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THEORIE DES NOMBRES 301

division par b seront lbs nombres a, o, ...; de la, en mL}ltl-

pliant, la congruence
u ©(b)—1 — ln' , d,Oll n@(b} — L / (I},lOd. b)

Autre démonstration. Joignons, de o en «, les sommets
d’un polygone P, de b cotés, et, de x en x, ceux du deu-
xieme polygone P’ ainsi obtenu, x etant ohoisi tel que le
troisiéme pol)gone comcule avec le premier P. On a ainsi
pris les sommets de ax en ax, ce qui produit le méme résul-
tat que sion les avait pris de 1 en 1. Ainsi si « est premier
avec b, il y aura toujours un nombre x tel que ax =1
(mod. )1 |

Si & = a, et qu’'on prenne les sommets de P’ de b — « en
b — x, on retombera sur le polygone P renversé; donc
o0 — o) revient a — 1 ou bien a (b — o) =— 1 (mod. b).

Ainsi, dans tous les cas, les nombres 1, «, &, ... b — 1
peuvent s’associer de maniére que leur prodult soit de la
forme == 1 (mod. 6): on peut donc écrire

n==1 (mod. b).

selon que le nombre des produits de la forme — 1 (mod. b),
est pair ou impair?.

EXERCICES.

1. La somme des quotients provenant de la division par b

des nombres «, 2a, 3a, ... (b — 1) a, est égale a % (@« — 1}
(b — 1). (Gauss).

! De la, une solution graphique de la congruence ax — by = 1. (Poinsot).
% 5i b est un nombre premier p, la démonstration se simplifie ainsi, d’aprés Cavley.
D’apres ce qui a été dit, Cor. XI1I, 2, premier alinéa, b points dxspose% legjuhuement sur

@ (b} 1
unc circonférence sont les sommets de ‘4—‘—)—!_—— polygones réguliers de & cotés; dou, si ¢
-

¢st premier et ¢gal a p, :— (p — 1) polygones.

Or le nombre tolal des polygones, tant réguliers qu’irréguliers, ¢st évidemment la moitié
du nombre des permutations de p — 1 objets, puisque ces polygones se reproduisent deux &

deux. D’un autre cdoté, sinous faisons tourner autour de son centre, et successivement des
2T 4T (T 2(p— N7 ST :
angles —, — , — , ... —————, un polygone irrégulier quelconque, nous obticndrons.
p py

p — 1 autres polygones irrégualiers : l¢ nombre des polygones irrdguliers possibles est done

un multiple de p. De 13, la xelahon

. l ) —‘
se=1 =5 (p—1=0.
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2.8 w=o,y = 8 est une solution de ar — by = 1;
X = ca, y = cf en est une de ax — by = c. |
3. Trouver x tel que x = « (mod. a) et x = 3 (mod. ).
On cherche A =1 (mod. «) et aB=1 (mod. ), ce qui
donne ,
x = Aba + Baf (mod. ab) .

4. Soit g celui des b — 1 premiers entiers positifs qui rend
¢ — ag multiple de b, I'équation ar + by = c a un nombre
de solution représenté par la formule de Paoli,

(48
E( ab >+1'

5. La solution de ax — by — ¢ est donnée par la formule
de Libri, ‘

sin (2¢ — a) kn

_c——l 1 k= b
r = 2 +22k.—_1 . akw

s —
€ /)

6. Soit u le plus grand commun diviseur des nombres
donnés «, B8, v, ... On peut toujours déterminer les nombres
A, B, C, ... de maniére qu’on ait *

+ -+ ... = | (Gauss).

7. Résoudre les équations
2y —a"y =a, 2"y —xy" =a', 2y’ — 2’y = a". (Gauss)
8. Soit a résoudre les équations
x=ay+oao=bz+=cwt+y9=..

a, b, c, ... étant premiers deux a deux. On pose P = abc ...
et on calcule &', &', ¢, ... de maniére qu’on ait

— «’ =1 (mod. a) , — b =1 (mod. b) , ...

d’ou




(33
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’ . 4. P

Le probleme est ramené au calcul des associés de —,
(Voir exercices n 10, 11 et 22). .

9. Regula cceci. Partager A en n parties telles que a fois la
premiére, b fois la deuxiéme, ... fassent ensemble une somme
B. |

Supposons que « esl le plus pelit des nombres «, b, ¢,
On a:

b—a)y+(c—aszs+..=B—aA,

’ . » bl ‘r
é¢quation de la forme ay + 8z + ... = C., qu'on résout en

remarquant qu'il y a au moins deux coeflicients, « et (3 par
exemple, qui sont premiers entre eux, ce quipermet de poser

e’ 4+ BB =1, dou x=a (C—ya — ...) + B},
y =8 (C—qga — ...) + ap,

A, ¢, ... désignant des quantités indéterminées.
10. Divisons @ par b, b par le reste, ce reste par le second
reste, et ainsi de suite, de sorte qu'on ait

a=uab+4+c, b=pc+d, ¢c=9d+e, ..

z, 3, ... sont entiers et b, ¢, ... diminuent jusqu'a ce qu’'on

parvienne a m = un + 1.
Formons les expressions

[u]:a:A
«, ] =BfA 4+ 1 =8B,
IaPﬂ /B+1=0C,

on aura

o B ] (B ] — [, o A B, e ] =1

De la le moyen de résoudre ar — by = =+ 1.

11. Soient 11, ra, 1y, ... et i, Ga, g5, ... les Testes et les quo-
tients obtenus successivement en lelsantppara iy l'ay Iy, ...
Les restes sont tous différents de zéro et décroissent jusqu’a
r, =1.0n a:

aqy gy - Gy =— (—1)°

* Les théories que contiennent les exercices 2, 3, 8. 9 et 10 étaient connues des Indiens,
commie on le voit chez Brahmegupta ct Bhashma Mals c’est sculement Bachet qui a com-
mence a les exposer avee méthode et en détail. '
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De la la solution de axr = == 1. (Binet).
12. a et b étant premiers entre eux, le produit

xe — 1 xb— 1
x—1 a—1
;(,a[) i '
est divisible par —— ((ﬂuss)
13. Si on peut écrire a® = r et b* = ———1, ona: a*=—1
(Euler). En effet posons ax = 0, il viendra a?x% = 0? = — a*.

(Gauss). |

14. Soient a® = r, b* = rs, on peut écrire x* = s (Euler,.
En effet posons ax = 0, il viendra rs = 0% = a*x® = ra’.
(Gauss).

15. Soit a8 = a"* = r, g et h étant premiers enlre eux, on
peut écrire 7 = «. En effet posons gr — hy =1, il viendra

G — 8% — Syt = Ly - (Legendre).

16. Aucun nombre non décomposable en deux carrés en-
tier ne l’est pas non plus en deux carrés fractionnaires (Fer-
mat).

17. L’égalité ax? — y* = 1 ne peut avoir lieu si @ n’est pas
la somme de deux carrés. (Brahmegupta).

18. Les diviseurs du nombre a? — 362 sont de 'une des
formes quadratiques = 22 == 3y2, ou de 'une des formes li-
néaires 12 + 1. (Lagrange). |

19. Les nombres a* + 1 et a* —— a? + 1 sont respective-
ment des deux formes lineaires 8 4+ 1 et 12 + 1. En effet
on peut les écrire

*

(a? — 1) 4+ 1 et (a? — 1) 4+ a® = (a® 4 1)2 — 3a®. (Serret).

20. Si. 'un des coeflicients A, B, est multiple de p, la con-

gruence Axz" 4+ Bx"~! 4+ ... + M = 0 ne saurait avoir n
racines.

Il en est de méme si M = 0.

Si elle a n racines, @, b, ... on peut l'écrire A(x — a)
(0 —0b)...=0etlona:

Ala+b+ ..)+B=0, ab...=%=M.
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21. Du Cor. XI, déduire la relation
SP—1>P—1 = (P e 1) !

ainsi que le Cor. IX.
29. Posons a®” = kb 4 1, on aura

a (ca?‘b)'—l) — b(ck) =c¢

d’ott une solution de ax — by — ¢ (Poinsot). Ainsi 'associé
de a relativement a b est

23. Trouver xtel que £ =« (mod. a) et = (mod. ). On a:
x = ¥ ¢ + a%0 g {mod. ab).

Ainsi les nombres a la fois des deux formes 3 + 1 et &4 — 1
sont de la forme 12 4 7; ceux des formes 3 — 1 et 4 + 1,

‘de la forme 12 + 5; ceux des formes 3 =1et4 =1, de la

forme 12 + 1.
24. Changeons successivement x ety en 1, «, o', ... b — 1
dans la relation « = xy (mod. b) et multiplions, il viendra

&0 = __ 2 (mod. b) d’ott n*=1 (mod. b?

25. Démontrer les relations
(p—N(p—2) ... m

P11y,

fa =11 (p—a')=(—1a. (Lagrange).

= (— 1m . (Lebesgue).

A. Ausry (Beaugency, Loiret).

L’Enseignement mathém., 9¢ année ; 1907. 21
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