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SUR LA DISCUSSION ET LA RÉSOLUTION

DES ÉQUATIONS SIMULTANÉES DU PREMIER DEGRÉ

1. — Cette théorie est capitale dans toute l'Analyse
mathématique, et cependant son exposition n'a jamais eu une
limpidité suffisante pour ne laisser aucune obscurité dans l'esprit

des élèves. C'est ainsi que dès le Baccalauréat, le
cas de deux inconnues, le seul exigé, est presque toujours
évité par les candidats quand il est laissé à leur choix parmi
trois sujets de composition, et que, pendant les 38 années de

ma carrière d'examinateur, je n'en ai pour ainsi dire pas
rencontré un seul qui ait pu me faire sur cette question des

réponses ne soulevant aucune objection.
Ce manque de netteté tient d'abord à la nature synthétique

presqu'à l'excès, des moyens employés. On commence, en
effet, par construire des expressions spéciales, les déterminant,

au gré de règles ne laissant apercevoir avec la question,
aucun rapport même éloigné, et on poursuit à l'aventure, par
des passes de prestidigitation exécutées sur ce matériel dont
rien, en dehors de la'réussite, ne vient expliquer la nécessité

et l'exacte adaptation. D'autre part, et c'est en bonne
partie une conséquence de ces vues artificielles, on s'obstine
à prendre pour thème du sujet, un système où le nombre
des équations est égal à celui des inconnues (comme si
l'égalité de ces deux nombres était une donnée imposée par
quelque fatalité), et dont la nature na pas été précisée
autrement ; c'est à peu près comme si l'on voulait faire la théorie
de l'équation du deuxième degré, sans distinger le cas où le
coefficient de x2 est nul, de celui où il ne l'est pas. Une telle
marche conduit à des formules de résolution exigeant une
discussion dont les incidents sont très variés, dont il est

L'Enseignement mathém., 9e année ; 1907. 23



338 CH. MÉRÂY

quasi-impossible de renfermer les résultats dans un seul
énoncé bref et précis.

Mais l'obscurité disparait, dès que l'on consent à raisonner

sur les systèmes réduits ; j'y vais revenir1, en simplifiant
toute la question dans une mesure et sous une lumière qui
me paraissent ne laisser plus rien à désirer.

2. — Etant donné un système quelconque d'équations
simultanées du premier degré, dans chacune desquelles tous
les termes ont été reportés au premier membre, on marque
les rôles relatifs joués dans la question par les coefficients,
en les écrivant en abaque, c'est-à-dire en inscrivant leurs
notations dans les cases d'un quadrillage rectangulaire,
disposées par files horizontales ou lignes, et simultanément par
files verticales ou colonnes, cela de manière que les
coefficients des diverses inconnues x, y, z,... et le terme
indépendant d'elles dans chaque équation, soient toujours placés
sur une même ligne, et que, dans les diverses équations du

système, ceux de chaque même inconnue, les termes indépendants

auâsi, le soient toujours sur une même colonne.
S'il existe quelque groupe de solutions x\ y\ z',...

chaque équation montrera que son terme indépendant est la

somme des produits des coefficients de ,x\ yr 2,... par les
mêmes quantités — x\ — yr, — z'..., ce que nous exprimerons

en disant que, dans l'abaque du système, la colonne
des termes indépendants est composée homolinéairement de

celles des coefficients de x, y, z,... au moyen des multiplicateurs

— x\ — y', — z\... afférents à ces dernières
colonnes.

Si, d'autre part, quelque ligne de l'abaque est pareillement

composée de ses autres lignes, le premier membre de

l'équation correspondante est une fonction linéaire et homogène

de ceux des autres équations, homolinéaire dirons-nous

pour abréger; il s'annule ainsi en même temps qu'eux tous
simultanément, cette équation est satisfaite par tout groupe
de solutions appartenant aux autres équations seulement;

1 V. mon Exposition nouvelle de la théorie des formes linéaires et des déterminants. — 1884

Oauthier-Villars.
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on peut donc la supprimer en réduisant au système de ces

dernières seulement, tout le proposé dont le sort est le

même.
Ces premières observations font pressentir le rôle domi-

minant joué dans la question par cette notion de composition
d'une file, de nom, ou sens, quelconque, relativement à ses

homonymes, ou parallèles; nous commencerons donc par
développer tout ce qui s'y rattache immédiatement.

3. — Nous écrirons l'abaque

notation montrant d'elle-même ce que nous entendrons par
les lignes 1, 2,3,..., M, par les colonnes a, A, c..., g, A, et nous
nommerons : ses éléments, toutes les quantités ai, bi ci

gi, Ai, ai aMl AM, cM,... g*M, AM, indistinctement, qui
le composent, sa hauteur, le nombre M de ses lignes, sa
largeur, le nombre de ses colonnes que nous représenterons par
N, ce qui donne MN pour le nombre total des éléments. Des
éléments en nombre quelconque sont enfilés s'ils appartiennent

à quelque même file, enlignés ou encolonnés suivant le

cas.
D'après cela, si la colonne a est composée (homolinéaire-

ment) des autres (2), c'est qu'il existe entre ai, <22, as, aM

et tous leurs enlignés dans les autres colonnes, les relations
uniformes

at bt Ci gx » ht

a2 h2 c2 ga h
Cl$ ()$ C3 gz >

^3 »

ai p/>i + 7ct + ••• + *£1 + »

#2 — |5/>2 H- 7C2 ••• -j- 5

#3 —

«M ß/->M+ 7CM+ + H- yhM,

où jS, 7, y., y? sont les multiplicateurs afférents aux colon-
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nés dont la première est composée. La composition de la

ligne 1 ail moyen des autres s'exprimerait par

I CL\ ~ ^2 #2 ~j~ ~f~ ^4 #4 "j- • • • >

I ~ ^2^2 ~f" ^3 ^3 "t~ ^4 bj, -f- -j- >

(3) < Cl

f ht "k2 h2 -f- X3 hs -j- ^4 hi -f- • • • -f-

les multiplicateurs afférents à ces dernières lignes étant ici
X2 ^3 XM •

4. — Nous faciliterons beaucoup le langage en disant que,
pour certaines valeurs des éléments, l'abaque est vanescent
ou invanescent, par ses files d'an sens donné, selon que
quelqu'une de ces files est composée de ses parallèles, (2), (3), ou
qu'aucune d'elles ne l'est.

Il est utile de noter les observations suivantes.
I. La vanescence de Vabaque, comme son invanescencey

est indépendante des ordres dans lesquels ses lignes et
colonnes peuvent être écrites. Car une modification dans ces
dispositions ne fait que changer l'ordre de succession des

équations dans le système (2) ou (3), et celui des termes du
second membre dans chaque équation.

II. Par ses files du sens donnée Vabaque est toujours
vanescent :

1° Quand une de ces files contient des éléments tous nuls
Car s'il s'agit des colonnes par exemple et de la première,
les relations (2) auront lieu en y prenant

2° Quand Vabaque partiel laissé par l'ablation de

quelques-unes de ces files est lui-même vanescent de la manière
indiquée. Car si l'on a par exemple

d\ ZZZ ^2 ^2 + ^3 #3 >

ht ~ ^2 ^2 -J- ^3 b3
>

ht h2 -j- ks
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on rendra les relations (3) exactes en y prenant

\ \ — m /M 0 •

3° Quand les éléments sont tous nuls dans quelques files
de Vautre sens, si Vabaque partiel laissé par V enlèvement de

ces dernières est vanescent de la manière considérée. Car s il
en est ainsi pour les lignes montrant les indices 1, 2, et si

les M — 2 dernières relations (2) ont lieu, les 2 premières
ont lieu d'elles-mêmes, toutes forcément ainsi, puisque

et
a2 b2 — c2 — • h2 0

III. La vanescence de l'abaque par les files d'un sens,
entraine celle de l'abaque partiel qu'y laisse la suppression de

files quelconques de l'autre sens.
5. — La question qui nous occupe ramène à chaque

instant, des polynômes entiers par rapport aux MN éléments
de l'abaque, regardés comme autant de variables indépendantes,

qui, non nuls identiquement, le deviennent chaque
fois que ces variables prennent des valeurs pour lesquelles
Vabaque est vanescent par ses files d'un sens donné, (4), qui
présentent en outre le caractère particulier d'être homoli-
néaire par rapport aux éléments de chacune de ces files,
considérés isolément. Nous les nommerons des covanescents
de l'abaque, pour ses files du sens indiqué.

Nous commencerons par étudier leur structure, en supposant

qu'il s'agit des lignes pour fixer les idées, en représentant

par L un polynome indéterminé parmi ceux qui ont la
forme précisée ci-dessus relativement aux éléments des

lignes, puis en cherchant les conditions nécessaires et
suffisantes pour qu'il soit un covanescent pour les lignes.

I. Soit
(4) L — Aia-i -J- Bjbx -f- Gigi -|- Hiht

Vordination de ce polynome par rapport aux éléments de
la ligne 1 de l'abaque, par exemple, où

(5) Alf B1? Glf H,



342 CH. MÉRA Y

sont indépendants des éléments de cette ligne,

(6) at blf gti ht

Si M 1, les quantités (5) se réduisent à des constantes.
Si M > 1, il faut que Ai, soit indépendant des éléments de

la colonne aussi de ai, covanescent en outre (pour les lignes)
de Vabaque partiel \ai\ laissé dans (1) par la suppression de

ces deux files non parallèles contenant ai ; et de même pour
Bi,..., Gi, Hi, relativement aux colonnes de bi,, gi, hi, et

aux abaques partiels j èi j jgï}, j Ai J.
1° Quand M 1, les éléments (6) sont les seuls composant

l'abaque, et les quantités (5), qui n'en dépendent pas,
sont ainsi des constantes.

2° Quand M > 1} ces polynômes (5) sont, comme L, homo-
linéaires par rapport aux éléments d'une autre ligne
quelconque i,

a., b., g. t h,

et, pour Ai, on a ainsi

(8) A1 "b A1 ,bhi "b •" "b A1 ,gëi ~b A1 ,hhi "

où Ai,, Aixh ne dépendent d'aucun des éléments des

lignes (6), (7).

En attribuant maintenant la valeur commune 0 à tous les
éléments de ces deux lignes, autres que ax, at, l'une au
moins de celles-ci devient composée de l'autre (3) quels que
soient ax, at, ce qui rend l'abaque vanescent (par les lignes),
donne en conséquence L 0. Car, si ai est nul" aussi, ou
bien ai, tous les éléments d'une même ligne s'évanouissent
(4, II, 1°). Sinon, ax (ax : a) at par exemple, et la ligne
d'indice 1 est composée de celle d'indice i, le multiplicateur
de celle-ci étant ctx : at. Or ces attributions numériques
réduisent Ai à hi,aai (8), L par suite à Ai>aaxai (4) ; d'où
Ai,a «i ai — 0, quels que soient ax, ai, ceci exigeant Ai,a 0.

L'indice i étant arbitraire, on voit que Ai est bien
indépendant de tout élément de la colonne des a.
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3° Quand l'abaque partiel j aij,à M -r- 1 lignes et N — 1 00-

lonnes, savoir
/ bt c2, gt, h2

1
> • • • ^3 >

(9)
' :

^ &M» CM, ' • • öM, •

devient vanescent, le suivant à M — 1 lignes et N colonnes,

0 b2 + c2 g% h
0 bs h3

0 &M
» CM s • • • J

^M,

Le devient aussi (4, II, 3°), et encore, quel que soit ai, cet

autre
ai, o o o o

o b2 c2 gt h2

0,6«, • h } (Ib., 2°)

0 />M CM, ••• oM, ^M,

auquel le proposé (1) se réduit, pour

— ct — — gi — ht — § et a2 — as «m — 0

Or ces attributions numériques réalisées dans (4) réduisent
L à Ai <2i, puisque Ai est indépendant, tant de ces 2 (M — 1)

éléments, que de <21 (2°). Quel que soit ai, on a donc

AtCit — 0 d'où At — 0

ceci montrant que Ai est un covanescent de l'abaque j <21 j

figuré en (9).
4° Pour les autres polynômes du groupe (5), les raisonnements

sont les mêmes, sauf des notations différentes.
II. Désormais, nous supposerons > 1, la hauteur M de

l'abaque, ainsi que sa largeur N, et nous dirons défilés, des
éléments en nombre quelconque, dont deux ne sont jamais
enfilés (3). Tels sont: ai, bz, ou <22, bi, ou <21, Z?2, ou bi, <22,
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c%, ou Ri, 62 cb, ^4, etc., ou..., groupes dans chacun desquels
deux éléments quelconques ne sont, ni enlignés, ni enco-
lonnés.

Dans le développement général (en termes élémentaires
dissemblables) du polynome L ordonné par rapport à la
totalité des éléments de l'abaque, il faut que tout terme de

coefficient q^ 0, soit le produit de q par M élément défilés.
Car si un tel terme contenait deux facteurs variables

enlignés, le polynome L ne serait pas linéaire par rapport aux
éléments de la ligne de ces facteurs (supr.). S'il contenait
deux facteurs variables encolonnés, l'ordination de L par
rapport aux éléments de la ligne de l'un d'eux, et, donnerait à

et un coefficient non indépendant de tous les éléments de la
colonne des e (I). S'il contenait moins de M facteurs de ce

genre, le même polynome ne serait pas homogène par
rapport aux éléments de quelque même ligne (supr.)

En d'autres mots, il faut que les notations des M éléments
facteurs d'un tel terme, montrent les M indices différents 1,
2, 3, M, affectant M lettres différentes aussi.

III. — On forme les arrangées de v objets différents, de

nature quelconque, en les concevant simultanément (avec ou
sans figuration par l'écriture) dans tous les ordres de succession

réalisables. Deux arrangées sont identiques, quand chacun

des v objets est au même rang dans l'une et dans l'autre,
différentes quand il n'en est pas ainsi. On sait que le nombre
des arrangées différentes est 1. 2. 3 v.

Une permutation de ces objets dans une arrangée est un
déplacement simultané de tout ou partie seulement d'entre
eux, qui la change en un autre (identique parfois, à la

rigueur). Elle prend le 110m spécial de transposition de deux
objets, dans le cas très remarquable, où, y étant 1, elle
consiste à déranger deux objets seulement, pour remettre
chacun d'eux à la place que l'autre occupait.

La transposition de deux files parallèles de l'abaque (1) est
leur transposition définie à l'instant, moyennant conception
préalable de l'abaque comme une arrangée de toutes les files
de ce sens, considérées chacune comme un seul objet. Cela

posé :
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Il faut que la transposition de deux lignes quelconques,
1, j, dans la notation du polynome L, change son signe

sans modifier sa valeur, c'est-à-dire plus proprement, quelle
équivaille a sa multiplication par — 1, changeant ainsi
L en — L.

1° L'ordination de L par rapport aux éléments de ces deux

lignes, considérés indistinctement, ne donne que des

termes de la forme

Qetfj

où les éléments ordonnateurs mis en évidence sont notés

par deux lettres différentes, comme leurs indices, le coefficient

Q ne dépendant que des éléments de l'abaque, étrangers,

tant aux colonnes de lettres e, fi qu'aux lignes
considérées, d'indices ù j. Car si l'un de ces deux éléments
manquait, L ne serait pas homogène par rapport à tous ceux
de sa ligne; si leurs lettres étaient identiques, le développement

général de L contiendrait des termes ^ 0 dont les
facteurs et, èj seraient encolonnés (II) ; si le polynome Q
dépendait de quelque élément appartenant à une des quatre
files exclues, un fait analogue impossible se présenterait
d'une manière ou de l'autre. Cette ordination donne donc

(10) L (V'a.bj + P"h.ajl + (Q 'aiCj + QV/) + -
+ \T'gih. + V'higj)

le nombre total des termes étant N (N — 1), les coefficients
tels que Q, ayant été représentés par

(11) P', P", Q', T"

et les deux termes dont les éléments ordonnateurs appartiennent
à chaque paire de colonnes, ayant été toujours groupés

entre parenthèses pour plus de clarté.
2° En donnant ensuite les noms a, ß, y, v?, à N quantités

absolument indéterminées, puis faisant
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et représentant par A ce que L devient ainsi, il vient,
d'après le développement précédent,

A (P' + P") aß + (Q' + Q") ay + + (T7 + T») ^
parce que les polynômes (11) sont tous indépendants des
éléments des lignes dont les indices sont i, y, et tous les
termes du second nombre sont dissemblables. Mais, en même

temps, l'abaque est devenu vanescent, parce que, les deux
lignes considérées ayant été rendues identiques, l'une d'elles
prise à volonté est composée de l'autre au moyen du
multiplicateur 1. On a donc par définition A= 0, quelles que
soient a jS ceci entraîne

P7 — P" P Q' — Q" Q V — — T" T

où P, Q, T représentent les valeurs communes des deux
membres de chaque égalité, donne par suite au développement

(10), la forme
«

L p K hj — hiaj) + Q (aicj — ci aß + ••• + T (gihj — h.gj)

3° Or la transposition des lignes considérées modifie cette
expression, de la même manière que celle des indices i, j
seulement, change donc L en

P (a.b. — b.a.) -h Q(a.ct — Cja£) + + T [g.h. — h. g.)

— — P (a^j — b.aj) — Q (agcj — c.aj) — — T (g.h. — h .g.)

— L

IV. Quand M 1, le polynome L est toujours un co-
vanescent de Vabaque considéré.

Quand M > 1, il suffit pour qu'il en soit ainsi, que L
soit changé en — L par la transposition de deux lignes
quelconques.

1° Si M 1, l'abaque ne peut devenir vanescent que par
l'attribution de la valeur commune 0 à tous les éléments de

sa ligne unique. Or cette attribution annule L puisqu'il est
hornolinéaire par rapport à tous ces éléments.

2° Si M > 1, L s'évanouit :

öl. —Quand les éléments de quelque même ligne de l'abaque
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prennent tous la valeurO, puisqu'il est linéaire et homogène

par rapport à eux.
ß. — Quand deux lignes sont identiques ; car en nommant

'L ce en quoi L est changé par la transposition de ces deux

lignes, l'hypothèse donne

'L — L

outre
/L L

en fait, à cause de l'identité de ces lignes, et ces deux
relations entraînent bien L 0.

y. — Quand quelque ligne, la première pour fixer les idées
est composée des autres. Car on a, pour les éléments de cette
ligne, des expressions telles que les seconds membres de (3),

expressions dont la substitution dans L, homolinéaire par
rapport à ces éléments, donne

L >2. L2 + >3 I»3 + ••• + ^M-
> LM >

où L2, L3, Lm représentent respectivement ce que
devient L par la substitution a sa première ligne, de celles
d'indices 2, 3, M successivement. Or, ayant par ce qui
précédé L2 L3 =LM 0 (/3), onaaussiL 0.

Comme l'abaque est vanescent dans le premier des trois
cas ci dessus («), dans le dernier (y) [renfermant le second
(/3)], et ne peut l'être dans aucun autre, le polynome L en est
bien un covanescent.

Y. Quand M > N, l'abaque ne possède aucun covanescent.
Car, s'il en existait un, son ordination par rapport à tous

les éléments de l'abaque contiendrait quelque terme de la
forme qajb^c^ gK/^, le coefficient constant q étant ^ 0, et
les M lettres étant toutes différentes, ainsi que les indices
(II). Or ceci est impossible pour les lettres, puisque leur
nombre N est supposé <( M.

[Si la détermination L 0 identiquement, n'avait été
exclue (.supr.) comme dénuée d'intérêt, on pourrait dire ici
que cette détermination est le seul covanescent de l'abaque
(Cf. 11, inf.)].

En conséquence, nous supposerons désormais M < N.
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YI. Avec les colonnes de l'abaque (1), associées de toutes
les manières possibles en groupes de M chacun, formons
les abaques partiels

dans le développement général du polynome L supposé co-
vanescent de l'abaque proposé, nommons

(13) r r r
la somme des termes dont les notations impliquent
exclusivement les lettres des M colonnes de J a'} (11), puis sem-
blablement, celles des termes analogues relativement à'\ a" j,
| a'" J,... successivement. Les polynômes (13) sont des covanes-
cents des abaques (12) respectivement, du proposé aussi, et

la somme de tous,

(14) r + r + r +
reproduit «L.

înversément. si (13) sont des covanescents quelconques des

abaques (12), leur somme (14) en est un du proposé.
1° Le groupe Y par exemple, est un covanescent de ja'j,

parce que les attributions, aux éléments des colonnes de ja'j
de valeurs le rendant vanescent, à ceux des autres colonnes
de (1), de la valeur commune 0, rendent ce dernier vanescent,
(4, II, 3°), annulent ainsi L, en même temps que la seconde
réduit ce polynome à 1'.

2° Le même groupe est un covanescent de (1), parce que
la vanescence de cet abaque entraîne celle de ja'j en particulier

(4, III), annule par suite son covanescent IL *

3° La somme (14) est égale à L, parce que tout terme de ce

polynome, a été placé dans une des parties de cette somme
et dans une seule.

4° Si les polynômes (13) sont des covanescents des abaques
partiels (12), la nullité de tous, celle de leur somme (14) par
suite, sont assurées par la vanescence de l'abaque (1), entraînant

celle de chacun des abaques (12) (4, III). Donc cette
somme est un covanescent du proposé.

6. Ce théorème ayant ramené la construction des covanes-
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cents de labaque (1), à M lignes et N M) colonnes, à La

recherche de ceux des abaques partiels (12), dans chacun

desquels les lignes et les colonnes sont en nombre tous deux

=r M, il nous reste à nous occuper de ces derniers, que nous
dirons carrés et d'ordre M. Nous raisonnerons sur le type

noté au moyen de M lettres, a, ô, c,..., e, f\ dont nous
représentons par 1 un covanescent hypothétique, pour ses

lignes, toujours.
I. Vordre M étant supposé > 1, et une colonne de l'abaque

carré (15) ayant été choisie arbitrairement, ainsi qu'un
élément dans celle-ci, ai pour fixer les idées, tout covanescent

1 de cet abaque est de la forme.

où ont été représentés : par llya quelque covanescent de l'abaque

partiel, encore carré mais d'ordre M — 1,

que laisse dans le proposé la suppression simultanée de la
ligne et cle la colonne de ai, par 12,«, 13,«, 1M,«, ce que
devient \a quand on y substitue bu Ci, e%% f, à ses
éléments figurant dans les lignes 2, 3, M de l'abaque
(17), enlevées tour à tour.

Réciproquement, si 1^ est un covanescent de l'abaque
partiel (17), cette formule donne pour 1 un covanescent du
proposé (1).

1° Le polynome 1 est homolinéaire, par rapport aux
éléments

oi bt et et fi

(15)

(17)
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(18) at az \ az au

de la colonne considérée.
Dans la formule (4), l'élément at n'entrant ni dans Ai, ni

dans aucune partie du second membre autre que Aim, le
terme en ai de l'ordination de L par rapport à cet élément
seulement est précisément Aiai, et ceux de provenances
analogues relativement à ^2, au sont, de même, kzaz
Am^mi empruntés aussi aux ordinations successives de L

par rapport aux éléments des lignes 2, 3, M.
L'application de ces observations à l'ordination de 1 par

rapport aux (18) conduit donc à

(19) 1 Ai at -}- Aa a% —J— —f— Am#m ~j~ Aq »

et on remarquera: que Ai, • Aa,'...., AM, Ao sont, comme 1,

des polynômes tous homolinéaires par rapport aux éléments
d'une ligne quelconque de l'abaque (15) ; que le dernier Ao

ne dépend que de ceux de l'abaque partiel

hi ci et ft

bz c2 (>2 /à î

cm CM /M »

restant de (15) après suppression de la colonne considérée
(18) ; que tout autre A* ne dépend que des éléments laissés
dans celui-ci (20) par la suppression de sa ligne i (5, I).

Si maintenant on rend l'abaque (20) vanescent par les

lignes, avec attribution simultanée de la valeur 0 aux
quantités (18), on rend vanescent aussi l'abaque considéré
(15) (4, 11 3°). ce qui annule 1, et on réduit à Ao le second
membre de (19). Il en résulte que Ao prend alors la valeur 0,
ceci montrant que ce polynome est un covanescent de l'abaque

partiel (20) pour ses lignes, puisque nons avons remarqué

tout à l'heure qu'il est homolinéaire par rapport aux
éléments de chacune de ses files de ce sens.

Mais le même abaque n'a aucun covanescent de ce sens
qui ne soit nul identiquement, parce que ses colonnes et li-
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gnes sont en nombre M — 1 < M (5, Y). D'où Ao 0

identiquement, puis

(21) 1 ktat -f A2ö» + + Am^m (19),

ce que nous voulions prouver.
2° On a

(22) Ai — 11,a Aa — h,a A3 — — I3,«. Am — 1M,a

Là première de ces formules résulte de ce que, dans 1

ordination (4), Ai est un covanescent de l'abaque partiel (9) se

réduisant ici à (17).
Pour établir la seconde, transposons dans (21) les lignes

J, 2, ce qui donne

'1 zzz 'Aj cl% -J— 'A2 ct\ -j- 'A3 (i% -|- 'A4 #4 -|- -p Am #m >

en représentant pari, 'Ai, ce que 1, Ai,... sont devenus,
et ajoutons les deux relations membre à membre. A cause
de 1 + 1 0 (5, III), il vient ainsi

0 ~ (Ai -j- 'A2) #1 -p (A2 -p 'At) a2 -p (A3 -p 'A3) az -p

+ (AM + 'AM) «M »

puis

(23) Ai + 'Ai 0 Aa + 'A, 0

parce que l'identité précédente a lieu quels que soient les
éléments (18).

Gomme Ai ne dépend que des éléments des M — 1 dernières

lignes de l'abaque partiel (20), la transposition exécutée
a pour effet d'y remplacer seulement 62, £2, £2, fi par 61,

ci,... ci, /,. On en conclut 'Ai 12,a à cause de la première
des formules (22), déjà établie, puis A2 — 'Ai — l2,a à

cause de la seconde identité (23), c'est-à-dire la seconde des
mêmes formules ; et les transpositions de la même ligne 1

avec celles d'indices 3, 4, M successivement, conduisent
semblablement à toutes les autres.

3° La combinaison de ce qui précède (1°), (2°) montre que
1 ne peut avoir que la forme donnée par la formule (16).

4° Si li,a désigne maintenant un covanescent quelconque
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de l'abaque (17), 12?a, I3... 1
M,a rempliront visiblement la

même fonction pour les abaques partielsj<^2}, {03J,...., {^}Mdé-
rivés de celui-ci \ai \ par la substitution de la ligne bi, ci,
ei, fi, à ses lignes d'indices 2, 3,..., M successivement; et
ces M polynômes, celui 1 que fournit la formule (16) par suite,
sont homolinéaires par rapport aux éléments de toute ligne
de l'abaque total considéré (15), comme on l'apercevra facilement.

Ensuite, représentons généralement par (i, j), la transposition

des lignes i, y de cet abaque (15) et, sur la formule (16),
exécutons cette opération en supposant d'abord, i 1, en
considérant par exemple (1, 2). Si l'on note les résultats par
les mêmes lettres accentuées, il vient ainsi

1 — a2'L,a al%,a a3 %,a ßM#*M ,a

— (ai h,a a2 L,a a3 h,a ht.j ~ * *

Car 'l^a h,a 1 'h,a — h,a ce qu'on apercevra immédiatement,

et 'l3,a——l3,a, 'Im,a — — lM,a, comme résultats
de la même transposition opérée dans l3>a, lMjÄ cova-
nescents des abaques ja31,..., |äm| qui tous contiennent les
lignes dérivées des deux transposées par la suppression de
leurs éléments ai, a% (5, III). Et les mêmes moyens montreront

que l est encore changé en — 1 par les autres transpositions

analogues (1, 3), (1, M).
Enfin, la transposition quelconque (i,j) où i 9^ 1 ,y 9^ 1,

équivaut aux trois (1, i), (i, y), y, 1) opérées successivement,
la première sur 1, la seconde sur 1 résultat de la première,
la troisième sur "1 résultat de la seconde, conduisant à un
résultat final '"1. Après ces dernières, la ligne 1 est
effectivement revenue à la première place, et chacune de celles
d'indices i, y se fixe à la place de l'autre. Or, d'après ce qui
précède, '1= — 1, "1 =—'1 1, "1 — "1 — 1, parce
que, chaque fois, la transposition a déplacé la première ligne
de l'abaque laissé par la précédente, ceci montrant que la

transposition quelconque (i, j), comme (1, 2), (1,3), (1,

M), change 1 en — 1.

L'expression (16) de 1 est donc un covanescent de l'abaque
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considéré (15) puisqu'elle remplit les deux conditions
requises à cette fin (5, IV).

II. Quel que soit son ordre M, l'abaque carré (15) possède
une infinité de covanescents s'obtenant tous en multipliant
un seul d'entre eux par une constante indéterminée Y (^ 0).

1° Ceci est vrai pour M 1, car l'abaque se réduit à ai et
Tai en est un covanescent évident, le seul possible, en outre,
puisqu'il doit être linéaire et homogène par rapport à l'unique

élément ai de sa ligne unique.
2° Pour M > 1, le théorème subsiste s'il a lieu pour la valeur

M — 1 de l'ordre. Car, dans la formule (16), l1>a covanescent
de l'abaque (17), carré aussi et d'ordre M — 1 seulement, est
déterminé par hypothèse, à un facteur constant près ; l2ja,

h,a, ••• Im,« et 1 par suite le sont donc, au même facteur
près.

3° Il est donc général, puisqu'il est vrai pour M 1 (1°),
puis de là pour M 2, 3,..., (2°).

III. Il est utile d'appliquer ce qui précède au calcul des
covanescents li, .la, b, des abaques carrés d'ordres 1, 2, 3.

1° M l

(24) L'abaque est j J ; lt Yat (II, lo).

2° M — 2

(25) L'abaque est
S ßl ^ j ; 12 — at. Yb2 — d2. Yh (Ib. 2«), (1°)

I3 — ai .Y (b2c8 b8c2) — d2 Y (/>ic8 — bsct) — a8 T (b2ct — btc2) (II, 2°), (2°)
r [«1 b2c8 b8c2) — (i2 (b-ics — bsCi) — a8 (b2c1 — btc2)\

On apercevra facilement que le développement général de
1M contient le terme Y ai b2 c3... fH dont les facteurs éléments
sont notés par des lettres de rangs égaux à leurs indices. On
dit que ces éléments appartiennent à la diagonale principale

— r [dib2 — d2 />i)

M 3

L'abaque est

L'Enseignement mathém., 9* année; 1907. 24
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de l'abaque considéré (15), allant de son angle supérieur
gauche à son angle inférieur droit, et on nomme principal
le terme en question.

IV. Tout covanescent d'un abaque carré (15), pour ses

lignes, Test aussi pour ses colonnes. Et réciproquement.
1° Dans l'alinéa I, nous avons constaté que 1, covanescent

pour les lignes, est homolinéaire par rapport aux éléments
d'une colonne quelconque.

2° Pour M — 1, les deux points en question résultent
immédiatement de la nature de la formule (24).

3° Pour M 2, la transposition des deux colonnes change
1 en — 1. Car cette opération change le dernier membre
de la formule (25) en

r (Ih a2 — b^cit) — — T (at b2 — a2 bt)

4° Pour M )> 2, la transposition de deux colonnes quelconques

change 1 en — 1, s'il en est ainsi pour la valeur M — 1,

de Tordre.
Construisons une formule telle que (16), en ordonnant 1

par rapport aux éléments <21, aM d'une colonne autre que
les deux en question; la transposition de celles-ci ne fait,
par hypothèse, que multiplier par — 1, lljß, \%a, lM?a,

covanescents d'abaques dont l'ordre commun est M— 1

seulement ; elle change donc 1 en — 1.

5° Ceci a lieu pour toute valeur de M, puisque c'est vrai
pour M 2 (3°), 4°).

6° Comme ainsi (1°), (5°), 1 remplit pour les colonnes, les
conditions reconnues suffisantes au n° 5, IV, la partie
directe de notre théorème est actuellement dénmntrée.

7° La réciproque résulte immédiatement de ce que l'abaque

reste carré quand on prend, pour lignes et colonnes, les
files qui étaient auparavant des colonnes et des lignes.

V. A cause de cette identité des rôles joués dans un abaque

carré par les colonnes et par les lignes, un covanescent
est multiplié par — là chaque transposition de deux files
parallèles quelconques, par (— l)k en conséquence, après
de telles transpositions, faites dans l'un et l'autre sens
indistinctement, en nombre total k.
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YL Parmi les covanescents des abaques carrés, il est naturel

de pFêftrer la considération de ceux dont les notations

sont les plus srmiàes ; ils sont donnés par les formules de

l'alinéa III quand on y pt&tid T 1. On les a nommés les

déterminants de leurs abaques^ et on les représente par les

notations de ceux-ci, renfermées enfta deux filets verticaux.
On a ainsi

\ alth\ /— at rr at b.z — «2^1 >

«2 t)2 I

a 1 b\ Ci
1 l)2 6*2 I 1 K Ci I 1 b2c2

#2 b2 £2

3 lh Ci

— al\ j1 (h cs 1

— «2
j Uz C3

— as 7
1 fH ct

On peut dire que chacun d'eux est celui des covanescents
de son abaque, dont le terme principal (Ib.) est pourvu du
coefficient + 1.

VIL La réciprocité entre les lignes et les colonnes (IV)
permet de construire tout aussi bien les déterminants par
ordinations relatives aux lignes, celles-ci étant substituées
aux colonnes maniées dans l'alinéa III. Au lieu des formules
(26), on aurait ainsi

1 O-i l*i I

«J — at \ — ax b2— L«2
I «3 "2

cii bi Ci
1 b 2 c2 1 ci\ c2 I I b2 a2 I

02 b2 6*2 — ai\ — b\ — Ci \

b% c3 1 flsc3 1 a g j

cis b2 Cg

Ces formules montrent en passant, que le déterminant
d'un abaque carré (15) est identique à celui de l'abaque
symétrique au proposé par rapport à sa diagonale principale
(Ib.) c'est-à-dire déduit de lui par transposition de chaque
paire d'éléments symétriques par rapport à cette diagonale.

Pour éviter des fautes de signes dans la notation et le
maniement des déterminants, il est essentiel de ne pas perdre
de vue l'observation V.

7.— Tous les covanescents de l'abaque (1) (<quelconque, sauf
des lignes et colonnes en nombre M ^ N) s'obtiennent en

prenant la somme des déterminants 0', </', des abaques
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partiels carrés (12), multipliés respectivement par des

constantes indéterminées, T\ T" Conséquence immédiate de

ce qui a été dit au n° 5, VI, puis ci-dessus (6, II).
Cette proposition confère à ces polynômes ô'?

7
le rôle

de covanescents fondamentaux de l'abaque en question,
en ramenant à leur seule considération celle de tous.
Effectivement, ceux-ci se forment au moyen d'eux, comme
nous venons de le dire ; et la nullité de tous, en même

temps qu'elle comprend celle des déterminants puisque
ceux-ci figurent dans leur groupe général, est entraînée

par elle, parce que ö' 0", servent de coefficients aux
indéterminées!", T",..., dans l'expression générale des covanescents.

On remarquera que Vabaque considéré est invanescent
quand 0', 0",..., ne sont pas tous 0. Car ils le seraient
tous, s'il y avait vanescence.

Ces polynômes 0' 0" sont les déterminants (majeurs) de

l'abaque (1). Leur nombre est visiblement [N (N — 1)

(N — M<+ ljj : [1. 2. 3... M],
8. — Un abaque peut être vanescent de plusieurs manières

qu'il est temps de préciser.
L'entier v étant M, nous dirons que l'abaque (1) est v

fois vanescent, si on peut y assigner v lignes dont chacune
soit composée des M — v autres, ces dernières formant un
abaque partiel invanescent.

Nous nommerons encore déterminants de classe c du
même abaque (mineurs, si c > 0, majeurs, si c 0), ceux
majeurs) des abaques partiels, laissés dans le proposé par la

suppression successive de toutes les associations possibles
de c de ses lignes (1). Leurs ordre et nombre sont M — c et

I [M(M — 1) (M — c + 1)] : [1.2 c] I

x j [N(N — 1) ...' (N — M + c + 1)] : [1 2 (M — c)] }

9. — Pour que Vabaque (1) soit v fois vauescent (par ses

lignes), il faut et il suffit que ses déterminants soient tous
nuls dans les classes < v, mais non dans la classe v (8).

I. Si cette vanescence multiple a lieu, tous les déterminants
mineurs en question sont nuls.
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1° Etant données w, < w\ files parallèles, de co elements

chacune,

(27) (1) (2) M

tout déterminant d'ordre &>' nul, quand son abaque est

formé de files

(28) (10 (2') («'.)

dont chacune est composée de celles du groupe précédent (27).

Ceci est vrai :

a. — Si le déterminant considéré | [w], (1') | comporte w

files (différentes ou non) dont chacune appartient au

groupe (27) avec une seulement de l'autre (28). Car les
relations de la composition supposée pour celle-ci peuvent
être écrites symboliquement.

(10 \ (1) + ^2 (2) + + («)

et donnent (5, in in it.).

I [«],do I I m r (1) I + >21 h (2) + + I M M I

où les multiplicateurs Xi, X2, Xw affectent des détermi
nants tous nuls comme comportant chacun deux files au
moins identiques dans un même sens ;

fi. — Si, comme | — 1], (1'), (2')] |, son abaque contient
co — 1 files (27) avec deux autres de (28); car les relations de

compositipn propres à l'une de ces dernières, permettent
comme ci-dessus (a) de lui donner une forme homolinéaire

par rapport à w déterminants nuls encore parce qu'ils
rentrent dans le type précédent (îb.) ;

y. — Si, comme | [& — 2], (1'), (2'), (3')] |, il comporte w ~ 2

et 3 files des groupes (27) et (28); raisonnement tout
semblable, appuyé sur (/3) ;

Et ainsi de suite, jusqu'au bout, en modifiant chaque fois
l'abaque du déterminant par la suppression d'une file (27) et
son remplacement par une file (28).

2° Si, dans l'abaque en question, (M — v) représente le
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groupe des lignes dont est composée chacune de celles du
surplus (v), une ligne quelconque est toujours composée des
M — v de ce groupe, ceci ayant lieu de soi si elle en fait
partie, par hypothèse si elle appartient au surplus. Tout
déterminant d'une classe 9 < v est donc nul, parce que, son
ordre M — 9 étant )> M — v, ses M — 9 lignes sont ainsi
composées de mêmes autres en nombre M — v < M — cp (1°).

II. Soient p v deux entiers, quelconques autrement9 puis

(29) a0 po o0 s0 <po i)o

une ligne de y éléments, puis

i«i
Pi • • «îj si cpi Ï?J

«2 1)2

' ß[A ' *• ' ' SfJL ' > •• ' T'p.'

p autres * chacune de y éléments encolonnés entre eux ainsi
qu'avec les précédents, formant, par leur réunion, un
ahaque dont les déterminants (majeurs) ne sont pas tous

0. la ligne (29) composée des autres (30), l'abaque

de hauteur p -f- 1 formé par leur réunion totale a ses
déterminants (majeurs) tous nuls, et réciproquement.

1° Si une telle composition a lieu, l'abaque en question est
vanescent, d'où la nullité de tous ses déterminants (7).

2° Si ces déterminants (d'ordre g + 1) sont tous nuls, il en
est ainsi, en particulier, pour les v — p d'entre eux où p
mêmes colonnes de j (29), (30) j sont respectivement associées à

chacune des y — p autres. En outre, il en est encore ainsi

pour les p donnés par le groupement de ces p colonnes
immuables avec chacune d'elles-mêmes répétée successivement,

puisque un quelconque d'entre eux comporte toujours
deux colonnes identiques.

Dans ces (y — p) -f- p y déterminants, indistinctement,
les (p + l)emes colonnes sont toutes celles de l'abaque j(29), (30)} ;

mais, dans leurs ordinations par rapport aux éléments
d'indices 0, 1, 2, p + 1 de la colonne volante, les
coefficients de ces éléments restent les mêmes, parce qu'ils ne
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dépendent que des p colonnes immuables qui sont communes

à tous ces déterminants. Ils forment la suite

A0 t — Ai — A2 ••• — A^

où sont représentés : par A0 le déterminant de l'abaque
carré d'ordre g, laissé dans celui des ^ colonnes immuables

par la suppression de sa ligne 0, par Ai généralement, ce

qui devient A0, quand, à sa ligne /, on substitue cette ligne
0 (6, VI). La nullité des y déterminants précités (d'ordre
g + 1) donnera ainsi les y relations

Ao oto — Ai «i — A2 <*2 — •• • — m 0

O 0 1 • ipßp r= 0

Ao $0 — ' • Apàp — 0

A0 So • • • V6> rzr 0

AoïJo — Ai rn — A2 ÏÎ2 •"Vf* 0

Si maintenant g. colonnes de l'abaque (30) donnent un
déterminant non nul, on pourra faire en sorte que A0 soit
celui-ci, c'est-à-dire prendre pour les g. colonnes immuables
de {(29), (30) j, celles précisément dont les précédentes font
partie. La division des relations (31) par A0 0 est alors
possible, et les met sous une forme montrant immédiatement,

que la ligne (29) est bien composée de celles de l'abaque

(30).

III. Si dans la classe v, quelque déterminant de l'abaque
proposé (1) est ^0, il appartient à titre majeur, à l'abaque des
M — v lignes qui ont formé les siennes, et cet abaque est in-
vanescent (7). Si, en outre, tous sont nuls dans la classe v—1,
où leur ordre est M — v -f- 1, il en est ainsi en particulier,
pour les déterminants (majeurs) de l'abaque formé par les
M — v lignes ci-dessus et une autre quelconque. Cette
dernière est donc composée des premières (II).

10. — Quand M N, Vabaque (1), alors carré, est va-
nescent par ses files d'un sens, autant de fois que par celles

de l'autre (8).
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A cause de la réciprocité existant entre les lignes et les
colonnes de tout abaque carré (6, IV), un déterminant
mineur, de classe quelconque c, d'ordre M — c par suite, du

proposé considéré comme formé de lignes, est majeur, aussi
bien pour l'abaque des M — c colonnes dont les siennes
font partie, que pour celui des M — c lignes qui ont formé
les siennes. Le mineur en question en est donc un de même
classe c pour le proposé considéré comme formé de colonnes,
ceci entraînant immédiatement l'exactitude de notre énoncé

(9).
11. — Quand M > N, l'abaque (1) est vanescent par ses

lignes, M — N fois au moins.
Car il l'est autant de fois que l'abaque carré obtenu en lui

ajoutant M — N colonnes de zéros (4, II 3°), et celui-ci est
vanescent M — N fois au moins : par ses colonnes, parce que
ses déterminants de classes < M — N, d'ordres > N par
suite, comportent tous une colonne au moins de zéros, par
ses lignes aussi, en conséquence (10), (Cf. 5, Y).

12. — On réduit un abaque donné, relativement à ses

lignes, par exemple, en en extrayant quelques unes de nature
et en nombre tels, que leur abaque partiel, dit réduit, soit
invanescent, et que, d'elles seulement, toutes celles du
proproposé soient composées. A cette fin, on trie d'après la
règle suivante, les lignes de l'abaque, passées en revue dans un
ordre de succession quelconque :

Chaque nouvelle ligne examinée est placée dans l'abaque
réduit, si les lignes antérieurement conservées pour lui sont
en nombre inférieur à la largeur N de l'abaque, et si, avec
celle en question, elles forment un abaque dont les déterminants

ne sont pas tous 0. Elle est au contraire rejetée, si
ce nombre est N, ou bien si ces déterminants sont tous
nuls.

En effet, on aperçoit immédiatement: qu'au moment de

l'essai d'une ligne quelconque, l'abaque de celles antérieurement

conservées est invanescent (7) ; qu'en cas de rejet
cette ligne était bien composée de celles qui forment cet
abaque (9, II, 2°), (11).

On notera que : la hauteur de' l'abaque réduit ne peut
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surpasser la largeur du proposé (Ib.) ; une ligne comprenant

exclusivement des éléments 0 est toujours a rejeter ;

quand toutes sont de cette nature, Vabaque réduit disparaît.

13. — Nous passons aux équations du premier degré, dont

nous considérerons un système comportant des inconnues

x, y, z,..., s, t, u, e, des équations, en nombres quelconques

7Z, M, ces dernières étant

!a±
x -f- bt y -{- c± z -f- + e± t -(- f± u g± v -f- h± w '+ 0

«M OC -f- + JÎ"M — 0

dont les coefficients ai\..., kM doivent être conçus en

un abaque à M lignes, à /z -)- 1 colonnes.
I. Au système (32), on peut substituer son réduit, cest-à-

dire celui qui a pour coefficients les éléments cle l'abaque
laissé par la réduction de celui du proposé, opéré relativement

aux lignes (12).
Car tout groupe de solutions du proposé appartient à son

réduit ne comprenant que des équations du premier. Et,
comme il est visible que les premiers membres du proposé
sont tous composés homolinéairement de ceux du réduit,
tout groupe de solutions de celui-ci, puisqu'il annule ces
derniers, annulera aussi les premiers, vérifiera en
conséquence la totalité des équations considérées.

Désormais donc, nous raisonnerons exclusivement sur un
système réduit, comportant ainsi dans son abaque, des lignes
en nombre m < n +1, m équations par conséquent. Nous
l'écrirons

f ai x -f- b\ y -f- -j- e\ t fi u + •• • gi F + hi w -j- ki 0

\ ^2 oc 4~~ -}- w -j— h2 zzz 0
(33) j

\ a 7n OC -f- brnj + + e ni t -{- fm U -f- -f- gmv llmW -j- km ~ 0

et nous le dirons surabondant, complet ou incomplet, selon
que m sera n -f- 1, n ou < /z.
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Nous figurerons encore son abaque

«1 Cl d fi gl /?1

a2 » ^2 g2 »
h2 £2

ßm s bm Cm 6m fm ••• hm km •

II. Le système réduit (33) impossible quand il est
surabondant.

Car l'existence de solutions ,r', c/, n/ entraînerait la

vanescence de l'abaque (34) par les colonnes, sa dernière
étant alors composée des autres au moyen des multiplicateurs
— x', —?/', — (/, — u/, par les lignes en même temps,
puisqu'il est carré (10). Or ceci n'a pas lieu, puisqu'il est
supposé réduit.

III. Non surabondant, il est impossible encore, quand
l'abaque partiel \ a, 6, g, h \ formé dans (34) />#r fes

seuls n colonnes de coefficients des inconnues est vanes-
cent.

S'il possédait quelque groupe de solutions xr, ylacolonne k de l'abaque total (34) serait composée des autres avec
les multiplicateurs — x'—y', Moyennant quoi, chacun des
déterminants (majeurs) decetabaque, où la colonne ^intervient,
pourrait être mis sur forme d'une expression homolinéaire
par rapport à n déterminants du même abaque auxquels cette
colonne est étrangère, les coefficients de cette expression étant
— x', —y'-,--- Les déterminants indépendants de la colonne
k étant 0, puisque l'abaque j <2, b, g, h J est supposé
vanescent, les autres le seraient encore, tous ceux de l'abaque

(34) aussi, et, contrairement à l'hypothèse, le système
(33) ne serait pas réduit.

IV. Non surabondant, il est possible quand l'abaque
j a, è, g, A j (III) est invanescent. Il est alors déterminé
s'il est complet, indéterminé s'il est incomplet, cette
indétermination consistant en ce qu'on peut choisir arbitrairement
les valeurs de tout groupe de n — m inconnues, tel, que les

coefficients des m autres soient les éléments d'un déterminant

^ 0, en ce que, de plus, les valeurs correspondantes de
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ces m autres inconnues s'expriment par des fonctions linéaires

déterminées des n — m premières.
1° Si le système est complet, l'adjonction d'une ligne de

zéros à son abaque (34) rend celui-ci vanescent par les lignes,
par les colonnes en même temps, puisqu'il est devenu carré
(10). Comme, en outre, la suppression de sa colonne k laisse
un abaque partiel invanescent (par les colonnes) parce que le
déterminant des colonnes <2, 6, g1, h de (34) est
supposé 0, cette colonne k est composée des autres (9, II, 2°),
et il suffit évidemment de multiplier par — 1 les multiplicateurs

de cette composition pour en déduire un groupe de
solutions du système considéré.

Ce groupe x\ y', wr est unique. Car si un autre x",
y..., w" existait encore, l'une au moins des différences
x" —x' £, y" — y' y?,..., w" — w' — <f>, la première pour
fixer les idées, serait^ 0; les substitutions successives de l'un
et l'autre groupes dans chacune des équations du système,
suivies de la soustraction des résultats, conduiraient à

/ £ -f- bi ri -j- -|- h-i ip — 0

| #2 £ ~t~ t>2 7] -f- -}- 7^2 ip rz: 0

dm Ç t)m 7} -j- hni ip ~ 0

et la division de ces égalités par £ supposé ^ 0, montrerait,
dans l'abaque j a, b,... g,h|ici carré, que la colonne
est composée des autres, qu'il est ainsi vanescent par les
colonnes, par les lignes en conséquence, ce qui est contraire
à l'hypothèse.

Les multiplicateurs des colonnes a, g, h de l'abaque
(34) agrandi d'une ligne de zéros, dans les formules exprimant

la composition de la colonne k au moyen de celles-ci,
se calculeront comme au n° 9, II, 2°. Puisqu'il suffit de les
multiplier par — 1 pour obtenir x' y'.... on aura les fpj-jpules

/OK\ ^a t. / A/z.

àk A k A k

où ont été représentés : par Ak,le déterminant de l'abaque
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\a, b, g,h\, par Aa, A*,— Aa ce qu'il devient par la
substitution de sa colonne k faite successivement à chacune
des autres a, 6, h.

2° Si le système (33) est incomplet, soient a, £, e un
des groupes de m colonnes de son abaque (34), qui, par
hypothèse, donnent des déterminants ^ 0, et représentons par
Ki, K2,..., Kw, les groupes de termes, linéaires en«,..., v, w,
qui, dans les diverses équations, ont des coefficients notés
au moyen des autres lettres g, h, k. Ce système peut
être écrit

et sa résolution par rapport à x, y, t, faisable comme ci-
dessus (1°) parce qu'il est complet à ce point de vue, conduit
bien facilement à ce qui nous reste à établir, observation
faite que, dans les formules (35), Ak est indépendant des k,
que Aa, A&, Aa on sont des fonctions homolinéaires.

3° 11 n'est pas sans intérêt de remarquer que le cas d'un
système incomplet comprend à la rigueur celui où il est complet.

Pour cette cause, il serait facile de traiter les deux
ensemble, de fondre notamment le sous-alinéa 1° dans le
suivant (2°). C'est ce que nous ferons pour la démonstration
suivante.

14. Le système (33) étant réduit et possible, toute équation
du premier degré (E)0 que ses solutions vérifient aussi, est

composées homolinéairement des siennes.

Supposant 0, le déterminant A des coefficients des m
inconnues x, y,... /, nous mettrons le système sous la forme
(36), l'équation (E)0sous une forme analogue en marquant ses
coefficients de l'indice commun 0, et nous considérons l'abaque

carré, d'ordre m + 1,

ci\ x —}— b\ y -|— -|— 6\ t —{— Ki — 0

(36)

Clni X -f- bmj -f- ••• dm t -j- — 0

(37)
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Le fait que toutes les solutions du système satisfont à

l'équation (E)0, assure, quelles que soient les valeurs
attribuées à w, e, w, la composition de la colonne K de

l'abaque (37) au moyen des autres ; d'où sa vanescence par les

colonnes, puis parles lignes (10), puis la composition de la

première de celles-ci au moyen des autres, puisque le
déterminant A est 0 (9, 11, 2°) ; et, en nommant ai, >.2,..., lm les

multiplicateurs de cette composition, on a

SO.Q

Xi CL\ 0-2 "H ••• H- dm

bo — bi -j- -f- y^m bm »

V e0 ~ ei -f* ^2 62 -f- • • • "f~ ^m 6m 9

(39) Ko ~ /j Ki -J- ^2^-2 4~ ••• ym. Km •

En ayant égard à ce que Xi,..., lm ne dépendent que des
éléments des m colonnes <2, e de l'abaque (37) (loc. cit.),
puis égalant les coefficients de u, v, w dans les deux
membres de (39), cette équation se décompose en les égalités

fo h fi -j- •.. -f- ym fm

go — + ••• H~ ym gm

JIQ m -j- -J- y^n-bfn

ko ~ ki -J- -f- y m km

constituant avec (38) toutes celles que nous avions à établir.
15. — Dans le développement général du déterminant

d'un abaque carré, d'ordre quelconque M, (5, II), la transposition

de deux lignes produit sur la notation, le même effet
que celle des indices correspondants, les lettres restant
immobiles (lb. Ill) ; celle de deux colonnes équivaut de même
à celle des lettres correspondantes, les indices conservant
cette fois leurs places primitives. Appuyés sur ces observations,

des raisonnements tout semblables à ceux du n° 6, I
conduisent bien facilement à Vordination du déterminantpar
rapport à ceux d'abaques partiels en nombre quelconque i,
formés par la décomposition de celui du proposé en des grou-
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pes déterminés de m\ mt files toutes parallèles dans
un sens donné, ces i entiers étant quelconques aussi, sous la
seule condition de donner M par somme.

Pour i — 2, cette opération a une grande importance, mais
dans des questions sur lesquelles il n'y a pas lieu de revenir
ici. Pour i M, entraînant mi mz — mt 1, elle
fournit le développement général du déterminant, obtenu

par de simples manipulations d'un seul terme arbitrairement
choisi ; pour 2 < i < M, elle conduit à des formules variées.
Comme ces dernières sont inutiles, comme le développement
général, qui ne l'est pas moins en théorie quand on se place
à notre point de vue, ne sert à rien pour les calculs numériques

à cause de sa prolixité, il serait tout à fait oiseux
d'entrer dans les détails.

16. — Terminons par un théorème fort simple, mais
indispensables dans des questions importantes.

Tout déterminant est un polynome premier.
Si celui de l'abaque (15) que nous représentons par A, est

décomposable en deux facteurs entiers <î", et si l'élément
ai par exemple, entre effectivement dans <î\ ni lui, ni aücun
autre élément d'une file contenant ai ne peuvent entrer
dans Car autrement A 5' ô" ne serait pas homoli-
néaîre par rapport aux éléments de cette file. De même,
et puisque ainsi tous les éléments de <p entrent dans
aucun autre d'une file contenant un de ceux-ci, aucun élément
de l'abaque en conséquence, ne peut entrer dans â". Ce
facteur d" se réduit donc à une constante, moyennant quoi, tout
diviseur dr de A lui est égal*à un facteur constant, près ; c'est
ce qu'il y avait à prouver.

Ch. Méray (Dijon).
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