibonacci) a fait connaître en
Europe. Toujours est-il que c'est dans le Liber abaci de ce
dernier qu'on voit pour la première fois cette règle, de diviser

un nombre par tous les nombres premiers inférieurs à

sa racine carrée, pour s'assurer s'il est premier; et la célèbre
série récurrente 1? 2, 3, 5, 8, 13, 21, 35, dont il définit les
termes par le dénombrement mensuel de couples de lapins,
en supposant que chaque couple en produit un autre à l'âge
de deux mois et disparaît ensuite ; — et dans son Liber Qua-
dratorum9 que la différence des carrés de deux nombres
impairs consécutifs est un multiple de 8; l'identité célèbre de

laquelle il résulte que le produit de deux sommes de deux

1 Diophante avait montré qu'un carré peut toujours se décomposer ei} deux carrés entiers
ou fractionnaires, et paraît avoir tenté d'étendre ce théorème aux cubes.
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carrés est, de deux manières différentes, la somme de deux
carrés ; que la raison de trois carrés en progression arithmétique,

laquelle est de la forme 4ab(a2— b2), est un multiple
de 24 et qu'elle ne saurait être un carré; enfin qu'on ne saurait

avoir à la fois
X2 j2 — z2 et xl — j2 w2

ni avoir
a* - j4 s4

Ces trois dernières affirmations ont été données sans

preuves satisfaisantes : Fermât les a retrouvées et démontrées.
On voit, dans Planude, l'équivalent de la formule A4/24

24; — dans Campanus (Prœcl. liber elem. Eucl. Venise,
1482), la première idée de la méthode retrouvée par Fermât
et appelée par lui la descente infinie1; — dans Paciolo (Summa
de Aritmetica, Venise 1494), la publication de diverses études
de Fibonacci et des Arabes; — dans Charles de Bouvelles
(Opuscula, Paris, 1511), ces deux théorèmes : les nombres
parfaits sont de la forme 9 + 1 et tout nombre premier est
de l'une des formes 6 zL 1(2) ; — dans Stifel (.Arithmetica intégra,

Nürnberg, 1544), plusieurs théorèmes, dont les
suivants : les deux nombres 220 et 284 sont amiables ; la formule
2 4n — 1 ne donne que des nombres premiers*; n étant
premier avec 3, on a :

22'13* _ 1
o4 ; (mod. 7)

22" - 1

tout entier est de la forme a + 3b + 9c. + 27d + 81e +
les coefficients a, b, c, pouvant prendre les valeurs — 1,

1 Campanus démontre géométriquement ainsi qu'aucun nombre ne peut être divisé en moyenne
et extrême raison: en posant

(a) J et a > è
5 a — b c b — c d c — d e

on aura successivement

ab be~T — — et 6 7> c — —- et c > db c cd ^ '

on pourra ainsi trouver une suite indéfinie d'entiers décroissants et répondant à la question
Or une suite d'entiers positifs ne peut décroître indéfiniment. L'égalité («) est donc impossible
engnombres entiers.

Ce passage tout à fait inconnu a été remarqué pour la première fois par Grenocchi.
8 Int. Math. 1894, p. 122. Voir Ed. Luces, Th. des ». (Paris, 1891), p. 424.
3 Théorème inexact. On sait qu'aucune expression algébrique finie ne peut représenter quedes nombres premiers. (Euler.)
4 « Septenarius, quemlibet numerum componit et numerat, qui colligitur ex tribus, sex,

nouera, aut duodecim termiuis, proportionalitatis duplœ, quadruples, aut sedecuplœ. »
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0, 1; enfin une méthode de recherche d'un nombre pensé
qu'on peut rendre par cette remarquable relation

[a + 1) R ï 4- a2R

R ± * + 1
a;

a (a -f- 1)

x étant inférieur à a [a + 1), et le symbole R ^ désignant le

reste de la division de x par n h

Bachet, dans la première édition de ses Prob, plaisants et
clél. (Lyon, 1612), annonçait la solution de l'équation ax —
by — c, b et c étant premiers entre eux; il la donne dans
la seconde édition, publiée en 1624, et démontre l'existence,
la périodicité et le calcul des solutions, en faisant voir que

si b est premier avec a, les valeurs de R ~ sont toutes

différentes, de x 1 à x b — 1, et se reproduisent ensuite
périodiquement2, et que la relation ax — by c entraîne

cette autre x — by c

1 Cette fonction ne nous parait pas avoir été étudiée systématiquement jusqu'ici; elle semble
cependant devoir conduire à des exercices intéressants. Ainsi

•H-+R-ER (mod. n)
n n n v '

„ a ^ b „ ab
R — R — R — (mod. n)

n n n

bR -R_Ji=R^

«>»>Rt>R — >R" — > R —->b R4 R-^_ R—b
R 1• R (Binet.)

h
R Ta>J>R^^>R > R r- > R — > (Euclide.)

b " " h
R -

Ri

ctoc x* ax cl
La théorie des fonctions R — R — et R —r- sont bien connues ; celle de R — n'a pas en-

b b b x
core été étudiée.

2 Dans notre dernier article, nous avons omis de dire que le lemme fondamental est de
Bachet (Ens. Math. 1907, p. 286).
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Bachet a encore rendu un service éminent à la science

des nombres, par sa publication du Diophante (Paris, 1621),

qu'il a traduit en latin et commenté. Parmi ses remarques,
nous mentionnerons ce théorème qui porte son nom : tout
entier est la somme de quatre carrés au plus h et qui a eu

des conséquences importantes.
Mais c'est surtout à Frénicle que revient l'honneur d'avoir

ouvert les nouvelles voies où devait s'illustrer Fermât. On

connaît quelques-unes de ses découvertes par les Lettres de

Descartes, les Varia Opera de Fermât et ses traités arithmétiques

publiés seulement en 1729. Citons les théorèmes et

problèmes suivants :

Il y a toujours Vune des cathètes d'un triangle qui est multiple

de 3, et une qui est multiple de 4. L'un des trois côtés

est multiple de 5. La somme et la différence des cathètes est
de l'une des formes 8 ± 1.

Trouver le plus petit nombre qui soit n fois hypoténuse.
Trouver n triangles ayant même surface.

Il paraît avoir remarqué avant Fermât la méthode de la

descente infinie, l'impossibilité de la surface d'un triangle
d'être représentée par un carré, la propriété des nombres
premiers de forme 4+1 d'être la somme de deux carrés, et
divers problèmes d'analyse indéterminée. Sa méthode de
démonstration était un tâtonnement ou exclusion méthodique,
qu'il indique par des exemples et qu'il employait très
habilement. Une très grande pratique étant nécessaire pour l'emploi

de cette méthode, il paraît peu utile de la mentionner
autrement.

Descartes, dans la solution de plusieurs problèmes qui lui
furent proposés, a montré ce qu'il eût pu produire s'il avait
cultivé l'arithmétique. Outre la solution de plusieurs questions

diophantines, il fait voir (Lettres, Paris, 1667) que les
nombres 4 — 1 ne peuvent être des carrés ni des sommes de
deux carrés ; que les nombres 8 — 1 ne peuvent être des carrés

ni des sommes de deux ou de trois carrés ; que si 3a — 1,

6a—1 et 18a2— 1 sont des nombres premiers, le nombre
2a(18a2 — 1) et la somme de ses diviseurs sont amiables1 ; que

1 Théorème laissé sans démonstration jusqu'à Lagrange.
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si <ja (3 -f- 4k)a(2) et que a soit multiple de 3 et non de 9,
on a

a 1 a

a 2 -I- M
1

que si a est multiple de 3 et non de 45, et que a — — ga, on a

1
45« — - (45a) ;

1
que si a est multiple de 3 mais non de 819, et que a ^ o-a,

on a

273a — i o (273a) ;

que a n'est divisible ni par 31, ni par 43, par 127,

par 1024, on a

_ Ba
^ A 218 43 127 B 31

ff(Aa) a{Ba)

théorèmes qui servent de types et permettent de multiplier
indéfiniment les solutions des nombres aliquotaires3. On voit
dans les mêmes Lettres qu'en 1638, de Ste Croix, autre
arithméticien insigne, connaissait le théorème des nombres
polygones, extension de celui de Bachet; que Descartes savait

que les seuls nombres parfaits pairs sont ceux d'Euclide et

que, s'il y en a d'impairs, ils sont de la forme pp'2p"2 p,
p', p", désignant certains nombres premiers4. Ajoutons
que, dans le t. XII du B. Bon. (Rome, 1879), on voit que
Descartes avait trouvé ces propositions par le moyen de la

relation / [ab) — f (a) f (b). (Ch. Henry, Bech. sur les man. de

Fermât.) Tous ces travaux de Descartes sont de 1638.

Dans les Cogitata physico-mathematica (Paris, 1644). de

Mersenne, on trouve les énoncés des résultats qu'on vient
de voir relatifs aux nombres aliquotaires, et en outre les

propositions que voici, dues probablement à Fermât:

1 Descartes applique ces formules aux cas de a 2, ce qui lui donne le couple de Sti'fel, de
a 8 et de a 64.

2 nn représente la somme des diviseurs de n, f n la somme de n et de ses diviseurs, c'est-
à-dire an -f- n.

3 Ed. Lucas (1. cit.) donne une restitution très plausible des démonstrations de ces
théorèmes. Voir aussi les Comm. Arith. d'Euler.

4 Voir Lionnet (Nouv. An., 1879), Sylvester (Comptes Rendus, 1888), Stuyvsert (Mathesis, 1896).
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Les seules valeurs cle n donnant pour 2n — 1 des nombres

premiers, jusqu'à n 257, sont 1, 2, 3, 5, 7, 13, 17, 19, 31,

67, 127, 257 h

Le plus petit nombre ayant cent diviseurs est 126765060022

8229401496.703205376, et la 66e puissance cle ce nombre
multipliée par la quatrième cle cet autre 847288609443 donnerait
le plus petit nombre ayant, un million cle diviseurs.

Dans son fameux Traité du triangle arithmétique, divulgué
en 1654, mais publié seulement en 1665, Pascal a donné une
théorie complète des nombres figurés, des combinaisons et
du développement de (<a + b)n, toutes choses connues des
Indiens et des Arabes, mais non démontrées et d'ailleurs
incomplètement traitées jusque là2. Pascal démontre les
formules relatives à ces trois théories, fait voir les relations
qu'elles ont entre elles, les applique aux questions de probabilité,

à l'expression générale de 2xn qu'on ne connaissait
que pour les onze premières valeurs entières de n et en tire
la démonstration de la formule

ainsi qu'un grand nombre de théorèmes remarquables, dont
ceux-ci :

a Ca -j. i,} £

Ca, b est divisible par b
Le nombre total cles combinaisons de n objets est 2n —- l3.
Mais c'est surtout dans sa méthode de démonstration que

Pascal a bien mérité de la science, méthode applicable à une
foule de questions où il s'agit d'une suite indéterminée de
nombres : elle consiste à montrer qu'une certaine propriété
supposée vérifiée pour l'entier n, l'est encore pour /? -|— 1, de

1 Les neuf premiers de ces nombres étaient déjà connus. Le nombre 67 parait mis pour 61.
L'assertion de Mersenne a été vérifiée, sauf pour les nombres premiers 71, 89, 101, 103, 107,
109, 127, 137, 139, 149, 157, 163, 167, 173, 181, 193, 199, 227, 229, 241 et 257.

2 En Europe, le calcul des coefficients du développement de [a -j- b)n à l'aide de ceux de [a -j-
b)u 1

a été d'abord indiqué par Stifel (1. cit.) ; et le calcul des coefficients à l'aide de ceux quiles précèdent dans la même puissance, l'a été par Briggs (Trigonometria britannica, Coude,
1633). Voir Mathesis, 1907, p. 63.

8 Cette proposition a été publiée d'abord par Schooten. Voir plus loin.

a

0
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sorte que si, par l'examen direct, on prouve qu'elle l'est
pour n 1, elle l'est pour n — 2, puis pour n 3, etc. Il
démontre ainsi les deux formules principales des nombres
figurés

Ca. b ~ Ca, b-i — 1

Ca, 1 + Ca, 2 + Ca? 3 + + b

Wallis, dans sa célèbre Arithmetica infinitorum (Oxford,
1655), a introduit dans la science, des idées nouvelles et
hardies, qui furent critiquées; elles devaient cependant aboutir
à la découverte de vérités importantes. Nous voulons parler
de la relation

î
r m 2, 2.4.6 (2*)

J' X" 1 3 5 (2 — 1) '

0

de l'interpolation des termes de la suite 1, |^ | '
~ ^

qu'il suppose être différentes valeurs d'une fonction continue

et qu'il représente par une courbe.
Schooten (Exercitationum mathematicarum, Leyde, 1657),

a fait voir que le nombre total des combinaisons de n objets
est 2n — 1, et a donné la liste des plus petits nombres ayant
respectivement 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 100

diviseurs, lesquels sont 2, 4, 6, 16, 12, 64, 24, 36, 48, 1024, 60,
Le premier écrit où il est question des travaux arithmétiques

de Fermât, est le Commercium epistolicum, de Wallis
(Oxford, 1658). On y trouve les énoneés de différentes questions

importantes dont celles-ci :

Trouver un cube qui, ajouté à ses diviseurs donne un carré,
et un carré qui ajouté à ses diviseurs produise un cube;

l'équation dite de Pell, x2 — ay2 — 1, dont Brouncker
donne la solution pour a 13(1);

les équations
x2 2 — y* x2 -f- 4 — j8 a$ -f- bs x3 -f- y2 ;

1 Efc) désignant la valeur de la partie entière du nombre non entier <*>, la solution de Brouncker

revient à poser x (E y + a, d'où 4y* 6ay -}- a2 — 1 et de là une expression
4?/i 3a -f- VYSa% — 4 de la valeur de y, on pose de même y (Et/i) y b-, el ainsi de suite.
— La justification de cette solution n'a été donnée que par Lagrange.
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l'impossibilité de partager un cube en deux autres cubes,
et celle de trouver un triangle dont l'aire soit un carré ;

Vexpression 22n + 1 représente un nombre premier2;
tout nombre premier de la forme 4+1 est une somme de

deux carrés ; tout nombre premier de la forme 3 + 1 divise
x2 + 3y2 ; tout nombre premier2 de la forme 8 — 1 est une
somme de trois carrés.

Mais c'est surtout dans la réédition, par le fils de Fermât,
du Diophantus de Bachet (Toulouse, 1670), que l'on voit les
monuments du génie de Fermât. Nous en citerons ce qui suit :

l'impossibilité de l'équation xa + ya za, pour a > 2,
non encore démontrée en général.

Si p désigne un nombre premier de la forme 4 + 1, les

équations
x2 -J- y2 —- pZn—l et. x2 -f- y2 p%n

ont chacune n solutions ;
le produit (a2 + b2)2n—k(c2 + d2)k est, de n manières, la

somme de deux carrés: de là, le moyen de déterminer le
nombre de fois qu'un nombre peut être hypoténuse, ou un
nombre qui soit n fois hypoténuse ;

résoudre
x8 T J8 — °3 T I)S '>

théorème des nombres polygones : tout entier est la somme
dennz°nes;

trouver une infinité de triangles ayant même aire;
l'aire d'un triangle ne peut s'exprimer par un nombre

carré; ce qui revient à dire qu'on ne saurait avoir xy (x2 +
y2) z2. C'est la seule proposition sur la démonstration de
laquelle Fermât ait laissé quelques indications. 11 la démontre
par la descente infinie dont nous avons déjà parlé3. Sa
démonstration a été rétablie par Euler.

1 Euler a reconnu que cette proposition est fausse. Fermât, qui la destinait à faciliter la
recherche des nombres parfaits, y revient quatre autres fois, dans les écrits qui nous restent

de lui. Il paraît l'avoir cherchée très longtemps.
2 Legendre a reconnu que cette proposition a lieu pour un nombre impair quelconque de

cette forme.
8 S'agit-il de faire voir qu'une certaine propriété ne convient pas à un nombre désigné

On cherchera un nombre plus petit qui jouisse de cette propriété, s'il en est de même du pi*e-mier. Delà un troisième nombre plus petit et dans les mêmes conditions. En continuant ainsi,
on obtiendrait une suite infinie d'entiers décroissants, ce qui est absurde. L'hypothèse du
point de départ est donc fausse. Voir par exemple Mathesis, 1905, p. 8.
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La publication également posthume d'une partie de la

correspondance de Fermât (Opera varia, Toulouse, 1679), permet

d'apprécier encore mieux les découvertes de l'illustre
géomètre, et quel regret on doit avoir de ce qu'il n'a pu faire
connaître ses méthodes arithmétiques, que les savantes
méthodes actuelles n'ont pu remplacer. On peut mentionner ce

qui suit :

Tout nombre composé de trois carrés ne peut l'être de deux,
même en fractions (lettre à Merse une, 1636).

La méthode de Maximis1 sert pour la recherche des
nombres aliquotaires. Les nombres 672 et 120 sont doubles
de la somme de leurs diviseurs2, 220 et 284 sont amiables
de même que 17296 et 184163. Sommation des bicarrés et
des nombres figurés. (Diverses lettres à Roberval, 1636.)

Il parle des progressions géométriques commençant à

l'unité, dont il a envoyé de belles propositions à Frénicle;
il rappelle qu'il a démontré qu'aucun nombre de la forme
4 — 1 n'est composé de deux carrés, ni entiers ni fractionnaires

; enfin il avance que tout diviseur premier d'une somme
de deux carrés premiers entre eux ne peut être de la forme
4 — 1, ce qui sert pour reconnaître si un nombre donné est

premier (lettre h Roberval).
Nous sommes arrivé à l'importante Lettre a Monsieur de ***,

dont il est nécessaire de donner une analyse détaillée. Fer-
mat parle de certaines progressions dont les propriétés
servent à trouver les diviseurs des nombres de la forme
a11 dz 1, et énonce ainsi le célèbre théorème qui a gardé son
nom : «... il m'importe de vous dire le fondement sur lequel
j'appuie les démonstrations de tout ce qui concerne les

progressions géométriques, qui est tel :

Tout nombre premier mesure infailliblement une des
puissances — 1, de quelque progression que ce soit, et l'exposant
de ladite puissance est sous-multiple du nombre premier
— 1. Et après qu'on a trouvé la première puissance qui
satisfait à la question, toutes celles dont les exposants sont

1 Le calcul différentiel.
2 Voir sur ce sujet Lettres de Descartes, t. Ill, p. 392.
2 Ces quatre nombres ont été trouvés par Descartes. Voir plus haut. Euler a longuement

traité de ces nombres (Voir ses Gommentationes Arithmetics.?, t. 1, p. 402; t. II, pp. 627 et 637).
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multiples de l'exposant de la première satisfont de même à

la question. »

Ainsi on a :

31 3 32 9 33 1 (mod. 13)

donc l'exposant 3 divise 13 — 1, et de plus 3dk ~ 1 (mod. 13).

Si le gaussien *, t de a est impair, on ne saurait avoir
ax + l 0. Ainsi 214 1 (mod. 23) ; donc 23 ne divise aucun
nombre de la forme 2X + 1. Si, au contraire, t est un nombre

pair 2r, on a aT + 1 0.

La difficulté de l'application de cette théorie est dans la

recherche du nombre premier p tel qu'on ne puisse écrire
ax -\- \ 0, c'est-à-dire tel qu'il divise a1— 1, t étant
impair. Elle sert dans la recherche des nombres parfaits et à

donner la raison de ce que, par exemple, 237 1 (mod. 223).
Fermât donne encore ces deux théorèmes: si p est un

nombre premier de forme 4 — 1, et qu on puisse trouver deux
nombres a et b tels que a2k + l ~ b, on aura at 1 avec t
impair2. — Aucun diviseur de a2 — 2 n'est de la forme x2 -fi 2.

(Lettre à Monsieur de ***, 1640.)
Si p est premier, les diviseurs de 2? — 2 sont de la forme

2ph et deux de 2p — 1, de la forme 2ph + 1. (Lettre à Mer-
senne.)

Il indique différents nombres aliquotaires (lettre à Car-
cavi), et énonce les propositions suivantes : On arrive au
théorème des nombres polygones en démontrant que tout
nombre premier 4 + 1 est une somme de deux carrés. — Tout
nombre premier 3+1 est de la forme x2 + 3y2 ; et tout nombre
premier 8 + 1 ou 8 + 3, de la forme x2 + 2y2. (Lettre à Pascal,

1654.)

Malgré de longues et minutieuses recherches, les écrits
contenant les méthodes de Fermât n'ont pas pu être retrouvés,

sauf trois lettres intéressantes, non datées, la seconde

1 On appelle ainsi, d'après Ed. Lucas (L cit.), l'exposant t de la plus petite puissance de a
qui donne at ~ l, au lieu de la longue et vague dénomination de Gauss : exposant appartenant
à a.

2 Ce qui revient à dire que a étant résidu de p — 1, on ne saurait avoir ax -f 1 o.
Cela fait voir que Fermât sait que si a est résidu de p, en posant p — 2m + 1, on a : am 1,
et que si pour k impair on a : ak ~ l, on ne peut avoir pour h, <^k, at1 ~ — 1.
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envoyée à Frénicle et la troisième à Huygens, et publiées
dans le B. Bon. (1. cit.). Nous en donnons ici ce qu'il y a de
plus important.

Tout impair non carré est autant de fois la forme x2 — y2

qu'il est le produit de deux facteurs. Soit à trouver les
facteurs de n — 2027651281 ; par l'extraction de la racine carrée,
on trouve n — 450292 + 40440. Le carré suivant surpasse n
de 2 45029 -f 1 — 40440 49919, nombre non carré, ce que
ses deux derniers chiffres indiquent suffisamment. Le carré
qui suit surpasse n de 49619 f 2 45029 + 3 139680,
nombre non carré. Continuant ainsi, on trouve à la dixième
opération, 450412 n + 10202 ; de là la décomposition n
46061 44021.

r 2P 4- 1

p désignant un nombre premier, le nombre ——— est de la

forme 2ph + 1. Si ab n'est pas de la forme 2n, le nombre
2ab-• -f- 1 se décompose aisément en ses facteurs 1.

Enfin, dans la lettre à Huygens, Fermât apprend qu'il se
servait de sa méthode de la descente pour démontrer:
qn aucun facteur de la formule a2 + 3b2 ne peut être de la
forme 3 — 1 ; que la surface d'un triangle ne peut être un
carré ni entier ni fractionnaire; que tout nombre premier
4+1 est une somme de cleux carrés ; le théorème de Bachet ;

la solution de l'équation de Pell ; l'impossibilité de l'équation
x3 + y3 z3\ que l'équation x2 + 2 y3 a l'unique solution
x 5 ; que l'équation x2 + 4 y3 n'a pas d'autres solutions
que celles-ci x =2, x 11. Il annonce que l'équation (2x2-—l)2

— 2y2 — 1 n'a qu'une solution qui est x 2; et qu'il a des

règles pour résoudre l'équation ax2 + b ^=y2, ou démontrer
son impossibilité, et de même pour les équations simultanées

cix + b — y2, ax + c — z2.

Maintes fois des doutes ont été émis, non sur la bonne foi
de Fermât, mais sur la valeur de ses démonstrations; il faut
reconnaître que le seul de ses théorèmes qui ait été reconnu
faux était énoncé par lui comme non démontré. D'ailleurs,
le cas échéant, il reconnaît lui-même l'imperfection de cer-

1 Par exemple, a, b, étant impairs, il est divisible par 2a + 1, par -f- 1, par 2a^ -f- 1,

et chacun de ces facteurs est divisible par 3.
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taines de ses méthodes, particulièrement dans la recherche
des diviseurs numériques 1. D'un autre côté, il a assez vivement

critiqué Wallis de s'être servi de la simple induction
dans les démonstrations de son Arith. inf. pour qu'on ne
puisse croire qu'il avait agi de même. La science, en s'éten-
dant et se perfectionnant, a perdu de sa simplicité, et il n'y
a guère lieu de s'étonner que les procédés élémentaires de

Frénicle, de Ste-Croix et de Fermât nous échappent; et,
même 'retrouvés, ils ne pourraient peut-être plus nous servir,

l'habitude étant perdue des longs calculs numériques
que ne craignaient pas d'entreprendre ces savants non
encore habitués aux calculs de l'algèbre, plus mécaniques et
moins suggestifs.

Nous terminons notre historique qui sera continué par
Y Œuvre arithmétique d'Euler, de Lagrange, de Legendre et
de Gauss par cette remarque que Fermât ne paraît avoir
étudié que dans Euclide, Diophante, Viète et Bachet: ses
découvertes paraissent avoir été faites entre 1630 et 1638 et
avoir eu pour origine la considération des nombres parfaits
ainsi que diverses questions proposées par Frénicle.

Deuxième Partie

Étude élémentaire sur le théorème de Fermât.

1. — Lemmes*l. L'expression ak— bke,?£ algébriquement
divisible par a — b. De plus si k est pair, elle l'est par a -f- b ;

si k est impair ak + bk est divisible par a -f b.
En outre, si k est multiple de n, et dans ce cas Ici seulement,

ak—bk est divisible /?«ran —bn. Plus généralement, si 0

est le p. g. c. cl. de k et de n, a® — bô sera le p. g. c. cl. de
ak — bk et de an — bn. Et ainsi des autres expressions.

1 Cependant, dans une lettre à Mersenne de 1643, il donne la décomposition en facteurs d'un
nombre de douze chiffres, qui lui avait été proposé.

2 Nous donnons ces différents lemmes pour rendre cet article tout à fait indépendant des
précédents [Ens. Math., 1907, pp. 24 et 286).

L'Enseignement mathém., 9e année ; 1907. 29
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