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SUR LA DISCUSSION ET LA RESOLUTION
DES EQUATIONS SIMULTANEES DU PREMIER DEGRE

1. — Cette théorie est capitale dans toute I’Analyse mathé-
matique, et cependant son exposition n’a jamais eu une lim-
pidité suffisante pour ne laisser aucune obscurité dans l'es-
prit des éléeves. Clest ainsi que deés le Baccalauréat, le
cas de deux inconnues, le seul exigé, est presque toujours
évité par les candidats quand il est laissé a leur choix parmi
trois sujets de composition, etque, pendant les 38 années de
ma carriére d’examinateur, je n’en ai pour ainsidire pas ren-
contré un seul qui ait pu me faire sur cette question des ré-
ponses ne soulevant aucune objection. |

Ce manque de netteté tient d’abord & la nature synthétique
presqu’a I'excés, des moyens employés. On commence, en
effet, par construire des expressions spéciales, les détermi-
nant, au gré de régles ne laissant apercevoir avec la question,
aucun rapport méme éloigné, et on poursuit a I'aventure, par
des passes de prestidigitation exécutées sur ce matériel dont
rien, en dehors de la’réussite, ne vient expliquer la néces-
sité et l'exacte adaptation. D’autre part, et c'est en bonne
partie une conséquence de ces vues artificielles, on s’obstine
a prendre pour théme du sujet, un systéme ou le nombre
des équations est égal a celui des inconnues (comme si
I'égalité de ces deux nombres était une donnée imposée par
quelque fatalité). et dont la nature n’a pas €té précisée au-
trement ; c'esta peu pres comme sil’on voulait faire la théorie

de I'équation du deuxiéme degré, sans distinger le cas ou le

coefficient de x? est nul, de celui ou il ne I'est pas. Une telle
marche conduit & des formules de résolution exigeant une
discussion dont les incidents sont trés variés, dont il est

L’Enseignement mathém., 9¢ année ; 1907. 23
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quasi-impossible de renfermer les résultats dans un seul
énoncé bref et précis.

Mais l'obscurité disparait, dées que l'on consent A raison-
ner sur les systémes réduits ; j'y vais revenir!, en simplifiant
toute la question dans une mesure et sous une lumiére qui
me paraissent ne laisser plus rien a4 désirer.

2. — Etant donné un systeme quelconque d’ equatlons si-
multanées du premier degré, dans chacune desquelles tous
les termes ont été reportés au premier membre, on marque
les roles relatifs joués dans la question par les coeflicients,
en les écrivant en abaque, c’est-a-dire en inscrivant leurs
notations dans les cases d'un quadrillage rectangulaire, dis-
posées par files horizontales ou lignes, et simultanément par
files verticales ou colonnes, cela de maniére que les coefli-
cients des diverses inconnues z, v, z,... et le terme indé-
pendant d’elles dans chaque équation, soient toujours placés
sur une méme ligne, et que, dans les diverses équations du
systeme, ceux de chaque méme inconnue, les termes indépen-
dants aussi, le soient toujours sur une méme colonne.

S'il existe quelque groupe de solutions &', y', z/,...
chaque équation montrera que son terme indépendant est la
somme des produits des coefficients de x, y, z,... par les
mémes quantités — x', — y’, — z’..., ce que nous exprime-
rons en disant que, dans l'abaque du systeme, la colonne
des termes indépendants est composée homolinéairement de
celles des coefficients de x, y, z,... au moyen des multiplica-
teurs — x', — y', — z',... afférents a ces derniéres co-
lonnes. |

Si, d’autre part, quelque ligne de 'abaque est pareille-
ment composée de ses autres lignes, le premier membre de
’équation correspondante est une fonction linéaire et homo-
géne de ceux des autres équations, homolinéaire dirons-nous
pour abréger; il s’annule ainsi en méme temps qu’eux tous si-
multanément, cette équation est satisfaite par tout groupe
de solutions appartenant aux autres équations seulement;

1 V. mon Exposition nouvelle de la théorie des formes linéaires et des déterminants. — 1884
Gauthier-Villars. :
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on peut donc la supprimer en réduisant au systeme de ces
derniéres seulement, tout le proposé dont le sort est le
méme. . _

Ces premiéres observations font pressentir le role domi-
minant joué dans la question par cette notion de composition
d'une file, de nom, ou sens, quelconque, relativement a ses
homonymes, ou paralléles; nous commencerons donc par
développer tout ce qui s’y rattache immédiatement.

3. — Nous écrirons 'abaque
ay , [)1 y €1y eee gl ’ /li ’ '
as , [)2 y Ca oy eee 8.2 ’ k2 ’
(1) ag. by, 5, oo, 8, b,
\ am, by, ¢, ..., gm, hu,

notation montrant d’elle-méme ce que nous entendrons par
les lignes 1, 2,3,..., M, par les colonnes a, b,c..., g, h, etnous
nommerons : ses éléments, toutes les quantités a1, 01, c1 ...,
g hi,as, ..., ..., ay, Dy, Criy -+ 5 Qu» I, Indistinctement, qui
le composent, sa hauteur, le nombre M de ses lignes, sa lar-
geur, le nombre de ses colonnes que nous représenterons par
N, ce qui donne MN pour le nombre total des éléments. Des
éléments en nombre quelconque sont enfilés s’ils appartien-
nent a quelque méme file, enlignés ou encolonnés suivant le
cas. o

D’apres cela, si la colonne a est composée (homolinéaire-
ment) des autres (2), c’est qu'il existe entre a1, a2, as, ..., ay
et tous leurs enlignés dans les autres colonnes, les relations
uniformes

ay — ﬁl)l + 761 + § + Zgl + W/11 y
Bbs + ez + ... + %g + whs

as

(2) ag

|

ay = ]B/)M_I_ ')'CM—[— -l—“ng—{— “r)]lM,

ou B, y,..., %, n sont les multiplicateurs afférents aux colon-
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nes dont la premiére est composée. La composition de la li-
gne 1 au moyen des autres s’exprimerait par

a4 — )tg ag —l— ).3 asg —I— )4 ay -‘,— sse + )\M aM ,
b]_ == 12 bz + )\3 ,)3 —l— 14 b4 + wse "I— lM bM s
(3) €y — .

hI: lghg + )3]23 + )\4]14 + ‘e + )&MllM ’

les multiplicateurs afférents a ces derniéres lignes étant ici
A2, Az, e.y Ay

4. — Nous faciliterons beaucoup le langage en disant que,
pour certaines valeurs des éléments, I’abaque est vanescent
ou invanescent, par ses files d’'un sens donné, selon que quel-
qu'une de ces files est composée de ses paralléles, (2), (3), ou
quaucune d’elles ne l'est.

Il est utile de noter les observations suivantes.

I. La vanescence de labaque, comme son invanescence,
est indépendante des ordres dans lesquels ses lignes et co-
lonnes peuvent étre écrites. Car une modification dans ces
dispositions ne fait que changer l'ordre de succession des
équations dans le systéme (2) ou (3), et celui des termes du
second membre dans chaque équation. |

II. Par ses files du sens donné, lUabaque est toujours va-
nescent : . _

1° Quand une de ces files contient des éléments tous nuls
Car s'il s’agit des eolonnes par exemple et de la premiere,
les relations (2) auront lieu en y prenant

ﬁ::'y::...:x:'q:o.

2° Qudnd Uabaque partiel laissé par Uablation . de quel- -
ques-unes de ces files est lui-méme vanescent de la maniére
indiquée. Car si I'on a par exemple
| a; = das + Ma; ,

,)1: )szbz "I— )‘3/)3 ’

By = dahy + dghg |
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on rendra les relations (3) exactes en y prenant
M=k=..=l=0.

3° Quand les éléments sont tous nuls dans quelques files
de Uautre sens, si Uabaque partiel laissé par U'enlévement de
ces derniéres est vanescent de la maniére considérée. Car s’il
en est ainsi pour les lignes montrant les indices 1, 2. et si
les M — 2 dernieres relations (2) ont lieu, les 2 premiéres
ont lieu d’elles-mémes, toutes forcément ainsi, puisque

a1:b1:01:...»»:/zli0 ,
et

g — by — g = o= hy =0 .

I11. La vanescence de Uabaque par les files d’un sens, en-
traine celle de Uabaque partiel qu’y laisse la suppression de
files quelconques de Uautre sens. ‘

5. — La question qui nous occupe raméne a chaque ins-
tant, des polynomes entiers par rapport aux MN éléments
de l'abaque, regardés comme autant de variables indépen-
dantes, qui, non nuls identiquement, le deviennent chaque
fois que ces variables prennent des valeurs pour lesquelles
labaque est vanescent par ses files d’'un sens donné, (4), qui
présenient en outre le caractére particulier d’éire homoli-
néaire par rapport aux €éléments de chacune de ces files,
considérés itsolément. Nous les nommerons des covanescents
de 'abaque, pour ses files du sens indiqué.

‘Nous commencerons par étudier leur structure, en suppo-
sant qu'il s’agit des lignes pour fixer les idées, en représen-
tant par L un polynome indéterminé parmi ceux qui ont la
forme précisée ci-dessus relativement aux éléments des /i-

" gnes, puis en cherchant les conditions nécessaires et suffi-

santes pour qu’il soit un covanescent pour les lignes.
I. Soit

(4) L:A1a1+B1b1+... +G‘1g1+H1hl

Uordination de ce polynome par rapport aux éléments de
la ligne 1 de Uabaque, par exemple, ou

(5) ’ AI)Bir‘--yG17H1
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sont indépendants des éléments de celte ligne,
(6) al,' b]_,... 7g17h1'

St M =1, les quantités (5) se réduisent a des constantes.
St M > 1,6l faut que As, soit indépendant des éléments de

la colonne aussi de a1, covanescent en outre (pour les lignes)

de Uabaque partiel {a:} laissé dans (1) par la suppression de
ces deux files non paralléles contenant a1 ; et de méme pour

Bi,..., G1, Hi, relativement aux colonnes de b, ..., g1, ha, et
aux abaques partiels b1} , ..., {gi}, {Il.
1° Quand M = 1, les éléments (6) sont les seuls compo-

sant l’abaque, et les quantités (5), qui n’en dépendent pas,
sont ainsi des constantes.

2° Quand M > 1, ces polynomes (5) sont, comme L, homo-
linéaires par rapport aux éléments d'une autre ligne quel-
conque Z,

(7) a;, b;, e Bp k; ,

[

et, pour Ay, on a ainsi
(8) Ay = Ay i+ Ay by b A g+ Ak

ot Ae, .., Aypne dépendent d’aucun des éléments des li-
gnes (6), (7). ”

En attribuant maintenant la valeur commune 0 a tous les
éléments de ces deux lignes, autres que a;, a;, 'une au
moins de celles-ci devient composée de 'autre (3) quels que
soient ai, a;, ce qui rend 'abaque vanescent (par les lignes),

donne en conséquence L — 0. Car, si a1 est nul" aussi, ou
bien a, tous les éléments d’'une méme ligne s’évanouissent
(4, 11, 1°). Sinon, @) = (a, : @;) a; par exemple, et la ligne

d’indice 1 est composée de celle d’indice ¢, le multiplicateur

de celle-ci étant @; : «@;. Or ces attributions numériques ré- .

duisent A; a Ai,a; (8), L par suite a Ay aia; (4); dou
Ay, aya; = 0, quels que soient a, a;, ceci exigeant A, , = 0.

L’indice ¢ étant arbitraire, on voit que A: est bien indé-
pendant de tout élément de la colonne des a.

vy
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3° Quand l'abaque - par‘uel fai}, a M—1 lignes et N—1 co~

lonnes, savoir

/ bZ’VCB’ e :g2: k2 ’
' 1)3 ’ . . . }'l3 s
(9) :
by, eM, e SM, hy .
devient vanescent, le suivanta M — 1 lignes et N colonnes,
0 ’ bz y €2y vev g2 ’ ]22 ’
0 i b3 ’ “ . . s 9 k3 ’
0 ’ bMa CM, » - = 3 kM’

le devient aussi (4, II, 3°, et encore, quel que soit a1, cet
autre | '

a'l, 0 ’ 0 ¥ ? 0 ’ O ?
0 9 bﬂ y Ca y B2 ks )
07 [)3) 7h3; ([[),20)’
0, by, cM, - 8M hw,

auquel le proposé (1) se réduit, pour
1:(:1._....:5"1:}11:0 et a2:a3:...:aM:0.

Or ces attributions numériques réalisées dans (4) réduisent
L 4 A1, puisque A: est indépendant, tant de ces 2 (M — 1)
éléments, que de a1 (2°). Quel que soit @1, on a donc

A1(L1 _ 0 3 d’Ol‘l A]_ == 0 3

ceci montrant que A: est un covanescent de l'abaque {m}
figuré en (9).

~ 4° Pour les autres polynomes du groupe (5), les raisonne-
ments sont les mémes, sauf des notations différentes.

II. Désormais, nous supposerons > 1, la hauteur M de
I’abaque, ainsi que sa largeur N, et nous dirons défilés, des
éléments en nombre quelconque, dont deux ne sont jamais
enfilés (3). Tels sont: a1, b2, ou az, b1, ou a1, b2, cs, ou b1, az,
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s, ou @i, b2 ¢s, ds, etc., ou..., groupes dans chacun desquels
deux éléments quelconques ne sont, ni enlignés, ni enco-
lonnés.

Dans le développement général (en termes élémentaires
dissemblables) du polynome L ordonné par rapport a la
totalité des éléments de Uabaque, il faut que tout terme de
coefficient g £ 0, soit le produit de q par M élément défilés.

Car si un tel terme contenait deux facteurs variables en-
lignés, le polynome L ne serait pas linéaire par rapport aux
éléments de la ligne de ces facteurs (supr.). S’il contenait
deux facteurs variables encolonnés, l'ordination de L par
rapport aux éléments de la ligne de 'un d’eux, e;, donnerait a
e; un coeflicient non indépendant de tous les éléments de la
colonne des e (I). S’il contenait moins de M facteurs de ce
genre, le méme polynome ne serait pas homogéne par rap-
port aux éléments de quelque méme ligne (supr.)

En d’autres mots, il faut que les notations des M éléments
facteurs d’un tel terme, montrent les M indices différents 1,
2, 3, ..., M, affectant M lettres différentes aussi.

III. — On forme les arrangées de v objets différents, de
nature quelconque, en les concevant simultanément (avec ou
sans figuration par 'écriture) dans tous les ordres de succes-
sion réalisables. Deux arrangées sont identiques, quand cha-
cun des vy objets est au méme rang dans 'une et dans l'autre,
différentes quand il n’en est pas ainsi. On sait que le nombre
des arrangées différentes est 1. 2. 3.... v.

Une permutation de ces objets dans une arrangée est un
déplacement simultané de tout ou partie seulement d’entre
eux, qui la change en un autre (identique parfois. a la ri-
gueur). Elle prend le nom spécial de transposition de deux
objets, dans le cas trés remarquable, ou, v étant > 1, elle
consiste a déranger deux objets seulement, pour remettre
chacun d’eux a la place que 'autre occupait.

La transposition de deux files paralleles de Pabaque (1) est
leur transposition définie & l'instant, moyennant conception
préalable de I'abaque comme une arrangée de toutes les files
de ce sens, considérées chacune comme un seul objet. Cela
posé:
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Il faut que la transposition de deux lignes quelconques,
i, j, dans la notation du polynome L, change son signe
sans modifier sa valeur, c’est-a-dire plus proprement, qu’elle
équivaille a sa multiplication par — 1, c/zangeant ainsi
Len — L.

1° L’ordination de L par rapport aux éléments de ces deux
lignes, considérés indistinctement, ne donne que des ter-
mes de la forme |

Qeif:j ,

ou les éléments ordonnateurs mis en évidence sont notés
par deux lettres différentes, comme leurs indices, le coefli-
cient Q ne dépendant que des éléments de labaque élran-
gers, tant aux colonnes de lettres e, f, qu'aux lignes consi-
dérées, d'indices ¢, j. Car si 'un de ces deux éléments
mangquait, L ne serait pas homogéne par rapport & tous ceux
de sa ligne; sileurs lettres étaient identiques, le développe-
ment général de L contiendrait des termes == 0 dont les
facteurs e;, ¢; seraient encolonnés (I1); si le polynome Q dé-
pendait de quelque élément appartenant a une des quatre
files exclues, un fait analogue impossible se présenterait
d’une maniére ou de l'autre. Cette ordination donne donc

(10) L= (Pa;b; + P”biaj) 1+ (Q'a;c; + Q'c;a) + ...

+ (rr/-,l J + rllk )

le nombre total des termes étant N(N — 1), les coeflicients
tels que Q, ayant été représentés par ' ‘

(11) PP, Q.. T,

etles deux termes dont les éléments ordonnateurs appartien-
nent a chaque paire de colonnes, ayant été toujours groupés
entre parenthéses pour plus de clarté.

2° En donnant ensuite les noms «, (3, Yy eeey %y M,y A N quan-
tités absolument indéterminées, puis faisant

@, = =a, bi:/)j:ﬁ’ ,gi.:gj:x,hi:]zj:n,
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et représentant par A ce que L devient ainsi, il vient,

d’aprés le développement précédent,

A= (P 4+ P af + (Q + Qay + ... + (I 4 T)un,

parce que les polynomes (11) sont tous indépendants des
éléments des lignes dont les indices sont z, j, et tous les
termes du second nombre sont dissemblables. Mais, en méme
temps, I'abaque est devenu vanescent, parce que, les deux
lignes considérées ayant été rendues identiques. I'une d’elles
prise a volonté est composée de l'autre au moyen du multi-
plicateur 1. On a donc par définition A = 0, quelles que
soltent ¢, 3, ..., %,n; ceci entraine

P=—P' =P, Q=—Q"=Q, ..., "T=~=T"'=T,

ou P, Q, ..., T représentent les valeurs communes des deux
membres de chaque égalité, donne par suite au développe-
ment (10), la forme

€

L =Pla;b; — biaj) -+ Q(aicj — ¢+ .+ T(g;h;— h;g;) -

3° Or la transposition des lignes considérées modifie cette
expression, de la méme maniére que celle des indices i, j
seulement, change donc L en

P(ajbi—bja) —}—Qaa — ¢ a) 4+ ...+ (gJ ; h.gi)

— — P(aibj — biaj) — Q(aicj — Ci“j) —_ . — T(mhj h, i8;)

= —L.

IV. Quand M = 1, le polynome L est toujours un co-
vanescent de labaque considéré. '

Quand M > 1, il suffit pour qu’il en soit ainsi, que L
soit changé en — L par la transposition de deux lignes
quelconques.

1° Si M =1, 'abaque ne peut devenir vanescent que par
lattribution de la valeur commune 0 a tous les éléments de
sa ligne unique. Or cette attribution annule L puisqu’il est
homolinéaire par rapport a tous ces éléments.

2°S1 M > 1, L g’évanouit :

a. —Quand les éléments de quelque méme ligne de I’abaque

i e i
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prennent tous la valeur0, pu1squ 'il est linéaire et homogene
par rapport a eux. ~ '

B. — Quand deux lignes sont identiques; car en nommant

'L ce en quoi L est Lhange par la transposmon de ces deux
lignes, I'hypothése donne

Th=—0L,
outre
"L = L

en fait, a cause de I'identité de ces lignes, et ces deux rela-
tions entrainent bien L = 0.

v.—Quand quelque ligne, la premiére pour fixerles idées
est composée des autres. Car on a, pour les éléments de celte
ligne, des expressions telles que les seconds membresde (3),
expressions dont la substitution dans L, homolinéaire parrap-
port & ces éléments, donne

L=1. L+ ). Ly + ... + hr., Inc

ou Le, Ls, ..., Ly représentent respectivement ce que de-
vient L par la substitution 4 sa premiere ligne, de celles
d’indices 2, 3, ... , M successivement. Or, ayant par ce qui
précéde Le—=Ls—=... =Ly =0(8), on a aussi L=0. |

Comme I'abaque est vanescent dans le premier des trois
cas ci dessus («), dans le dernier (y) [renfermant le second
(8)], et ne peut ’étre dans aucun autre, le polynome L en est
bien un covanescent. _ ’

V. Quand M > N, l'abaque ne posséde aucun covanescent.

Car, s’il en existait un, son ordination par rapport a tous
les éléments de 'abaque contiendrait quelque terme de la
forme qaabﬁ Cy ++v 8y lty, le coeflicient constant q étant = 0, et
les M letires étant toutes différentes, ainsi que les indices
(I1). Or ceci est impossible pour les lettres, puisque leur
nombre N est supposé < M. - ~

[Si la détermination L = 0 identiquement, n’avait été
exclue {supr.) comme dénuée d’intérét, on pourrait dire ici
que cette détermination est le seul covanescent de I'abaque
(Cf. A4, inf)].

En conséquence, nous supposerons désormais M < N.
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VI. Avec les colonnes de l'abaque (1), associées de toutes
les maniéres possibles en groupes de M chacun, formons
les abaques partiels |

12 FINTaran.

dans le développement général du polynome L supposé co-
vanescent de l'abaque proposé, nommons

(13) . ll , 1" , 1”/ ,

la somme des termes dont les notations impliquent exclu-
sivement les lettres des M colonnes de |a'l (11), puis sem-
blablement, celles des termes analogues relativement a 3 a' i
ta’""|,... successivement. Les polynomes (13) sont des covanes-
cents des abaques (12) respectivement, du proposé aussi, et
la somme de tous,

(1%) V+1 417 4.,
reproduit <L.
- Inversément. si (13) sont des covanescents quelconques des
abaques (12), leur somme (14) en est un du proposé.

1° Le groupe 1’ par exemple, est un covanescent de {a’
parce que les attributions, aux éléments des colonnes de {a'},
de valeurs le rendant vanescent, a ceux des autres colonnes
de (1), de la valeur commune 0, rendent ce dernier vanescent,
(4, 11, 3°), annulent ainsi L, en méme temps que la seconde
réduit ce polynome al’.

2° Le méme groupe est un covanescent de (1), parce que
la vanescence de cet abaque entraine celle de {a’| en particu-
lier (4, 111), annule par suite son covanescentl’.

3° La somme (14) est égale a L, parce que tout terme de ce
polynome, a été placé dans une des parties de cette somme
et dans une seule.

4° Siles polynomes (13) sont des covanescents des abaques
partiels (12), la nullité de tous, celle de leur somme (14) par
suite, sont assurées par la vanescence de I'abaque (1), entrai-
nant celle de chacun des abaques (12) (4, IlI). Donc cette
somme est un covanescent du proposé. | |

6. Ce théoréme ayant ramené la construction des covanes-

B )
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cents de l'abaque (1), a M lignes et N (= M) colonnes, ‘a la
recherche de ceux des abaques partiels (12), dans chacun
desquels les lignes et les colonnes sont en nombre tous deux
= M, il nous reste 4 nous occuper de ces derniers, que nous
dirons carrés et d’ordre M. Nous raisonnerons sur le type

as , bl y €1, o0, €1, fi y

Ay 5 bﬁ y €2y oo , €3, f2 )
(15) |

aMm, bM9 CM, «+ » €M, fM’

noté au moyen de M lettres, «, b, c,..., e, f, dont nous re-
présentons par 1 un covanescent hypothétique, pour ses (i-
gnes, toujours. | | |

I. L'ordre M étant supposé > 1, et une colonne de lUaba-
que carré (15) ayant €été choisie arbitrairement, ainst qu’'un
élément dans celle-ci, a1 pour fixer les idées, tout covanes-
cent 1 de cet abaque est de la forme.

(16) l=al, , —ayly , — ... —ayl, ,

ou ont €t€ représentés : parly . quelque covanescent de Uaba-

que partiel, encore carré mais d'ordre M — 1,
bk ’ 02.7 vee y Co oy fZ 1
bs . . . . ., ,
(17) s fs
bu, e, .., ex, fu,

que laisse dans le proposé la suppression simultanée de la
ligne et de la colonne de ai; par lys, lsa, ... lya, ce que
devient 1y, quand on y substitue by, ¢y, ..., e, fi, a ses
éléments figurant dans les lignes 2, 3, ..., M de labaque
(17), enlevées tour a tour.

Réciproquement, si b, est un covanescent de labaque
partiel (17), cette formule donne pour 1 un covanescent du
proposé (1).

1° Le polynome 1 est homolinéaire, par rapport aux élé-
ments
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(18) - ' @y, Ay, Az, ... Ay

de la colonne considérée.

Dans la formule (4), ’élément @, n’entrant ni dans Ai, ni
dans aucune partie du second membre autre que Aia, le
terme en a1 de l'ordination de L par rapport a cet élément
seulement est précisément Aiai, et ceux de provenances

analogues relativement a as, ..., @y sont, de méme. Azas....,
Ayay, empruntés aussi aux ordmatlons successives de L
par rapport aux éléments des llones 2.3, ..., M.

L’application de ces observatlons a 101‘d1nation de 1 par
rapport aux (18) conduit donc a

(19) 1:A1(l1+Agag+...+AMaM—I—A0 ’

et on remarquera: que A1, Ai, ..., Ay, Ao sont, comme I,
des polynomes tous homolinéaires par rapport aux éléments
d’une ligne quelconque de I'abaque (15); que le dernier Ao
ne dépend que de ceux.de 'abaque partiel

bl » C{ y ese oy €1, ﬁ y
(20) b2 , Ca P ] s , fé ’
by, e, ... , em, fou,

restant de (15) aprés suppression de la colonne considérée
(18) ; que tout autre A;ne dépend que des éléments laissés
dans celui-ci (20) par la suppression de sa ligne ¢ (5, I).

Si maintenant on rend l'abaque (20) vanescent par les
lignes, avec attribution simultanée de la valeur 0 aux
quantités (18), on rend vanescent aussi ’abaque considéré
(15) (4, II 3°). ce qui annulel, et on réduit & Ao ie second
membre de (19). Il en résulte que Ao prend alors la valeur 0,
ceci montrant que ce polynome est un’ covanescent de 1’aba-
que partiel (20) pour ses lignes, puisque nous avons remar-
qué tout a I'heure qu'il est homolinéaire par rapport aux
éléments de chacune de ses files de ce sens.

- Mais le méme abaque n’a aucun covanescent de ce sens
qui ne soit nul identiquement, parce que ses colonnes et li-
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gnes sont en nombre M — 1 < M (5, V). D'ou Ao =0 iden-
tiquement, puis

(21; ' 1= Ajas + Azfllz--{— -+ AMQM 4 (19),
ce que nous voulions prouver.

2°0n a

(22) Al — ll,a y A2 = — 12,a s A3 - — 13,a, g ovd g AM - — lM,a .

La premiére de ces formules résulte de ce que, dans l'or-
dination (4), A1 est un covanescent de l'abaque partiel (9) se
réduisant ici a (17). .

Pour établir la seconde, transposons dans (21) les lignes
1, 2, ce qui donne '

NM1="'Ara, + "Ava; + "Agas + "Ayas + ... + "Avan ,

en représentant par’l, “A1, ... ce que 1, As, ... sont devenus,
et ajoutons les deux relations membre a membre. A cause

del + '1=0 (5, ITI), il vient ainsi

0 = (Ar 4 "Ad @ + (As + Az + (As + "Ag) s + ...

+ (Am + "An) ax ,
puis

(23) Ar+ A =0, A +'A, =0, ...

parce que l'identité précédente a lieu quels que soient les
éléments (18). _

Comme A1 ne dépend que des éléments des M — 1 dernie-
res lignes de 'abaque partiel (20), la transposition exécutée
a pour effet d’y remplacer seulement bz, c2, ..., e2, o par b1,
c,... e1, f;. On en conclut "A; = Ly, a cause de la premiére
des formules (22), déja établie, puis Ay = —"Ay = — 1, a
cause de la seconde identité (23), c’est-a-dire la seconde des
mémes formules ; et les transpositions de la méme ligne 1
avec celles d’indices 3, 4, ..., M successivement, conduisent
semblablement a toutes les autres.

3° La combinaison de ce qui précede (1°, (2°) montre que
1 ne peut avoir que la forme donnée par la formule (16).

4° Si 1, désigne maintenant un covanescent quelconque
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de l'abaque (17), ly4, lig, . , Iy, rempliront visiblement la
méme fonction pour les abaques partiels{az!, {as}, ..., {a}ydé-
rivés de celui-ci{a1| par la substitution de laligne b1, c1, ...,
e1, fi, a ses lignes d’indices 2, 3...., M successivement ; et
ces M polynomes, celuil que fournit la formule (16) par suite,
sont homolinéaires par rapport aux éléments de toute ligne
de I'abaque total considéré (15), comme on I'apercevra facile-
ment.

Ensuite, représentons généralement par (¢, j), la transpo-
sition des lignes ¢, j de cet abaque (15) et, sur la formule (16),
exécutons celte opération en supposant d’abord, 7 = 1, en
considérant par exemple (1, 2). Si I'on note les résultats par
les mémes lettres accentuées, il vient ainsi

n o ’ ’ ’ v
1= a211,a_a112,a“a313,a‘”"'—‘a 1

= — (a1, , — a, L

2,a_“313,a’_"'_“x1 o=},

1,a

Car ,llza —be. 'bo==k, ce quon apercevra immédiate-
ment, et i, = —1l,, ..., lyos= — ly., comme résultats
de la méme transposition opérée dans lj,, ..., ly. cova-
nescents des abaques {ag},.».., {aM}, qui tous contiennent les
lignes dérivées des deux transposées par la suppression de
leurs éléments a1, a2 (5, III). Et les mémes moyens montre-
ront que 1 est encore changé en — 1 par les autres transposi-
tions analogues (1, 3), ..., (1, M).

Enfin, la transposition quelconque (Z,j)ou i == 1,7 == 1,
équlivaut aux trois (1, i), @, J), j, 1) opérées successivement,
la premiere surl, la seconde sur 'l résultat de la premieére,
la troisieme sur "l résultat de la seconde, conduisant a un
résultat final “l. Aprés ces dernieres, la ligne 1 est effecti-
vement revenue a la premiére place, et chacune de celles
d’indices i, j se fixe a la place de 'autre. Or, d’aprés ce qui
précede, 1 = —1. 1= —"1=1, "l = — "l = — 1, parce
que, chaque fois, la transposition a déplacé la premiére ligne
de I'abaque laissé par la précédente, ceci montrant que la
transposition quelconque (7, j), comme (1, 2), (1,3), ..., (1,
M), change 1 en — l. :

L'expression (16) de 1 est donc un covanescent de 'abaque
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considéré (15) puisqu’elle remplit les deux conditions re-
quises a cette fin (5, IV). |

II. Quel que soit son ordre M, l'abaque carré (15) possede
une infinité de covanescents s’obtenant tous en muliipliant
un seul d’entre eux par une constante indéterminée T' (= 0).

10 Ceci est vrai pour M =1, car l'abaque se réduit a a1 et
- T'ax en est un covanescent évident, le seul possible, en outre,
puisqu’il doit étre linéaire et homogéne par rapport a l'uni-
que élément a1 de sa ligne unique.

2° Pour M > 1, le théoréme subsiste s’ilalieu pour la valeur
M — 1 de 'ordre. Car, dans la formule (16), 1; , covanescent
de 'abaque (17), carré aussi et d’ordre M — 1 seulement, est
déterminé par hypothése, a un facteur constant prés; L,

lso, ..., Lia et 1 par suite le sont donc, au méme facteur
pres. ' ‘ o
3° 1l est donc général, puisqu’il est vrai pour M — 1 (1°),

puis de la pour M = 2, 3,..., (2°.
III. Il est utile d’appliquer ce qui précéde au calcul des
covanescents li, lz, Is, des abaques carrés d’ordres 1, 2, 3.

10 M=—1.
(24) L’abaque est {a;} ; L =Ta, . (I1, 1o0).
90 M=2.

, b '
(25) L’abaque est Z: b; g i b= a;. Tby — a,.Tby  (Ib. 20), (19)

—_— F (a1/)2 — dg ])1) .

3° M=23.
aq [)1 Cq )
L’abaque est ; as by cy
as b; cq §

\
13 i (ll . F ([)263 — 1)362) — Qg . P([)163 —_— [)3C1) — dz . P (1)281 _— bICZ> (II, 20)’ (20)
=T [(li ([)203 el ,)362) — g (/71(:3 -_— 1)3(31) — Qg (l)gc-l -_— b1(32” ‘

On apercevra facilement que le développement général de
ly contient le terme I' @1 b2 cs... f;y dont les facteurs éléments
sont notés par des letires de rangs égaux a leurs indices. On
dit que ces ¢éléments appartiennent a la diagonale principale

L’Enseignement mathém., 9¢ année ; 1907. 24
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de -I'abaque considéré (15), allant de son angle supérieur
gauche a son angle inférieur droit, et on nomme principal
le terme en question.

IV. Tout covanescent d’'un abaque carré (15), pour ses
lignes, Uest ausst pour ses colonnes. Et réciproguement.

1° Dans l'alinéa I, nous avons constaté que 1, covanescent
pour les lignes, est homolinéaire par rapport aux éléments -
d’une colonne quelconque.

2° Pour M.=1, les deux points en question résultent immé-
diatement de la nature de la formule (24).

3° Pour M = 2, la transposition des deux colonnes change
1 en — 1. Car cette opération change le dernier membre
de la formule (25) en

l"(/), ay — bg(ll) = — r((ll [)2 - Qs I)1> .

4° Pour M > 2, la transposition de deux colonnes quelcon-
ques change len —1, s’tl en est ainsi pour la valeur M — 1,
de Uordre.

Construisons une formule telle que (16), en ordonnant 1
par rapport aux éléments a1, ..., ay d’'une colonne autre que
les deux en question; la transposition de celles-ci ne fait,
par hypothése, que multiplier par — 1, L4, L, ..., Lga,
covanescents d’abaques dont 'ordre commun est M — 1 seu-
lement; elle change donclen — 1.

5° Ceci a lieu pour toute valeur de M, puisque c’est vrai
pour M = 2 (3°), 4°).

6° Comme ainsi (1°), (5°), 1 remplit pour les colonnes, les
conditions reconnues suffisantes au n° 5, I'V, la partie di-
recte de notre théoréme est actuellement démontrée.

7° La réciproque résulte immédiatement de ce que 'aba-
que reste carré quand on prend, pour lignes et colonnes, les
files qui étaient auparavant des colonnes et des lignes.

V. A cause de cette identité des roles joués dans un aba-
que carré par les colonnes et par les lignes, un covanescent
est multiplié par — 1 a chaque transposition de deux files
paralleles quelconques, par (— 1)¥ en conséquence, apreés
de telles transpositions, faites dansl'un et 'autre sens indis-
tinctement, en nombre total £.
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VL. Parmi les covanescents des abaques carrés, 1l est natu-
rel de préférer la considération de ceux dont les notations
sont les plis stmples; ils sont donnés par les formules de
I'alinéa III quand on y prend T = 1. On les a nommés les
déterminants de leurs abaqUGs:.,ﬁt on les représente par les
notations de ceux-ci, renfermées entge deux filets verticaux.
On a ainsi

aq [)1

lay = a4, = ay b, — asby ,
as by

(26) |
asbyc

et ])2 Co ,)1C1 1)262

22 bg Co | —— Q4 — Ay — Qs ]

bs cq bscs | D1 €1

dg by es

On peut dire que chacun d’eux est celui des covanescents
de son abaque, dont le terme principal (7b.) est pourvu du
coeflicient 4 1.

VIIL. La réciprocité entre les lignes et les colonnes (IV)
permet de construire tout aussi bien les déterminants par
ordinations relatives aux lignes, celles-ci étant substituées
aux colonnes maniées dans ’alinéa I1I. Au lieu des formules
(26), on aurait ainsi

a [)1
la)| = ay, ! = a, by — bia, ,
as by |
ay by cq .
l /)2 Co Qs Co /)2 g
ag bz Co | —— s I)l — (1 : .
l [)3 Cs Qg Cg ])3 (s
as bs cg

Ces formules montrent en passant, que le déterminant

d’un abaque carré (15) est idenlique a celui de I'abaque sy-

métrique au proposé par rapport a sa diagonale principale
(1b.) c’est-a-dire dédnit de lui par transposition de chaque
paire d’éléments symétriques par rapport a cette diagonale.

Pour éviter des fautes de signes dans la notation et le ma-
niement des déterminants, il est essentiel de ne pas perdre
de vue I'observation V. -

1. — Tous les covanescents de 'abaque (1) (quelconque, sauf

des lignes et colonnes en nombre M = N) s’obtiennent en
prenant la somme des déterminants o', ", ... des abaques
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partiels carrés (12), multipliés respectivement par des cons-
tantes indéterminées, T'.T" ... Conséquence immédiate de
ce qui a été dit au n°® 5, VI, puis ci-dessus (6, II).

Cette proposition confére a ces polynomes 2’ 2" .. lerole
de covanescents fondamentaur de l'abaque en question,
en ramenant a leur seule considération celle de tous.
Effectivement, ceux-ci se forment au moyen d’eux, comme
nous venons de le dire ; et la nullit¢ de tous, en méme
temps qu'elle comprend celle des déterminants puisque
ceux-ci figurent dans leur groupe général, est entrainée
parelle, parce que d' 2", ... servent de coeflicients aux indéter-
minéesI',T'",...,dans'expression générale des covanescents.

On remarquera que [abaque considéré est invanescent
quand o', d",..., ne sont pas tous — 0. Car ils le seraient
tous, s’il y avait vanescence.

Ces polynomes d' 2" ... | sont les déterminants (majeurs) de
'abaque (1). Leur nombre est visiblement [N (N — 1)

(N — M« 1)]:[1. 2. 3... M].

8. — Un abaque peut étre vanescent de plusieurs manieéres
qu'il est temps de préciser.

L’'entier v étant = M, nous dirons que l'abaque (1) est v
fois vanescent, si on peuty assigner v lignes dont chacune
soit composée des M — v autres, ces dernieres formant un
abaque partiel invanescent.

Nous nommerons encore déterminants de classe ¢ du
méme abaque (mineurs, si ¢ > 0, majeurs, st ¢ = 0), ceux
majeurs) des abaques partiels, laissés dans le proposé par la
suppression successive de toutes les associations possibles
de ¢ de ses lignes (7). Leurs ordre et nombre sont M — ¢ et

PIMM —1) . M —c+1)]:[1.2...¢] }
S {NIN—1) .. (N—M+4c+1]:[1.2..M—g¢)] } .

9. — Pour que l'abaque (1) soit v fois vauescent (par ses
lignes), il faut et il suffit que ses déterminants soient lous
nuls dans les classes < v, mais non dans la classe v (8).

1. Si cette vanescence multiple a lieu, tous les déterminants
mineurs en question sont nuls.
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Y r
1° Etant données o, < w', files paralléles, de o' éléments
chacune,

(27) W, @, (e,

tout déterminant d’ordre o' est nul, quand son abaque est
formé de files “

(28) ), @), ., ()

dont chacune est composée de celles du groupe précédent (27).
Ceci est vral: _ ‘
z. — Si le déterminant considéré |[w], (1')| comporte o

files (différentes ou non) dont chacune appartient au

groupe (27) avec une seulement de I'autre (28). Car les rela-
tions de la composition supposée pour celle-ci peuvent
étre écrites symboliquement.

(1) = M (1) 4+ X (2) + ... + )y, (@)

et donnent (5, in init.).
ol (1) ] =2 | (o], (1) ]+ 2% | (o], @]+ + 2 | o], (@) ],

ot les multiplicateurs 1, 2, ..., dw affectent des détermi
nants tous nuls comme comportant chacun deux files au

moins identiques dans un méme sens;
=

4. — Si, comme | [0 — 1], (1)), (2")] |, son abaque contient
w — 1 files (27) avec deux autres de (28); car les relations de
composition propres a l'une de ces derniéres, permettent
comme ci-dessus («) de lui donner une forme homolinéaire
par rapport a4 w déterminants nuls encore parce qu’ils ren-
trent dans le type précédent (15.); ) :

v. — Si, comme | [« — 2], (1), (2'), (3")11, il comporte & — 2
et 3 files des groupes (27) et (28); raisonnement tout sem-
blable, appuyé sur (8); ...

Et ainsi de suite, jusqu’au bout, en modifiant chaque fois
’abaque du déterminant par la suppression d'une file (27) et
son remplacement par une file (28).

2° Si, dans 'abaque en question, (M — v) représente le
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groupe des lignes dont est composée chacune de celles du
surplus (v), une ligne quelconque est toujours composée des
M — v de ce groupe, ceci ayant lieu de soisi elle en fait
partie, par hypothése si elle appartient au surplus. Tout dé-
terminant d’une classe ¢ < v est donc nul, parce que, son
ordre M — ¢ étant > M — v, ses M — ¢ lignes sont ainsi
composées de mémes autres en nombre M —v < M — o (1°).

1. Sotent p. > v deux entiers, quelconques autrement, puis

(29) aO}ﬁOa""70“01507(?07""7)0

une ligne de v €léments, puis

%y, ﬁl [ a‘1 » €1, 901 y eee o T,

az ) . . . . . . . . . ) nz I}
(30)

ay_, ﬁf"' vee dy_r 551,7 ?f"’ ey 7251,,

p autres,‘chacune de v €léments encolonnés entre eux ainst
qu’'avec les précédents, et formant, par leur réunion, un
abaque dont les déterminants (majeurs) ne sont pas tous
= 0. 8¢ la ligne (29) est composée des autres (30), l'aba-
que de hauteur p + 1 formé par leur réunion totale a ses
déterminants (majeurs) tous nuls, et réciproquement.

1° Si une telle composition a lieu, 'abaque en question est
vanescent, d’ou la nullité de tous ses déterminants (7).

2° Si ces déterminants (d'ordre p. 4 1) sont tous nuls, il en
est ainsi, en particulier, pour les vy — u d’'entre eux ou p
mémes colonnes de {(29), (30)} sont respectivement associées a
chacune des vy — p. autres. En outre, il en est encore ainsi
pour les u donnés par le groupement de ces u colonnes im-
muables avec chacune d’elles-mémes répétée successive-
ment, puisque un quelconque d’entre eux comporte toujours
deux colonnes identiques. '

Dans ces (v — y) + p = v déterminants, indistinctement,
les (x 4+ 1)°™* colonnes sont toutes celles de 'abaque {(29), (30)} ;
mais, dans leurs ordinations par rapport aux éléments d’in-
dices 0, 1, 2, ..., o + 1 de la colonne volante, les coeffi-
cients de ces éléments restent les mémes, parce qu’ils ne
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dépendent que des p colonnes immuables qui sont commu-
nes a tous ces déterminants. Ils forment la suite

AO'_AI’_A29"'7—“AP.’

ol sont représentés : par A, le déterminant de l'abaque
carré d’ordre u, laissé dans celui des p colonnes immuables
par la suppression de sa ligne 0, par A; généralement, ce
qui devient A,, quand, a saligne Z, on substitue cette ligne
0 (6, VI). La nullit¢ des v déterminants précités (d’ordre
v + 1) donnera ainsi les v relations

Aoao — A4 al—-Agag——...——AHOt!_L:O,
(31) A0y — . . ... A“(}y =0,
Aggg — - . . ... A!’-;P‘ = 0,
Aony — A 5y —-Ag?;g——-...—AF'Y)H::O.

Si maintenant p colonnes de I'abaque (30) donnent un dé-
terminant non nul, on pourra faire en sorte que A, soit ce-
lui-ci, c’est-a-dire prendre pour les p colonnes immuables
de (29), (30)}, celles précisément dont les précédentes font
partie. La division des relations (31) par A, 2= 0 est alors
possible, et les met sous une forme montrant immédiate-
ment, que la ligne (29) est bien composée de celles de I'aba-
que (30).

III. Si dans la classe v, quelque déterminant de Pabaque
proposé (1) est5=0, il appartient a titre majeur, a4 'abaque des
M — v lignes quiont formé les siennes, et cet abaque est in-
vanescent (7). Si, en outre, tous sont nuls dans la classe v—1,
ou leur ordre est M — v + 1, il en est ainsi en particulier,
pour les déterminants (majeurs) de I'abaque formé par les
M — vlignes ci-dessus et une autre quelconque. Cette der-
niére est donc composée des premiéres (II).

10. — Quand M = N, labaque (1), alors carré, est va-
nescent par ses files d’un sens, autant de fozs que par cel-
les de Uautre (8).
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A cause de la réciprocité existant entre les lignes et les
colonnes de tout abaque carré (6, IV), un déterminant mi-
neur, de classe quelconque ¢, d'ordre M — ¢ par suite, du
proposé considéré comme formé de lignes, est majeur, aussi
bien pour I'abaque des M — ¢ colonnes dont les siennes
font partie, que pour celui des M — ¢ lignes qui ont formé
les siennes. Le mineur en question en est donc un de méme
classe ¢ pour le proposé considéré comme formé de colonnes,
ceci entrainant immédiatement I'exactitude de notre énon-
cé (9).

11. — Quand M > N, labaque (1) est vanescent par ses
lignes, M — N fois au moins.

Car il 'est autant de fois que I'abaque carré obtenu en lui
ajoutant M — N colonnes de zéros (4, 11 3°); et celui-ci est
vanescent M — N fois au moins : par ses colonnes, parce que
ses déterminants de classes < M — N, d’ordres > N par
suite, comportent tous une colonne au moins de zéros, par
ses lignes aussi, en conséquence (10), (Cf. 5, V).

12. — On réduit un abaque donné, relativement a ses li-
gnes, par exemple, en en extrayant quelques unes de nature
et en nombre tels, que leuir abaque partiel, dit réduit, soit
invanescent, et que, d’elles seulement, toutes celles du pro-
proposé sotent composées. A cette fin, on trie d'apres la re-
gle suivante, les lignes de 'abaque, passéesen revue dans un
ordre de succession quelconque :

Chaque nouvelle ligne examinée est placée dans Uabaque
réduit, si'les lignes antérieurement conservées pour lui sont
en nombre inférieur a la largeur N de l'abaque, et st, avec
celle en question, elles forment un abaque dont les détermi-
nants ne sont pas tous =— 0. Elle est au contraire rejetée, si
ce nombre est — N, ou bien si ces délerminants sont tous
nuls. |

En effet, on apercoit immédiatement: qu'au moment de
'essai d'une ligne quelconque, 'abaque de celles antérieu-
rement conservées est invanescent (7): qu'en cas de rejet
cette ligne était bien composée de celles qui forment cet
abaque (9, 11, 2°), (11).

On notera que : la hauteur de l'abaque réduit ne peut
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surpasser la largeur du proposé (1b.); une ligne compre-
nant exclusivement des éléments = 0 est toujours a rejeter ;
quand toutes sont de cette ‘nature, U'abaque réduit dispa-
rait. _ ‘

13. — Nous passons aux équations du premier degré, dont
nous considérerons un systéme comportant des inconnues
Ly Yy Baevey Sy Ly ooy U, v, des équations, en nombres quelcon-
ques n, M, ces dernieres étant

asx+by+ezt ... teat+fivt.o g+ wt+hAh=0,
(ze)

dont les coeflicients a1,..., ..., ..., ky doivent étre concus en
un abaque a M lignes, a n + 1 colonnes.

I. Au systéme (32), on peut substituer son réduit, c’est-a-
dire celut qui a pour coefficients les éléments de lU'abaque
laissé par la réduction de celui du proposé, opéré relative-
ment aux lignes (12).

Car tout groupe de solutions du proposé appartient a son
réduit ne comprenant que des équations du premier. Et,
comme il est visible que les premiers membres du proposé
sont tous composés homolinéairement de ceux du réduit,
tout groupe de solutions de celui-ci, puisqu’il annule ces
derniers, annulera aussi les premiers, vérifiera en consé-
quence la totalité des équations considérées.

Désormais donc, nous raisonnerons exclusivement sur un
systeme réduit, comportant ainsi dans son abaque, des lignes

en nombre m < n + 1, m équations par conséquent. Nous
I’écrirons

ala:—l—b13'+...+elt+ﬁu—l—..._—}—glv—l-h.lw—}—/clz:(),
(Lgx-'l— R . T s .. .« s .. —‘-—th—{—lig:O,

(33)

amx + bm)‘ + + emt —|- fmu —|— + smy -‘I— ]lmw —I— l.’;ﬁ:‘: 0.
et nous le dirons surabondant, complet ou incomplet, selon
que msera =n + 1, =n ou < n. '
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Nous ﬁngI‘GI‘OHS encore son abaque

ay , b] y €1 . ..o, €1, fl 5 ]21 , A"l ¥
o) as ])2 Y e e e e e . L S, hz , ke,
(3%)

am, ,lm y Cmy ooy Em, fm y eee sy Sm, hm , km .

L. Le systéme réduit (33) est impossible quand il est sur-
abondant.

Car l'existence de solutions x', ¥',..., ¢', @’ entrainerait la
vanescence de l'abaque (34) par les colonnes, sa derniere
étant alors composée des autres au moyen des multiplicateurs
— 1, —y', ..., — ¢, — o', par les lignes en méme temps,
puisqu’il est carré (10). Or ceci n’a pas lieu, puisqu’il est
supposé réduit.

ITI. Non surabondant, il est impossible encore, quand
Uabaque partiel | a, b, ..., g, L} formé dans (34) par les
seuls n colonnes de coefficients des inconnues est vanes-
cent.

S'il possédait quelque groupe de solutions x', ¥',..., la co-
lonne % de 'abaque total (34) serait composée des autres avec
les multiplicateurs —x’ — 3’, ... Moyennant quoi, chacun des
déterminants(majeurs)decetabaque,oulacolonne kintervient,
pourrait étre mis sur forme d'une expression homolinéaire
par rapport a n déterminants du méme abaque auxquels cette
colonne est étrangere, les coeflicients de cette expression étant
—x', — y’, ... Les déterminants indépendants de la colonne
k étant = 0, puisque I'abaque { @, b, ..., g, A | est supposé
vanescent, les autres le seraient encore, tous ceux de 'aba-
que (34) aussi, et, contrairement a I’hypothése, le systeme
(33) ne serait pas réduit.

“1IV. Non surabondant, il est possible quand Uabaqgue
{ a, b,..., g h } (ITD) est tnvanescent. Il est alors déterminé
$’il est complet, indéterminé s’il est incomplet, cette indéter-
mination consistant en ce qu’on peut choisir arbitrairement
les valeurs de.tout groupe de n — m inconnues, tel, que les
coefficients des m autres soient les éléments d’un détermi-
nant = 0, en ce que, de plus, les valeurs correspondantes de
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ces m autres inconnues s’expriment par des fonctions linéai-
res déterminées des n — m premieres. ,

1° Si le systéme est complet, 'adjonction d’une ligne de
zéros ason abaque (34) rend celui-ci vanescent par les lignes,
par les colonnes en méme temps, puisqu’il est devenu carré
(10). Comme, en outre, la suppression de sa colonne % laisse
un abaque partiel invanescent (par les colonnes) parce que le
déterminant des colonnes a, b, ..., g, & de (34) est sup-
posé = 0, cette colonne % est composée des autres (9, I, 29,
et il suffit évidemment de multiplier par — 1 les multiplica-
teurs de cette composition pour en déduire un groupe de
solutions du systéme considéré.

Ce groupe 2, y', ... @’ est unique. Car si un autre x”,
y", ..., w" existait encore, I'une au moins des différences
2 —a =&y —y =u,.,w" —w =4, lapremiére pour

fixer lesidées, serait£0; les substitutions successives del’un
et I'autre groupes dans chacune des équations du systéme,
suivies de la soustraction des résultats, conduiraient a

a E4+byn+ ..+ b Yp=0,
as €+ byn+ ...+ Iy g =0,

amE + bnn + + hm'gb ==l

el la division de ces égalités par £ supposé == 0, montrerait,
dans 'abaque { a, b, ... , g, h},icicarré, que la colonne «
est composée des autres, qu’il est ainsi vanescent par les co-
lonnes, par les lignes en conséquence, ce qui est contraire
a ’hypothese. |

" Les multiplicateurs des colonnes «, b,..., g, h de I'abaque
(34) agrandi d'une ligne de zéros, dans les formules expri-
mant la composition de la colonne % au moyen de celles-ci,
se calculeront comme aun® 9,1, 2°. Puisqu’il suffit de les mul-
tiplier par — 1 pour obtenir &’ y'..., on aura les farmules

(35) x'::-————'—,y‘:——--——', ..... , W — — O

ou ont été représentés : par Az, le délerminant de I'abaque



364 _ CH. MERAY

fa, b, ..., g, ki, par Ay Apy.... Ay ce qu’il devient par la
substitution de sa colonne % faite successivement a chacune
des autres a, b, ..., h.

2° Si le systeme (33) est incomplet, soient a, b, ..., e un
des groupes de m colonnes de son abaque (34), qui, par hypo-
thése, donnent des déterminants £ 0, et représentons par
K1, Ka,..., K,,, les groupes de termes, linéaires en u,..., ¢, w,
qui, dans les diverses équations, ont des coefficients notés
au moyen des autres lettres f..., g, &, k. Ce systéme peut
étre écrit
a4+ by + ..+t +K =0,
(36) )

amx + bm)‘ + ...+ emt + Kpn=20,

et sa résolution par rapporta z, v, ..., ¢, faisable comme ci-
dessus (1°) parce qu’il est complet & ce point de vue, conduit
bien facilement 4 ce qui nous reste a établir, observation
faite que, dans les formules (35), A, est indépendant des £,
que Ag, Ap, ..., Ay en sont des fonctions homolinéaires.

3° 1l n’est pas sans intérét de remarquer que le cas d'un
systeme incomplet comprend a la rigueur celui ot il est com-
plet. Pour cette cause, il serait facile de traiter les deux
ensemble, de fondre notamment le sous-alinéa 1° dans le
suivant (2°). G'est ce que nous ferons pour la démonstration
suivante. ‘

14. Le systéme (33) étant réduit et possible, toute équation
du premier degré (E), que ses solutions vérifient aussi, est
composées homolinéairement des siennes. )

Supposant == 0, le déterminant A des coeflicients des m
inconnues &, ¥, ... {, nous mettrons le systéme sous la forme
(36), I'équation (E), sous une forme analogue en marquant ses
coefficients de I'indice commun 0, et nous considérons 1’aba-
que carré, d’ordre m + 1,

a , bo, ... , e, Ko,

(37) a , bl 7 et €, Kl )

am, bm, vee s Em, Kn.
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Le fait que toutes les solutions du systéme satisfont a
équation (E),, assure, quelles que soient les valeurs attri-
buées a u, ...,.v, w, la composition de la colonne K de
I'abaque (37) au moyen des autres ; d’oti sa vanescence par les
colonnes, puis par les lignes (10), puis la composition de la
premiére de celles-ci au moyen des autres, puisque le déter-
minant A est == 0 (9, 11, 2° ; et, en nommant i1, 2z,..., An les
multiplicateurs de cette composition, on a

ap = M ay -+ do as -+ ... —I—ll;zam ;

(38) l}() — )\] bl + . . 5 + )\/n {))n ,
\ e = Mey - ds €2 + ... 4 dmem
(39) K() — )\1K1 + )2 K2 + vy )/nK]n .

En ayant égard a ce que h,.... in, ne dépendent que des
éléments des m colonnes «a, b,..., e de 'abaque (37) (loc. cit.),
puis égalant les coeflicients de u, ..., ¢, w dans les deux
membres de (39), cette équation se décompose en les éga-
lités |

fo =k + o 4+ dnfn

8o —= )1 51 + + )L,ng)n ’
IZO e 11 }11 + ‘e "l— )wz km ’
A’() = )\1 A'l + 5% —I— )\/n /t"]n y

constituant avec (38) toutes celles que nous avions a établir.
15. — Dans le développement général du déterminant

~d'un abaque carré, d'ordre quelconque M, (5, 1I), la transpo-

sition de deux lignes produit sur la notation, le méme effet
que celle des indices correspondants, les lettres restant im-
mobiles (1. 111); celle de deux colonnes équivaut de méme
a celle des lettres correspondantes, les indices conservant
cette fois leurs places primitives. Appuyés sur ces observa-
tions, des raisonnements tout semblables 4 ceux du n° 6, 1
conduisent bien facilement a l'ordination du déterminantpar
rapport a ceux d’abaques partiels en nombre quelconque i,
formés par la décomposition de celui du proposé en des grou-
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pes déterminés de mq, ms, ..., m; files toutes paralléles dans
un sens donné, ces i entiers étant quelconques aussi, sous la
seule condition de donner M par somme.

Pour ¢ = 2, cette opération a une grande importance, mais
dans des questions sur lesquelles il n’y a pas lieu de revenir
ici. Pour i = M, entrainant my — ms — ,..., = m; =1, elle
fournit le développement général du déterminant, obtenu
par de simples manipulations d’un seul terme arbitrairement
choisi; pour 2 <‘ i < M, elle conduit a des formules variées.
Comme ces derniéres sont inutiles, comme le développement
général, qui ne 'est pas moins en théorie quand on se place
a notre point de vue, ne sert a rien pour les calculs numé-
riques a cause de sa prolixité, il serait tout a fait oiseux
d’entrer dans les détails. |

16. — Terminons par un théoréme fort simple, mais indis-
pensables dans des questions importantes.

Tout déterminant est un polynome premier.

Si celui de 'abaque (15) que nous représentons par A, est
décomposable en deux facteurs entiers o', 0", et si I’élément
a1 par exemple, entre effectivement dans ¢’, ni lui, ni aticun
autre élément d'une file ¢ contenant a1 ne peuvent entrer
dans 9”. Car autrement M = 3' 9” ne serait pas homoli-
néaire par rapport aux éléments de cette file. De méme,
et puisque ainsi tous les éléments de ¢ entrent dans o', au-
cun autre d’'une file contenant un de ceux-ci, aucun élément
de ’abaque en conséquence, ne peut entrer dans ¢”. Ce fac-
teur 0" se réduit donc a4 une constante, moyennant quoi, tout
~diviseur " de A lui est égal-a un facteur constant, prés ; c’est
ce quil y avait a prouver.

Ch. MEray (Dijon).
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