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286 A. AUBRY

dans la résolution d'une équation du deuxiéme degré citée
plus haut, qu’en divisant 19350 par 407 on obtient x,— 40, et 2)
par le compte rendu de Maximilien Marie sur 'ouvrage de
Vieéte, consacré au sujet considéré, qu’il envisage comme
« un essai infructeux de résolution des équations de tous les
degrés a coeflicients numériques . »

(Traduction de M. V. FriipErIcKsz, Genéve.)

V. Bosynix (Moscou).

LE LEMME FONDAMENTAL DE LA THEORIE
DES NOMBRES

Avant-Propos. — Historiquement, la théorie des nom-
bres tire son origine des spéculations des Anciens sur les
identités géométriques ou algébriques, les proportions, les
progressions, les combinaisons, les nombres polygones, fi-
gurés, parfails, les carrés magiques, les problémes indéter-
minés et surtout les triangles rectangles en nombres entiers;
mais la voie la plus naturelle qui y conduit est sans contre-
dit, 'idée de congruence, énoncée explicitement, pour la
premiére fois par Gauss. Plus immédiatement, on peut éta-
blir cette théorie en partant, par exemple, de I’analyse indé-
terminée, du théoréme de Fermat, de la théorie des résidus,
de la loi de réciprocité, de la formule de Moivre, ou encore
d’'un théoréme démontré par Euler, page 75 du tome VIII
des Novi Comm. Petr?. ;

Ce dernier moyen parait le plus propre a pénétrer rapide-
ment dans le sujet, car il en fait comprendre d’un seul coup

1 Maximilien MARE. Histoire des Sciences mathématiques et physiques, 111, p. 61.

3 « 8i per numerum quemcunque n termini progressionis arithmeticae cujuscunque, cujus
differentia sit numerus ad n primus, dividantur, inter residua occurrent omnes numeri divi-
sore n minores ».
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I'esprit et la méthode ; d’ailleurs il y est employé a chaque
istant,

Pour ces deux raisons, il semble que ce serait chose utile
qu'une monographie de ce théoreme et de ses nombreuses
conséquences, presque toutes origines directes des diverses
divisions de la théorie des nombres. Tel est le programme
du présent article, le second de ceux que nous avons an-
noncés, page 25

1. — La relation que présentent deux entiers a, A, ne duif-
férant que d'un multiple de 0, s’écrit @ = A (mod b) et
s'énonce a congru & A, suivant le module b.

Sion a:

a=A,a = A", a" = A", .. (mod. b)

on aura aussi :
aa’ ... = AN ..., ka= kA, ka + ld + ... =TA 4 A"+ ...,

a” = A" (mod. b)

De plus, si le nombre % divise « et A et qu'en outre il
soit premier avec b,

a A
—AT == Z . (n]Od. b)
2. — Les entiers a et b étant premiers entre eux, st on di-

vise par b les (b — 1) premiers multiples de a, les restes se-
ront, dans un certain ordre les (b — 1) premiers entiers. (Eu-
ler, 1759). Aucun reste n’est nul, etil ne peuty en avoir deux
qui solent égaux, car, autrement on aurait, par exemple,

ea=r e Pa=r dou (x—fla=0 (mod. b)

ce qui est impossible, puisque « est premier avec b et que,
a — 3 étant < b, l'expression (o« — (3) @ ne peut représenter
un multiple de 0. '

Cor. I. Si a et b sont premiers entre eux, on peut toujours
trouver, au-dessous de 0, un nombre x qui satisfasse a la
congruence ax = ¢ (mod. b), ou, si I'on veut, a la relation
ax — by = c. |

1 Dans le premier article, priérc de rectifier ainsi le commenecement du ne 3, page 2t :

3. — Posons £2 = r, il viendra FH-——l =r"=1:0na done, ele.
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Si a et b ne sont pas premiers entre eux et que 6 soit leur

a b a
p.- g c. d., 7 el 7 seront premiers entre eux et on pourra

écrire axr — by = cb.

On remarquera que si x satisfait a la congruence ar = ¢
(mod. ), tous les nombres congrus a x, c’est-a-dire compris
dans la formule %0 + x, y satisferont également, et il n'y
aura que ceux-la.

Cor. II. St (kb + a) (b + x) = mb + ¢, x a toujours une
valeur unique < 0. Ainsi tout nombre qui, multiplié par
8 4+ 5!, donne un prodmt 8 + 7, est de la forme 8 4 3,
puisque 3.0 =8 4 7 | |

Si a et aa sont tous deux =1 (mod. ), 1] en est de méme
de a.

Cor. [1l. Supposons b impair: les restes de la division par

b —
2

plus la somme de deux restes quelconques ne peut étre
égale a b. (Gauss).

1 ..
a sont tous différents et de

b des nombres a, 2a, 3a,

Cor. IV. Soit @ I'un des nombres 1, «, &', a”, ... b — 1.
lesquels sont inférieurs a b et premiers avec lui: la division
des nombres a, aa, ad', ... a(b — 1) par b, donnera comme
restes les mémes nombres 1, «, «, ... (Gauss).

Cor. V. Nombres associés. Appelons associés relativement
a b, deux nombres dont le produit est=1 (mod. 0): un nom-
bre quelconque, premier avec b, a son associé (Euler 1772).

En particulier, si  est un nombre premier p, tout entier
inférieur & p a son associé. En outre les nombres 1 et p — 1
sont les seuls & étre leurs propres associés, car, de 2% = 12,
on tire (x + 1) (x — 1) = 0. ’

On verra de méme : 1° que 2 etp——jf—— sont associés, de

—1 B .
méme que £ 5— et p — 2; 2° que les compléments & p de

deux associés sont eux-mémes associés.
Cor. VI. Si n divise a® &= kb®, a et b étant premiers entre
eux, il divise aussi un certain nombre de la forme x4 /.

1 Nous entendons par 14 un multiple de 8 augmenté de 5.
2 Quand le module est le nombre premier indéterminé p, on se dispense d’éerire la mention

(mod. p).
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(Euler 1748). Démonstration de Lagrange (1769). On peut
éerire @ = bax (mod. n), d’ou |

=il =0 xllf=Fi2Z2x=h. (mod. n)

En particulier, si le nombre premier p divise a? & kb?,
1l divise aussi 2% + & L. '

Cor. VII. Les nombres a et b étant premiers entre eux,
tout diviseur de a? 4+ %02 est de la forme Lb2 + Mbx + Nx?
et on a en outre 4LN - M? = 4/ (Lagrange 1775)%.

Soit n un diviseur de «® 4+ /)% ; on peut écrire a == b¢ + n.r,
ce qui donne |

a4 kb = (v* 4 k) b* + 2vnbx 4+ n2x?,

ce qui montre qué n divise ¢ 4+ &, puisque n et b sont pre-
miers entre eux.

Remarques. Formes réduites. On donnera ainsi qu’il suit
une forme plus précise au diviseur. Si, en valeur absolue,
M > Lou > N, la formule L)% 4+ Mbx 4+ Nua? peut se chan-
ger en L0’ + M'D'x’ + N'a'2, avec les relations

MUNT—M?2=4k et MW N,V =1 N =N,

IFaisons en effet b = &' — m', »r = &' ; la transformée
s'obtiendra en posant:

L"=L, M =M —2Lm, N=Lm?— Mm + N,
d’on

(o) 4L'N” — M2 = 4LN — M? .

Or on peut prendre m tel que, en valeur absolue, on ait
M < L'"=L < M et de la, a cause de (), L' N’ > LN ou
N> N.

Si M" > N’ on opérera de méme et on obtiendra une aulre
transformée du diviseur, laquelle donnera 4L”" N” — M"?2
=4k, N" =N ,M" <M .L" > L' et ainsi de suite.

1 On dit souvent qne p divise Ax? 4+ Bx 4 C, pour signaler qu'il existe un entier . qui rend
la valeur de 'expression Ax2 4 Bz + C divisible par p.

* Le théoréme de Lagrange est plus général : il traite Uexpression Aa* 4 Bab + C2% au
lien de a2 4- kb2 ; mais il suffit de considérer cette derniere, car la précédente s'v rameéne im-
médiatement, puisqu’on peut Péerire ainsi

(2Aa + Bb)2 4 (4AC — BE)p2
' AA )

[Enscignement mathém., 9¢ année ; 1907. 20




T
e

290 A. AUBRY

Puisque les nombres M, M’, M”, ... décroissent de plus en
plus, que L, L', ... et N, N, ... ne croissent pas, on arrivera
a une expression de la forme suivante

Py% + dyz 4 Rz? |

pour le diviseur de a? 4+ £b?% Dans cette expression, appelée
par Gauss, la forme réduite', y et z sont premiers entre eux,
O =P,d <R et de plus

(B) APR — @2 = 4k .

Si & > 0, 4PR est positif et comme P> @, R>= ®, on aura:
SPR = 407, dow @ = 2\/é_

St & <0, onaura :

®* — 4PR >0, dou ¢éz\/:5_"'

€

¢ est pair d'apres () ; on prendra ® d’aprés les limites in-

. , o2 | £ .
diquées et pour P-et R, les facteurs de —;— , en rejetant
ceux qui seraient < @ .

Le nombre des diviseurs est visiblement fini.

Diviseurs quadratiques. — 1° soit £ — 1 ; on aura

G =< 2 \/%, donc @ =0 et d'apres (8), PR =1, dou P =1,

R = 1. Ainsi les diviseurs de a®* 4 b® sont de la forme y* + 22
(Fermat).

20 Soit k=2; il viendra (péz\/g, dott ® =0, PR—=2,

PR =1, R=2. Ainsi les diviseurs de a® + 2b? sont de la
méme forme (Euler).

3° Soit £ = 3; il viendra ® =< 2 ; ® peutprendre les valeurs
0 ou 2. La premiére donne PR =3, d'ou P=1, R = 3. La
seconde, PR —= 4, d’'ou P = R = 2. Ains1 les diviseurs im-
pairs de a% 4+ 3b® sont de la méme forme (Euler).

! (yauss y arrive par certaines transformations qui en rendent I'étude théorique plus acces-
sible, mais il suffit pour notre objet de montrer I'existence de la forme réduite.
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% Soit enfin A= — 27 on aura & = 2\/§; donc ® = 0,

PR=2,P=1,R=2;oubienP =2, R=1.
Les diviseurs sont ainsi de l'une des formes % — 2z% ou
2y? —- 2%, lesquelles n’en font qu’une, car on a

¥ — 222 = 2(y — 2 — (y — 25)* .

Ainsi les diviseurs de a® — 2b? sont de la méme forme (Eu-
ler). , ‘

Legendre a donné la table des diviseurs quadratiques.
jusqu'a & = = 103. Pour s’exercer, on pourra vérifier que
les facteurs de a? + 136% sont de I'une des formes

4 1327, 2y 4 2yz 4 Tz%

Diviseurs linéaires. Reportons nous aux quatre applica-
tions qui précédent et considérons seulement les diviseurs
impairs.

1° y et z étant premiers entre eux et y? + z% up diviseur
impair, on a, par exemple, y pair et z impair. 1l suit de la
que les diviseurs impairs de a® + b® sont de la forme & 4 1
(Fermat). |

2° y® + 2z% ne peut représenter un impair que si y est im-
pair. Selon que z sera pair ou impair, on aura y* 4 2z> =8
+ 1 ou 8 4+ 3 : lelles sont les formes des diviseurs de
a® + 26* (Fermal).

3° L'un des nombres y, z est pair, 'autre impair : autre-
ment y* 4+ 3z% serait pair. D’ailleurs ¥ ne peut étre un mul-
tiple de 3 car y* 4 322 le serait aussi. Supposons y pair, il
sera de la forme 6 &= 2, z sera impair et on aura y* + 332 =
6 4 1. Soit y impair, ce qui demande qu’il soit de la forme
6 &= 1, z sera pair et on aura y* 4+ 322 =26 4 1. Cette der-
niére forme est donc celle des diviseurs premiers impairs de
a® 4+ 307 (Fermat).

4° On verra de méme que tout diviseur impair de a® — 2?2
est de 'une des formes 8 + 1, 8 — 1 (Fermat).

Diviseurs numériques. Les formules des diviseurs servent
principalement dans la recherche des diviseurs des grands
nombres. On en saisira I'usage par 'exemple simple suivant.
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On a 10273 = 101* + 2.6%2 = 892 4 3.28% Les diviseurs de
ce nombre appartiennent ainsi aux formes 8 4 1, 8 4 3,
6 + 1. Laseule forme a essayér est donc 24 4 1: orles seuls
nombres premiers de cette forme inférieurs a /10273 sont
73 et 97: la division par ces deux nombres ne réussissant
pas, le nombre 10273 est donc premier.

Formes quadratiques. C'est ici le lieu de donner une idée
de la théorie des formes quadratiques, c’est-a-dire des ex-
pressions de la forme ax? + 2bxy + cy?, qu'on représente
par la notation (a.b,c). Cette théorie tire son origine des
beaux théoremes dis a Fermat et démontrés par Euler, qui
en a compris limportance et dégagé les principes. Lagrange
'a définitivement fondée par sa considération des formes ré-
duites; Legendre I'a ensuite perfectionnée a divers égards ;
mais c¢’est surtout Gauss qui, lareprenant systématiquement,
en a fait le chapitre le plus vaste et le plus fécond de la
théorie des nombres.

Le but de‘ Gauss était primitivement la représentation des
nombres par des formes, mais 'intérét propre de ces ex-
pressions les lui a fait étudier en elles-mémes et il a éLé suivi
dans cette voie par les plus éminents arithméticiens.

Nous nous contenterons d'indiquer ici quelques notions
tres ¢lémentaires de cette théorie, dans le but de familiariser
avec la terminologie de Gauss, laquelle a souvent effrayé les
débutants par le grand nombre des idées et des expressions
nouvelles qu’elle a introduites dans la science des nombres.

1° Dans la forme (a, b, ¢) = ax?® 4+ 2bxy + cy?, substituons
les valeurs

x=ax’ 4 By . y=p 47
il viendra une autre expression de la forme
((lf, 07, c’) — a’x1'? _|_ 2/)’13,:)" + C')"Q )

On dit que la premiere forme renferme la seconde, et la
. . . «® N
substitution se figure par la notation (f) . De méme dans la
al‘.sl

seconde forme, effectuons une substitution (7’0" , 1l viendra

une troisiéme forme renfermée dans la deuxieme. Or la pre-

S e P




THEORIE DES NOMBRES 293
miere {forme peut donner la troisiéeme a I'aide d'une certaine

substitution ( ’ v,,) déterminée par les formules

‘1) 'l” — aa' + ﬁ"/’ , @,r — ’lﬁ/ _,r_ ‘60“, , \711 —— Va, + d"/, ,
" =g’ 4 997 .

et liée aux deux autres par la relation
‘2) (Qd‘ - 57) (ar()\r . 517/) — U."'j‘” ﬁl' H

Si dans la deuxieme forme, les nombres £’ et ' sont
entiers, les nombres x et y de la premiére le seront égale-
ment si l'on a ad — By = == 1; et, dans ce cas, les deux
formes sont dites équivalentes?, proprement dans le cas du
signe + et improprement dans le cas du signe —. L’équi-
valence de ces deux formes se note ainsi (a, b, ¢) v (a'0'c)).

La quantité ac — 0% s’appelle d’aprés Gauss, le déetermi-
nant de la forme (a, b, c). Les déterminants de deux formes
¢quivalentes sont égaux; la réciproque n’est pas vraie en
général.

3°. ‘Les lettres x, y, 2', y'... représentant des entiers qui
peuvent étre quelconques, on peut supprimer les accents
dans une forme considérée isolément, et ainsi on peut dire
que, si deux formes sont équivalentes, tout nombre repré-
sentable par I'une I'est également par 'autre.

4°, Siona ad — By = 1. la substitution ( @) est trés re

marquable : elle est dite modulaire et les formes qm s'en
déduisent sont dites de méme classe. Si ad — By = — 1,

effectuer la substitution (': g) puis la substitution (2) 2) re-

vient a effectuer la substitution unique (a B g ,-qui est mo-
7 —_—

dulaire.

I Telles sont les formes (a, b, ¢), (¢, b, a}, (c.,— b, a), (e, — b. ¢}, qui sont mspvctnunent
les formes identique, associce, (omplgmenraue et opposée a la forme (a, b, ¢). Elles s’en dédui-

sent par le moven des substitutions (0 ) (l 0) (0 ) ( 10 >

Dedekind a appelé par analogie nombres équivalents ceux qui sont compris dans la formule

'IT:"!"‘«J

e _1.'/,‘ . (uand wd — ﬁf\/ = %= 1. Ils ']ouent un r(‘.)le important dans la résolution des con-
.. T -

gruenees du second degré.
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Deux formes réduites, qui ont un méme déterminant
positif, ne peuvent étre de méme classe que si elles sont
identiques. De la le moyen de reconnaitre si deux formes de
méme déterminant positif sont de méme classe.

Si les nombres «a, b, ¢ n'ont aucun diviseur commun, et
qu’on pose ac — b% = D, les valeurs déterminées par la re-

lation 2 4+ Du? =— 1 donneront toutes les substitutions
t— bu — cu . ‘ A

o ) ) - al "

( aw ¢4 b)) AW changent la forme («, b, ¢) en elle-méme

On tire de la le moyen de trouver les substitutions modu-
laires qui lient deux formes a déterminanls positifs et de la
meéme classe. ,

Les théorémes analogue% dans le cas d'un déterminant né-
gatif sont beaucoup moins simples.

6°. Les problémes généraux résolus par Gauss et ses con-
linuateurs visent surtout la détermination et le dénombre-
ment des classes des formes de méme déterminant, ainsi
que différents modes de les grouper.

Cor. VIII. Si n = ap® 4+ 2buv + cv?, p et ¢ étant premiers
enire eux, on peut déterminer un nombre dont le carré di-
visé par n, donne pour reste 0% — ac! (Gauss.) Posons en
eflfel pr — oy =1, il viendra '

(3)  |x(bwm —I— cv) 4 ylap + bv)]* = n(aey? 4 2bxy + ca?) + ? — ac

Cor. IX. Une expression de la forme Ax* + ... + M = 0
s'appelle une congruence du n° degré et les valeurs de v qui
y salisfont et sont inférieures 4 p en sont les racines; les
aulres nombras plus petits que p en sont les non-racines.

n désignant un nombre inférieur a p, la congruence
F(x) = Ax" + Ba"—' 4+ ... 4+ Lxr + M = 0 ne saurait avoir
plus de n racines (Lagrange, 1768.) Soit en effet « une racine
de I'(x)=0;0n a:

’

Flay=0, dou Aan — ar)+ B(an-t — arn-1) 4 ... + L (x — a) = 0.

Le premier membre est divisible ‘par x — «, quantité non
multiple de p. De la, une transformée, de la forme Ax"—" 4
. + L =0. Si le nombre b, plus petit que p est une autre

1 Le nombre 62 — ac ost dit reside de n.
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racine, on aura de méme A (x»—! — b)) 4 ... =0, d’ou, en
divisant par £ — b, Ax"—* 4 ... =0, laquelle ne peut avoir
qu’une solution.

Certaines congruences ont toutes leurs racines ; certaines,
au contraire, n’en ont aucune, comme la suivante, 2% — 2x
+ 4= 0 (mod. b).

On suppose que les coeflicients de I (x) ne sont pas tous
des multiples de p: autrement on aurait F (x) = 0, quel que
soit x. Une telle congruence est dite identigue. Réciproque-
ment, si ona F(x) =0 quel que soit x, les coeflicients sont
tous des multiples de p.

Remarques. 1° Euler avait esquissé, en 1754, une démons-
tration de ce théoréme, qu'on peut présenter ainsi : Si les
(n + 1) premiers entiers étaient racines de F (x) = 0, les va-
leurs correspondantes de F («) et leurs différences premiéres,
secondes, ... seraient = 0. Or la différence ne est égale a An'!
(uantité incongrue a p. La supposition est donc fausse, et
la congruence a des non-racines = n + 1. |

2° Si le premier membre F (x) peut se décomposer en
deux facteurs entiers f(r), ¢ (x) de degrés & et n—k et
que la congruence F(x) = 0 ait n racines, les congruences
f(x) =0, ¢(x) = 0 en ont respectivement A et n — A (La-
grange.) En effet chacune ne peut en avoir davantage et elles
ne peuvent en avoir moins, car toutes les racines doivent se
retrouver dans la congruence f(x) ¢ (x) = 0.

Euler avait auparavant démontré cette proposition, dans
un cas particulier.

Cor. X. Critertum d’Euler. 1° Soit a® = r, on aura égale-
ment (p — a)? = r: la congruence 2* = r n’a que les deux
racines @ et — a!, car on peut Uécrire (x + 1) (x — 1) = 0.

Les p — 3 entiers inférieurs a p et différents de a et de

— 3
— « se partagent en P-T— groupes de deux nombres dont

le produit est=r,. Comme « (p—a) = —a*= — r, on a,

p—1
2

en multipliant. ces groupes et posant py=2m -+ 1,

(%) (p—1 = —m .

! Pour abréger. on derit souvent — « au lien de p — a.
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2° Puisque dans certains cas, la congruence #* = z a deux
racines, il y a, au-dessous de p, des valeurs p, de z, qui ne
permettent pas de satisfaire a cette congruence'. On peut

donc former, avec les p — 1 premiers entiers. 2—- ! oroupes
9 p p L [} 2 b p by

de deux nombres dont le produit est = p, et par suite on
peut écrirve : .
(5) (p—11=pm.

3° La valeur z =1 permet visiblement de salisfaire a la
congruence x® = z: on n'a qu'a faire x — z = 1. Dong,
puisque le nombre 77 est congru a une constanle, on peut
écrire |

rm=1m =1, etdela pr=—m=—1.

Ainsi, selon que la valeur de z permet ou ne permet pas
de satisfaire a la congruence #? =z, on a :

+1.

zmn

|l

L 4

Cette démonstration est due a Lejeune-Dirichlet.
Cor. XI. Représentons par s, la somme des n” puissan-
ces des k£ premiers entiers, on a, pourn < p — 1,

(6) 0. (Gauss et Libri.)

Il

sp—-— 1, n

Démonstration de Poinsot (1845). Ecrivons ax = b, d'ou
(ax)" = b™; il s’ensuit que, pour « =1, 2, 3, ... p — 1, les
restes de (ax)" seront, dans un certain ordre, les mémes que
ceux de ¢*. On a donc, en comparant les deux séries de ré-
sultats et additionnant,

(a7 — 1) =0 ..

Sp-——i, n

Prenons pour x une des non-racines de x* — 1 =0, il
viendra la relation annoncée.

Autre démonstration. L’expression (r + 1)* — x* est la
somme des n termes

(4 N)p=1, (=2, for 4 D=3 2?,

1 Les valeurs de = sont appelées residus on non-résidus de p, selon qu'clles permeltent

ou non la rdalisation de¢ la congraenee x2 = .
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et par suite, elle comprend visiblement n fois le terme 2",
plus des termes en 22, 2", ... On a donc :

(x 4+ 1)p — xr = nan—1 4 Axn—2 4 Ban—3 ++ ... Lx 4+ 1,

A, B, ... désignant des coeflicients indépendants de x. Chan-
geant successivement x en 1,2, 3,... « — 1 et addilionnant,
il viendra :

an=mns, ;| , 4+ Asa_l’ 2 +; oo+ Ls, gy —.l—. a;

de sorte que si Sa—i, o Sa—t iy - sont des multlples de a
et que n ne le soit pas, s4—1,.—1 le sera également.

Or s,_1,; est un multiple de «; il en est donc de méme de
Sa—1.2 » puis de s4—1,3, etc.

Cor. XII. Lemme de Gauss. Divisons par p lesp__' = m

premier multiples de a ; les restes seront, dans un certain
ordre et avec des signes dlvers les nombres =1, += 2, = 3,
. = m. Posons en consequen(,e :

a=r, 2 =1y, ... ma = rm,

on aura, en multlphant n desmnant le nombre des restes

négalifs,
mbanm =riry...rm=—{_—1rm!
L) \
d’ou
(’]) i am =— (_._ 1n

Application. Soit @ = 2. Les restes ne sont autres que les

produits eux-mémes s 4, 6,...2m = p — 1. Les prodmtq

plus petits que - p donnent des restes positifs. Orle nombre

des produits 2, 4, 6, ... p — 1, mferleurs a §p est pair, si

p==8+4 1ou8 4+ 3:etil estimpairsip=—8 4 5ou8 + 7.

Mais le nombre total m des produits est pair pour 8 41 ou

8 4 5, et impair pourp —8 4+ 30u8 + 7. Le nombre n des
1

restes plus grand que 5 5 P, est donc pair ou 1lnpan‘ selon que

p—-8—+~l ou p =8 =+ 3.
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En résumé, on a:
. P2_1

(8) | 2= (—1) °

Cor. XIlI. Théoréme d’Euler. L.es nombres a et 6 étant
premiers entre eux, on a :

(9) a? B = (mod. )

¢ (b) désigne, d’apres Gauss, lenombre des entiers inférieurs
a b et premiers avec lui, 1, o, &', ", ... b — 1.

Démonstration de Gauss. Appelons IT le produit laa’ o”
(b — 1), il viendra, en se rappelant le Cor. IV.

na?® =n . ou n [a‘P(b) — ] =0 (mod. b)

d’oti la relation (9).
‘Remarques. 1°. Si 6 est ur nombre premier p, comme
o(p) = p — 1, la formule (9) devient

(10) ‘ =1

et conslitue le théoréme de Fermat.

2° Démonstration de Poinsot. Joignons de a en a les b
sommets d'un polygone ; 6 étant premier avec «, on retom-
bera sur le point de départ. Autrement celui auquel on abou-
tit pourrait étre considéré comme le point de départ d'un
certain polygone fermé. Si on suppose que, dans cette cons-
truction, on ne passe que par n sommets, le nombre total
des sommets rencortrés en répétant cette construction pour
chacun des b sommets, serait ainsi n«. nombre divisible par
b puisqu’on parcourt une ou pluueurs fois le polygone n
est donc multiple de & et ne peut étre que b.
- Ayant joint les 4 sommets de @ en @, a partir d’'un sommet
déterminé, on aura un second polygone de b cotés qu'on
traitera de méme, ce qui en donnera un troisieme ; et ainsi
de suite, jusqu’a ce qu'on retrouve le premier polygone. On
aura ainsi n polygones différant entre eux et qui seront tout
ou partie des polygones étoilés possibles, lesquels sont au
nombre de ¢ (), d’apres ce qui a été dit plus haut. Dans ce
second cas, n sera un diviseur de ¢ (b); en effet prenons un
des ¢ (b) polygones qui ne se trouvent pas dans la série des
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n polygones différents qu’on vient de définir; on pourra de
méme en tirer n! polygones différant entre eux et différents
des premiers ; car les constructions dérivant de la méme loi,
si un polygone de la premiére série était identique & un de la
seconde, par exemple, les deux séries seraient forcément
identiques. Ainsi les polygones non compris dans le premier
groupe se partagent également en groupes de n.

Mais le procédé revient a prendre les sommets de @ en «,
de a®en a2, de a® en a?®, ... de a® en a"; or dans ce dernier
cas, les sommets sont pris de 1 en 1: on a donc

ar = 1 (mod. b)

d’ou (9) en élevant a la puissance entiere ?7(2——) :

Cor. XIV. Théoréme de Wilson. On a:
(11) (p—1l=—1

Démonstration de Gauss. Associons deux a deux les nom-

: . . 9 1 .
bres 2, 3, ... p—2; il viendra en multipliant ces 5 (p — 3)

groupes,
(12) 23 .. (p—2 =1,

d’ou (11) en multipliant par p — 1.

Remarques. 1°. Ce beau théoreme parait avoir été entrevu
par Leibniz ; Waring (Med. alg. 1770) en fait honneur a Jean
Wilson. La premiére démonstration en a été donnée par
Lagrange en 1771 : il considére 'égalité

(=) @ A1)+ 2) . (x+p—1) = 2Pl AP
+ B+ . 4+ Kx + L

et compare les deux résultats obtenus, 1° en changeant dans
() x en x 4 1, 2° en multipliant («) par & 4 p. 1l tire de la
les relations

A=0, B=0,..K=0, L4+1=0.

(13 } (p—NL=C, ,+C,y , 4A+C,_, , B+ .. =
1+ A4+B+4+ ... +K.
(14) 4+ (x+2) .. (x4+p—1) - T 41=0.

‘1 Le nombre n des polygones différents obtenus ecst indépendant en effetde laposition des
b poiuts : il doit étre le méme, quel que soit le polvgone dont on part.
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Six est nul ou congru a p, la relation (14) donne le théo-
réme de Wilson. Dans les autres cas, il conduit au théoréeme
de Fermqt | |

. Le théoréme de Wilson fournit un mo(yen de recon-
naitre si un nombre”donne est premier; en effet si p était
multiple de @, par exemple, « diviserait (p — 1)! et par
suite ne pourrait diviser (p — 1)! 4+ 1. Malheureusement ce
moyen est impraticable a cause des immenses calculs que
nécessiterait cette recherche, méme dans le cas de nombres
peu considérables.

3°. Généralisation de Gauss. Le produit des ¢ (b) nombres
plus petits que b et premiers avec lui, est de I'une des deux
formes &= 1 (mod. b). Poinsot a donné, de ce théoréme les
trois démonstrations que voici :

Si a est I'un des nombres «, &', «”, ... b — 1, I'un des
nombres aux, as’, ... est de la forme 1 (mod. b). Soit ax = 1
(mod. b) et supposons d’abord @ = «, il viendra a (b — a) =
— 1 (mod. &) ; le produit des couples de la forme « (b — a)
sera donc == 1 (mod. b), selon que leur nombre sera pair ou
impair. Ce nombre n’est d’ailleurs autre chose que celui des
racines de la congruence x* = 1 (mod. b).

Soit maintenant @ différent de «. Les produits analogues &
aa seront tous de la forme 1 (mod. b) et aucun des nombres
considérés tout a '’heure ne se retrouvera parmi ces derniers,
puisqu’'a chaque nombre « donnant a® = 1 (mod. b), ne cor-

respond qu’un nombre ¢’ = b — a. donnant aad’' = — 1
(mod. b), et qu’a chaque nombre «, différent de son associé
«, ne correspond quun seul nombre » tel que au =1
(mod. b). |
Multipliant tous ces couples, on obtient le théoréeme.
Gauss distingue les cas ou il faut le signe 4 ou le signe —
mais nous nous en tiendrons la. |
Autre démonstration. Posons aa'a"..! (b — 1) =11 ; les
nombres |
nn n
Il ; e

sont tous différents et premiers avec 0. Les resles de leur
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division par b seront lbs nombres a, o, ...; de la, en mL}ltl-

pliant, la congruence
u ©(b)—1 — ln' , d,Oll n@(b} — L / (I},lOd. b)

Autre démonstration. Joignons, de o en «, les sommets
d’un polygone P, de b cotés, et, de x en x, ceux du deu-
xieme polygone P’ ainsi obtenu, x etant ohoisi tel que le
troisiéme pol)gone comcule avec le premier P. On a ainsi
pris les sommets de ax en ax, ce qui produit le méme résul-
tat que sion les avait pris de 1 en 1. Ainsi si « est premier
avec b, il y aura toujours un nombre x tel que ax =1
(mod. )1 |

Si & = a, et qu’'on prenne les sommets de P’ de b — « en
b — x, on retombera sur le polygone P renversé; donc
o0 — o) revient a — 1 ou bien a (b — o) =— 1 (mod. b).

Ainsi, dans tous les cas, les nombres 1, «, &, ... b — 1
peuvent s’associer de maniére que leur prodult soit de la
forme == 1 (mod. 6): on peut donc écrire

n==1 (mod. b).

selon que le nombre des produits de la forme — 1 (mod. b),
est pair ou impair?.

EXERCICES.

1. La somme des quotients provenant de la division par b

des nombres «, 2a, 3a, ... (b — 1) a, est égale a % (@« — 1}
(b — 1). (Gauss).

! De la, une solution graphique de la congruence ax — by = 1. (Poinsot).
% 5i b est un nombre premier p, la démonstration se simplifie ainsi, d’aprés Cavley.
D’apres ce qui a été dit, Cor. XI1I, 2, premier alinéa, b points dxspose% legjuhuement sur

@ (b} 1
unc circonférence sont les sommets de ‘4—‘—)—!_—— polygones réguliers de & cotés; dou, si ¢
-

¢st premier et ¢gal a p, :— (p — 1) polygones.

Or le nombre tolal des polygones, tant réguliers qu’irréguliers, ¢st évidemment la moitié
du nombre des permutations de p — 1 objets, puisque ces polygones se reproduisent deux &

deux. D’un autre cdoté, sinous faisons tourner autour de son centre, et successivement des
2T 4T (T 2(p— N7 ST :
angles —, — , — , ... —————, un polygone irrégulier quelconque, nous obticndrons.
p py

p — 1 autres polygones irrégualiers : l¢ nombre des polygones irrdguliers possibles est done

un multiple de p. De 13, la xelahon

. l ) —‘
se=1 =5 (p—1=0.



302 A. AUBRY

2.8 w=o,y = 8 est une solution de ar — by = 1;
X = ca, y = cf en est une de ax — by = c. |
3. Trouver x tel que x = « (mod. a) et x = 3 (mod. ).
On cherche A =1 (mod. «) et aB=1 (mod. ), ce qui
donne ,
x = Aba + Baf (mod. ab) .

4. Soit g celui des b — 1 premiers entiers positifs qui rend
¢ — ag multiple de b, I'équation ar + by = c a un nombre
de solution représenté par la formule de Paoli,

(48
E( ab >+1'

5. La solution de ax — by — ¢ est donnée par la formule
de Libri, ‘

sin (2¢ — a) kn

_c——l 1 k= b
r = 2 +22k.—_1 . akw

s —
€ /)

6. Soit u le plus grand commun diviseur des nombres
donnés «, B8, v, ... On peut toujours déterminer les nombres
A, B, C, ... de maniére qu’on ait *

+ -+ ... = | (Gauss).

7. Résoudre les équations
2y —a"y =a, 2"y —xy" =a', 2y’ — 2’y = a". (Gauss)
8. Soit a résoudre les équations
x=ay+oao=bz+=cwt+y9=..

a, b, c, ... étant premiers deux a deux. On pose P = abc ...
et on calcule &', &', ¢, ... de maniére qu’on ait

— «’ =1 (mod. a) , — b =1 (mod. b) , ...

d’ou
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Le probleme est ramené au calcul des associés de —,
(Voir exercices n 10, 11 et 22). .

9. Regula cceci. Partager A en n parties telles que a fois la
premiére, b fois la deuxiéme, ... fassent ensemble une somme
B. |

Supposons que « esl le plus pelit des nombres «, b, ¢,
On a:

b—a)y+(c—aszs+..=B—aA,

’ . » bl ‘r
é¢quation de la forme ay + 8z + ... = C., qu'on résout en

remarquant qu'il y a au moins deux coeflicients, « et (3 par
exemple, qui sont premiers entre eux, ce quipermet de poser

e’ 4+ BB =1, dou x=a (C—ya — ...) + B},
y =8 (C—qga — ...) + ap,

A, ¢, ... désignant des quantités indéterminées.
10. Divisons @ par b, b par le reste, ce reste par le second
reste, et ainsi de suite, de sorte qu'on ait

a=uab+4+c, b=pc+d, ¢c=9d+e, ..

z, 3, ... sont entiers et b, ¢, ... diminuent jusqu'a ce qu’'on

parvienne a m = un + 1.
Formons les expressions

[u]:a:A
«, ] =BfA 4+ 1 =8B,
IaPﬂ /B+1=0C,

on aura

o B ] (B ] — [, o A B, e ] =1

De la le moyen de résoudre ar — by = =+ 1.

11. Soient 11, ra, 1y, ... et i, Ga, g5, ... les Testes et les quo-
tients obtenus successivement en lelsantppara iy l'ay Iy, ...
Les restes sont tous différents de zéro et décroissent jusqu’a
r, =1.0n a:

aqy gy - Gy =— (—1)°

* Les théories que contiennent les exercices 2, 3, 8. 9 et 10 étaient connues des Indiens,
commie on le voit chez Brahmegupta ct Bhashma Mals c’est sculement Bachet qui a com-
mence a les exposer avee méthode et en détail. '
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De la la solution de axr = == 1. (Binet).
12. a et b étant premiers entre eux, le produit

xe — 1 xb— 1
x—1 a—1
;(,a[) i '
est divisible par —— ((ﬂuss)
13. Si on peut écrire a® = r et b* = ———1, ona: a*=—1
(Euler). En effet posons ax = 0, il viendra a?x% = 0? = — a*.

(Gauss). |

14. Soient a® = r, b* = rs, on peut écrire x* = s (Euler,.
En effet posons ax = 0, il viendra rs = 0% = a*x® = ra’.
(Gauss).

15. Soit a8 = a"* = r, g et h étant premiers enlre eux, on
peut écrire 7 = «. En effet posons gr — hy =1, il viendra

G — 8% — Syt = Ly - (Legendre).

16. Aucun nombre non décomposable en deux carrés en-
tier ne l’est pas non plus en deux carrés fractionnaires (Fer-
mat).

17. L’égalité ax? — y* = 1 ne peut avoir lieu si @ n’est pas
la somme de deux carrés. (Brahmegupta).

18. Les diviseurs du nombre a? — 362 sont de 'une des
formes quadratiques = 22 == 3y2, ou de 'une des formes li-
néaires 12 + 1. (Lagrange). |

19. Les nombres a* + 1 et a* —— a? + 1 sont respective-
ment des deux formes lineaires 8 4+ 1 et 12 + 1. En effet
on peut les écrire

*

(a? — 1) 4+ 1 et (a? — 1) 4+ a® = (a® 4 1)2 — 3a®. (Serret).

20. Si. 'un des coeflicients A, B, est multiple de p, la con-

gruence Axz" 4+ Bx"~! 4+ ... + M = 0 ne saurait avoir n
racines.

Il en est de méme si M = 0.

Si elle a n racines, @, b, ... on peut l'écrire A(x — a)
(0 —0b)...=0etlona:

Ala+b+ ..)+B=0, ab...=%=M.
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21. Du Cor. XI, déduire la relation
SP—1>P—1 = (P e 1) !

ainsi que le Cor. IX.
29. Posons a®” = kb 4 1, on aura

a (ca?‘b)'—l) — b(ck) =c¢

d’ott une solution de ax — by — ¢ (Poinsot). Ainsi 'associé
de a relativement a b est

23. Trouver xtel que £ =« (mod. a) et = (mod. ). On a:
x = ¥ ¢ + a%0 g {mod. ab).

Ainsi les nombres a la fois des deux formes 3 + 1 et &4 — 1
sont de la forme 12 4 7; ceux des formes 3 — 1 et 4 + 1,

‘de la forme 12 + 5; ceux des formes 3 =1et4 =1, de la

forme 12 + 1.
24. Changeons successivement x ety en 1, «, o', ... b — 1
dans la relation « = xy (mod. b) et multiplions, il viendra

&0 = __ 2 (mod. b) d’ott n*=1 (mod. b?

25. Démontrer les relations
(p—N(p—2) ... m

P11y,

fa =11 (p—a')=(—1a. (Lagrange).

= (— 1m . (Lebesgue).

A. Ausry (Beaugency, Loiret).

L’Enseignement mathém., 9¢ année ; 1907. 21
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