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division par b seront les nombres «, a ; de là, en
multipliant, la congruence

1 n 3
d'où n?(^] II2 (mod. b)

Autre démonstration. Joignons, de a en a, les sommets
d'un polygone P, de b côtés, et, de x en .z:, ceux du
deuxième polygone P' ainsi obtenu, x étant choisi tel que le
troisième polygone coïncide avec le premier P. On a ainsi
pris les sommets de ocx en ax, ce qui produit le même résultat

que si on les avait pris de 1 en 1. Ainsi si a est premier
avec b, il y aura toujours un nombre x tel que ax i
(mod. b) b

Si x — a, et qu'on prenne les sommets de P' de b — a en
b — s, on retombera sur le polygone P renversé ; donc
cf. [b — a) revient à — 1 ou bien a (b — a) — 1 (mod. b).

Ainsi, dans tous les cas, les nombres 1, a, a\ b — 1

peuvent s'associer de manière que leur produit soit de la
l'orme ziz 1 (mod. b) : on peut donc écrire

Il EE ± 1 (mod. b).

selon que le nombre des produits de la forme — 1 (mod. b),
est pair ou impair2.

Exercices.

1. La somme des quotients provenant de la division par b

des nombres a, la, 3a, [b — 1) a, est égale à ^ (a — 1)

(ib — 1). (Gauss).

1 De là, une solution graphique de la congruence ax — by — 1. (Poinsol).
2 Si b est un nombre premier p, la démonstration se simplifie ainsi, d'après Caylev.
D'après ce qui a été dit, Cor. XIII, 2°, premier alinéa, b points disposés régulièrement sur

CP (frj _i_ i
une circonférence sont les sommets de ^ polygones réguliers de b côtés ; d'où, si q

1
est premier et égal :A p, - (p — 1) polygones.

Or le nombre total des polygones, tant réguliers qu'irréguliers, est évidemment la moitié
du nombre des permutations de p — 1 objets, puisque ces polygones se reproduisent deux à
deux. D'un autre côté, si nous faisons tourner autour de son centre, et successivement des

27T 47T fi TT 2[p— 1)71
angles — — — un polygone irrégulier quelconque, nous obtiendrons.

p — 1 autres polygones irréguliers : le nombre des polygones irréguliers possibles est donc
un multiple dep. Do là, la relation

| (p-il)EEO
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2. Si x a, y ß est une solution de ctx — by — \

x — ca, y — c[3 en est une de ax — by c.
3. Trouver x tel que x a (mod. a) et x ß (mod. b).
On cherche bA 1 (mod. a) et aB 1 (mod. ô), ce qui

donne
x Aba + Baß (mod. ab)

4. Soit g celui des b — 1 premiers entiers positifs qui rend
c — cig multiple de b, l'équation ax -f- by — c a un nombre
de solution représenté par la formule de Paoli,

(c — ag\
\ ab / -M •

5. La solution de ax — by c est donnée par la formule
de Libri,

(2c — a) /»TT

sm —-
C — 1

-j "N?^ 2 ^àk= 1\k=i ahn
sm —

6. Soit [i le plus grand commun diviseur des nombres
donnés a, ß, y, Qn peut toujours déterminer les nombres
A, B, C, de manière qu'on ait

A B- + | + ••• P- (Gauss).

7. Résoudre les équations

x'y" — x"y' — a x"y — xy" — a' #y' — x'y — a". (Gauss)

8. Soit à résoudre les équations

x — ay a — bz — cw y — -

a, c, étant premiers deux à deux. On pose P abc
et on calcule af, c', de manière qu'on ait

— a' 1 (mod. a) — // 1 (mod. />)

d'où

.=p^-+¥+...
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p
Le problème est ramené au calcul des associés de —

(Voir exercices nos 10, 11 et 22).
9. Regula cœci. Partager A en n parties telles que a fois la

première, b fois la deuxième,... fassent ensemble une somme
B.

Supposons que a est le plus petit des nombres a, 6, c,
On a :

— ci) y -j— [c — ci) z —j— ~ B — (iAl.

équation de la forme <xy + ßz -f- G, qu'on résout en
remarquant qu'il y a au moins deux coefficients, a et ß par
exemple, qui sont premiers entre eux, ce qui permet de poser

av/ -J- ßßf — 1 d'où x — a' (C — ya — -f- ß\ '

y ß' (C — 7a — -f- ap

À, (a, désignant des quantités indéterminées.
10. Divisons a par 6, b par le reste, ce reste par le second

reste, et ainsi de suite, de sorte qu'on ait

a — ah c b — ßc -\- d c — yd -f- e

a, /3, sont entiers et b, c, diminuent jusqu'à ce qu'on
parvienne à m jjji -f- t.

Formons les expressions

[«] " a ~ A

|«,/3| (3A + 1 B

[a.jS.y] =yB + 1 C-,

on aui'a
|a, p. p] [|3, X] — [a, Xj [ß pt] ± 1

De là le moyen de résoudre ax — by — dz l1.
11. Soient /'i r2, r%, et qi, ^3, les restes et les

quotients obtenus successivement en divisant p para, r%, r2,
Les restes sont tous différents de zéro et décroissent jusqu'à
ra 1. On a :

acii?2 • • ~ (—

Les theories que contiennent les exercices 2, 3, 8. 9 et 10 étaient connues des Indiens,
comme on le voit chez Brahmegupta et Bhaskara. Mais c'est seulement Bachot qui a
commencé à les exposer avec méthode et en détail.
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De là, la solution de ax ±ï. (Binet).
12. a et b étant premiers entre eux, le produit

X& — 1 xb 1

x — i X — i

est divisible par ~ (Gauss).

13. Si on peut écrire a2 r et b2 — r, on a : x2 — 1

(Euler). En effet posons ax b, il viendra a2x2 b2 — a2.

(Gauss).
14. Soient a2 /*, b2 rs, on peut écrire x2 s (Euler).

En effet posons ax= b, il viendra rs b2 a2x2 rx2.
(Gauss).

15. Soit aß ah /\ g et h étant premiers entre eux, on

peut écrire rz a. En effet posons gx — hy 1, il viendra

rx cfix — ciry ' (Legendre).

16. Aucun nombre non décomposable en deux carrés
entier ne l'est pas non plus en deux carrés fractionnaires (Fer-
mat).

17. L'égalité ax2 — y2 1 ne peut avoir lieu si a n'est pas
la somme de deux carrés. (Brahmegupta).

18. Les diviseurs du nombre a2 — 3b2 sont de l'une des
formes quadratiques ± x2 =p 3y2, ou de l'une des formes
linéaires 12 =b 1. (Lagrange).

19. Les nombres "aé + 1 et a4 — a2 + 1 sont respectivement

des deux formes linéaires 8 + 1 et 12 + 1. En effet
on peut les écrire

(a2 — l)2 + 1 et (a2 — l)2 + a2 (a2 + î)2 — oa2. (Serret).

20. Si l'un des coefficients A, B, est multiple de p, la

congruence Ax11 + B.r'i_1 + -f M e 0 ne saurait avoir n

racines.
Il en est de même si M 0.

Si elle a n racines, a, ô, on peut l'écrire AÇx — a)

(x — b) 0 et l'on a :

A (a + /; + .+ + B 0 «/>... s ± M
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21. Du Cor. XI, déduire la relation

sp—i,p—i ip P •

ainsi que le Cor. IX.
22. Posons ce

(b) kb + 1, on aura

a — b{ck) a
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d'où une solution de ax — by — c (Poinsot). Ainsi l'associé
de a relativement à b est

<p{£)-i
x — a

23. Trouver x tel que x ol (mod. a) et ß (mod. b). On a :

Ainsi les nombres à la fois des deux formes 3 -f 1 et 4 — 1

sont de la forme 12 + 7 ; ceux des formes 3 — 1 et 4 + 0
de la forme 12 + 5 ; ceux des formes 3 ± 1 et 4 ± 1, de la

forme 12 ± 1.

24. Changeons successivement x et y en 1, a, a', b — 1

dans la relation a xy (mod. b) et multiplions, il viendra
ay(b) — q2 (mod. b) d'où n2 s 1 (mod. lÉ)

25. Démontrer les relations

X a am p (mod. ah).

(_P — jj (P — 2) »'

(« — (p —a)!m (— î)a (Lagrange).

A. Aubry (Beaugency, Loiret).
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