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286 A. AUBR Y

dans la résolution d'une équation du deuxième degré citée
plus haut, qu'en divisant 19350 par 407 on obtient ^a 40, et 2)

par le compte rendu de Maximilien Marie sur l'ouvrage de

Viète, consacré au sujet considéré, qu'il envisage comme
« un essai infructeux de résolution des équations de tous les
degrés à coefficients numériques l. »

(Traduction do M. V. FuÉédisricksz, Genève.)

V. Bobynin (Moscou).

LE LEMME FONDAMENTAL DE LA THÉORIE

DES NOMBRES

Ayant-Propos. — Historiquement, la théorie des nombres

tire son origine' des spéculations des Anciens sur les
identités géométriques ou algébriques, les proportions, les

progressions, les combinaisons, les nombres polygones,
figurés, parfaits, les carrés magiques, les problèmes indéterminés

et surtout les triangles rectangles en nombres entiers ;

mais la voie la plus naturelle qui y conduit est sans contredit,

l'idée de congruence, énoncée explicitement, pour la

première fois par Gauss. Plus immédiatement, on peut établir

cette théorie en partant, par exemple, de l'analyse
indéterminée, du théorème de Fermât, de la théorie des résidus,
de la loi de réciprocité, de la formule de Moivre, ou encore
d'un théorème démontré par Euler, page 75 du tome VIII
des Novi Comm. Petr2.

Ce dernier moyen paraît le plus propre à pénétrer rapidement

dans le sujet, car il en fait comprendre d'un seul coup

1 Maximilien Marli-:. Histoire des Sciences mathématiques et physiques, III, p. 61.
2 « Si per numerum quemcunque n termini progressionis arithmetic« cujuscunque, cujus

differentia sit numerus ad n primus, dividantur, inter residua occurrent omnes numeri divi-
sore n minores ».



THÉORIE DES NOMBRES 287

l'esprit et la méthode; d'ailleurs il y est employé à chaque

instant,
Pour ces deux raisons, il semble que ce serait chose utile

qu'une monographie de ce théorème et de ses nombreuses

conséquences, presque toutes origines directes des diverses
divisions de la théorie des nombres. Tel est le programme
du présent article, le second de ceux que nous avons
annoncés, page 25 l.

1. — La relation que présentent deux entiers a\ A, ne
différant que d'un multiple de è, s'écrit a A (mod b) et
s'énonce a congru à A, suivant le module b.

Si on a :

a A a' A' a" A'", (mod. b)

on aura aussi :

act' EE AA' kd EE kA kci -{- Ici -{- ee ^'A -j- IA -(—

a71 ~ A71 (mod. b)

De plus, si le nombre k divise a et A et qu'en outre il
soit premier avec è,

i i- (mod-

2. — Les entiers a et b étant premiers entre eux, si on
divise par b les (b — 1) premiers multiples de a, les restes
serontt, dans un certain ordre les (b — 1) premiers entiers. (Etiler,

1759). Aucun reste n'est nul, et il ne peut y en avoir deux
qui soient égaux, car, autrement on aurait, par exemple,

a a ~ r et ß a EE r d'où (a — jS) a 0 (mod. b)

ce qui est impossible, puisque a est premier avec b et que,
a — ß étant < 6, l'expression (a — ß) a ne peut représenter
un multiple de b.

Cor. I. Si a et b sont premiers entre eux, on peut toujours
trouver, au-dessous de è, un nombre x qui satisfasse à la

congruence ax c (mod. 6), ou, si l'on veut, à la relation
ax — by c.

1 Dans le premier article, prière de rectifier ainsi le commencement du n° 3, page 25

3. — Posons p2 r, il viendra * rm f : 0n a donc, etc.
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Si a et b ne sont pas premiers entre eux et que 0 soit leur

p. g. c. d., j et j seront premiers entre eux et on pourra
écrire ax — by cB.

On remarquera que si x satisfait à la congruence cix c

(mod. b), tous les nombres congrus à x, c'est-à-dire compris
dans la formule kb + x, y satisferont également, et il n'y
aura que ceux-là.

Cor. II. Si (kb + a) (lb + oc) tnb + c, x a toujours une
valeur unique < b. Ainsi tout nombre qui, multiplié par
8 + 5 \ donne un produit 8 + 7, est de la forme 8 + 8,

puisque 3.5 8 + 7.

Si a et aa sont tous deux 1 (mod. /;), il en est de même
de öl.

Cor. III. Supposons b impair: les restes de la division par
/, ib des nombres a, 2a, 3a, —^— a sont tous différents et de

plus la somme de deux restes quelconques ne peut être
égale à b. (Gauss).

Cor. IV. Soit a l'un des nombres 1, a, ol a", b — 1,

lesquels sont inférieurs à b et premiers avec lui : la division
des nombres a, aoc, aoé a (b — 1) par b, donnera comme
restes les mêmes nombres i, a, a', (Gauss).

Cor. V. Nombres associés. Appelons associés relativement
à b, deux nombres dont le produit est= 1 (mod. b) : un nombre

quelconque, premier avec b, a son associé (Euler 1772).
En particulier, si 1b est un nombre premier p, tout entier-

inférieur à p a son associé. En outre les nombres 1 et p — 1.

sont les seuls à être leurs propres associés, car, de x2 l2,
on tire (x '+ 1) (x — 1) 0.

On verra de même : 1° que 2 et^-—— sont associés, de

même que p ~ 1
et p — 2 ; 2° que les compléments à p de

deux associés sont eux-mêmes associés.
Cor. VI. Si n divise a2 ± kb2, a et b étant premiers entre

eux, il divise aussi un certain nombre de la forme x"± k.

1 Nous entendons par là un multiple de 8 augmenté de 5.
2 (luand le module est le nombre premier indéterminé p, on se dispense d'écrire la mention

(mod. p).
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(Euler 1748). Démonstration de Lagrange (1769). On pent
écrire a bx (mod. n), d'où

0 a2 ± kb2 b2x2 ± lb2 z= h2 (x2 ± k) (mod. n)

En particulier, si le nombre premier p divise a2 ± kb2,
il divise aussi x2 rh k l.

Cor. VIL Les nombres a et b étant premiers entre eux,
tout diviseur de a2 -)- kb2 est de la forme L b2 + M bx + Sx2
et on a en outre 4LN — M2 47: (Lagrange 1775)2.

Soit n un diviseur de a2 + kb2 ; on peut écrire a bv -[- nx,
ce qni donne

a2 -|- kb2 — je2 4" L + ~vnbx -f- n2x2

ce qui montre que n divise c2 k, puisque n et b sont
premiers entre eux.

Remarques. Formes réduites. On donnera ainsi qu'il suit
une forme plus précise au diviseur. Si, en valeur absolue,
M > L ou > N, la formule L b2 + MZ>,r + N.r2 peut se changer

en Mb'2 -f- M'b'x' -f- N7;r72, avec les relations

L'N7 — M'2 — 'H cl. M' < N 1/ ^ L N7 ^ N

Faisons en effet b — b' — mx!, x x ; la transformée
s'obtiendra en posant :

L7 L M' M — 2L m N' L m2 — Mm + N
d'où

(a) 4L 'N' — M72 4LN — W

Or on peut prendre m tel que, en valeur absolue, on ait
M' < L' L < M et de là, à cause de (a), L'N' > Li\T ou
N7 > N.

Si M7 > N7 on opérera de même et on obtiendra une autre
transformée du diviseur, laquelle donnera 4L77 N77 — M772

47;, N77 N7, M77 < M7. L77 > L7 ; et ainsi de suite.

1 On dit souvent que p divise Ax2 -f- Bx -f C, pour signaler qu'il existe un entier x. qui rend
la valeur de l'expression Ax2 -{- Bx + C divisible par p.

2 Le théorème de Lagrange est plus général : il traite l'expression A a2 -f Bai -f Ci2, au
lieu de a2 -f kb2 ; mais il suffit de considérer cette dernière, car la précédente s'y ramène
immédiatement, puisqu'on peut l'écrire ainsi

(2Aa + Bè)2 4- (4AC — Bs;è2
4 A

L'Enseignement mathém., 9« année ; 1907. 20
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Puisque les nombres M, M', M", décroissent de plus en
plus, que L, L', et N, N\ ne croissent pas, on arrivera
à une expression de la forme suivante

Pj2 -h *yz + R;2

pour le diviseur de a2 -f- kb2. Dans cette expression, appelée
par Gauss, la forme réduitel, y et z sont premiers entre eux,
^ P O ^ R et de plus

(j3) 4PR — <î>- -ik

Si 4 > 0, 4PPi est positif et comme P ^ <ï>, Pi ^ $, on aura :

4PR — d'où <1> ^ 2 4 —V 3

Si k < 0, on aura :

<t2 — 4PR > 0 d'où 4-^2 \./-A-2 \/ ~-

$ est pair d'après (ß) ; on prendra d'après les limites

indiquées et pour P'et R, les facteurs de - - en rejetant

ceux qui seraient < 4>

Le nombre des diviseurs est visiblement fini.
Diviseurs quadratiques. — 1° soit k 1 ; on aura

^ 2 y/1 ; donc $; 0 et d'après (/3), PR 1, d'où P 1,

R 1. Ainsi les diviseurs de a2 + b2 sont de la forme y2 + z2

(Fermât).

2° Soit 4 2; il viendra ^ 2 y/|, d'où $ 0 PR 2

PR 1, R 2. Ainsi les diviseurs de a2 + 2b2 sont de la
même forme (Euler).

3° Soit 4 3; il viendra $ ^ 2 ; 4> peut prendre les valeurs
0 ou 2. La première donne PR 3, d'où P 1, R 3. La
seconde, PR. 4, d'où P R 2. Ainsi les diviseurs
impairs de a2 + 3b2 sont de la même forme (Euler).

1 (jauss y air-rive par certaines transformations qui en rendent l'étude théorique plus accessible,

mais il suffit pour notre objet de montrer l'existence de la forme réduite.
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4° Soil enfin k — — 2 ; on aura $ ^ 2y/donc $ — 0

PR 2, P 1, R 2; ou bien P 2, R 1.

Les diviseurs sont ainsi de Lune des formes y2 — 2z2 ou

2y2 —z2, lesquelles n'en font qu'une, car on a

j2 — 2z2 2 (j — z)2 — (j 2z)'2

Ainsi /es diviseurs de a2 — 2b2 sont de la même forme (Etiler).

Legendre a donné la table des diviseurs quadratiques,
jusqu'à k ± 103. Pour s'exercer, on pourra vérifier que
les facteurs de a2 + 13ô2 sont de l'une des formes

f + 13s2 2y2 + 2js + 7s2

Diviseurs linéaires. Reportons nous aux quatre applications

qui précédent et considérons seulement les diviseurs
impairs.

1° y et z étant premiers entre eux et y2 + z2 un diviseur
impair, on a, par exemple, y pair et 2 impair. 11 suit de là

que les diviseurs impairs de a2 + b2 sont de la forme 4+1
(Fermât).

2° y2 + 2z2 ne peut représenter un impair que si y est
impair. Selon que 2 sera pair ou impair, on aura y2 + 2z2 — 8

+ 1 ou 8 + 3 : telles sont les formes des diviseurs de
a2 + 2b2 (Fermât).

3° L'un des nombres y, 2 est pair, Lautre impair : autrement

y2 + 3z2 serait pair. D'ailleurs y ne peut être un multiple

de 3 car y2 + 322 le serait aussi. Supposons y pair, il
sera de la forme 6 d= 2, 2 sera impair et on aura y2 + 322
6 + 1. Soit y impair, ce qui demande qu'il soit de la forme
6 ± 1, 2 sera pair et on aura y2 + 322 6 + 1. Cette
dernière forme est donc celle des diviseurs premiers impairs de
a2 + 3b2 (Fermât).

4° On verra de même que tout diviseur impair de a2 — 2b2

est de l'une des formes 8 + 1, 8 — 1 (Fermât).
Diviseurs numériques. Les formules des diviseurs servent

principalement dans la recherche des diviseurs des grands
nombres. On en saisira l'usage par l'exemple simple suivant.
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On a 10273 1012 + 2.62 892 + 3.282. Les diviseurs de

ce nombre appartiennent ainsi aux formes 8+1,8-]- 3,
6 + 1. La seule forme à essayer est donc 24 + 1 ; or les seuls
nombres premiers de cette forme inférieurs à \/10273 sont
73 et 97 : la division par ces deux nombres ne réussissant
pas, le nombre 10273 est donc premier.

Formes quadratiques. C'est ici le lieu de donner une idée
de la théorie des formes quadratiques, c'est-à-dire des
expressions de la forme ax2 -f- 2bxy -)- cy2, qu'on représente
par la notation {afb,c). Cette théorie tire son origine des
beaux théorèmes dûs à Fermât et démontrés par Euler, qui
en a compris l'importance et dégagé les principes. Lagrange
l'a définitivement fondée par sa considération des formes
réduites; Legendre l'a ensuite perfectionnée à divers égards ;

mais c'est surtout Gauss qui, la reprenant systématiquement,
en a fait le chapitre le plus vaste et le plus fécond de la
théorie des nombres.

Le but de* Gauss était primitivement la représentation des
nombres par des formes, mais l'intérêt propre de ces
expressions les lui a fait étudier en elles-mêmes et il a été suivi
dans cette voie par l'es plus éminents arithméticiens.

Nous nous contenterons d'indiquer ici quelques notions
très élémentaires de cette théorie, dans le but de familiariser
avec la terminologie de Gauss, laquelle a souvent effrayé les
débutants par le grand nombre des idées et des expressions
nouvelles qu'elle a introduites clans la science des nombres.

1° Dans la forme (a, b, c) ax2 + 2bxy + cy2, substituons
les valeurs

x qlx' -f- ßy y !=r yx' -f- ây' :

il viendra une autre expression de la forme

[F, b\ c') — arxn -f- 2 h' xry' -|- c y
2

On dit que la première forme renferme la seconde, et la

substitution se figure par la notation - De même dans la

seconde forme, effectuons une substitution il viendra

une troisième forme renfermée dans la deuxième. Or la pre-
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mière l'orme peut donner la troisième à l'aide d'une certaine

substitution'^,,^,) déterminée par les formules

(1) ol" a.').' + ßy',ß" aß' + • — 7«' + dy'

â" yß'+ <«'

et liée aux deux autres par la relation

(2) (ol$ — ]Sy) [arV — ß'y'j — «"<?" — ß"y".

2°. Si clans la deuxième forme, les nombres x et y' sont
entiers, les nombres x et y de la première le seront également

si Ton a aä — ßy ± 1; et, dans ce cas, les deux
formes sont dites équivalentes% proprement dans le cas du

signe -f et improprement dans le cas du signe —.
L'équivalence de ces deux formes se note ainsi (.a, b, c) co {a'b'c').

La quantité ac — 62 s'appelle d'après Gauss, le déterminant

de la forme {a, b, c). Les déterminants de deux formes
équivalentes sont égaux ; la réciproque n'est pas vraie en
général.

3°. Les lettres x, y, x!, y'... représentant des entiers qui
peuvent être quelconques, on peut supprimer les accents
dans une forme considérée isolément, et ainsi on peut dire
cjue, si deux formes sont équivalentes, tout nombre
représentable par l'une l'est également par l'autre.

4°. Si on a ad — ßy 1, la substitution est très

remarquable; elle est dite modulaire et les formes qui s'en
déduisent sont dites de même classe. Si ad — ßy — 1,

effectuer la substitution puis la substitution ^
revient à effectuer la substitution unique

~~
qui est

modulaire.

1 Telles sont les formes (a, b, c) (c, b, a) (c, — b> a), (a, — b. c), qui sont respectivement
les formes identique, associée, complimentait e et opposée à la forme (a, b, c). Elles s'en déduisent

parle moyen des substitutions Q ^ et ^ •

Dedekind a appelé par analogie nombres équivalents ceux qui sont compris dans la formule
(XX -\-ß

+ fj
(l"anCt r7 — — ^ 1Is jouer»t tin role important dans la résolution des

congruences fin second degré,
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5°. Deux formes réduites, qui ont un même déterminant
positif, ne peuvent être de même classe que si elles sont
identiques. De là le moyen de reconnaître si deux formes de
même déterminant positif sont de même classe.

Si les nombres a, b, c n'ont aucun diviseur commun, et
qu'on pose ac — b2 D, les valeurs déterminées par la
relation t2 -f Du2 1 donneront toutes les substitutions

(* aJ)U
t _j_CflJU) qui changent la forme (a, b, c) en elle-même.

On tire de là le moyen de trouver les substitutions modulaires

qui lient deux formes à déterminants positifs et de la

même classe.
Les théorèmes analogues dans le cas d un déterminant

négatif sont beaucoup moins simples.
6°. Les problèmes généraux résolus par Gauss et ses

continuateurs visent surtout la détermination et le dénombrement

des classes des formes de même déterminant, ainsi
que différents modes de les grouper.

Cor. VIII. Si n ay2 -f- 2byv -|- ce2, g et v étant premiers
entre eux, on peut déterminer un nombre dont le carré
divisé par n, donne pour reste b2 — ac1 (Gauss.) Posons en
elfel yx— vy I, il viendra

(8) \x{by + tv) -f- y [ap -f- />r)J2 n {aj2 -f- 2b.ry -f- r.r8) -j- lr — ac

Cor. IX. Une expression de la forme Axn -f- + M e 0

s'appelle une congruence du nG degré et les valeurs de .c qui
y satisfont et sont inférieures à p en sont les racines ; les
autres nombrss plus petits que p en sont les non-racines.

n désignant un nombre inférieur à /?, la congruence
F(x) Axn -f- B.x"- 1 -f- -f- L.r + M 0 ne saurait avoir
plus de n racines (Lagrange, 1768.) Soit en effet a une racine
de V (x) 0 ; on a :

F (a) EE 0 d'où A (;r11 — a'1) -f- B (.x— an~l) -f- -j- L (,r — a) EE 0.

Le premier membre est divisible par x — a, quantité non j

multiple de p. De là, une transformée, de la forme Axn~~x + [

-f L 0. Si le nombre b, plus petit que p est une autre i

^

:

1 Le nombre l'À — ac est dit résidu de n. |
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racine, on aura de même A {xn~~l — &""1) + 0, d'où, en

divisant par x — b, Axn~2 + 0, laquelle ne peut avoir
qu'une solution.

Certaines congruences ont toutes leurs racines ; certaines,
au contraire, n'en ont aucune, comme la suivante, x2 — 2x

+ 4=0 (mod. 5).
On suppose que les coefficients de F (x) ne sont pas tous

des multiples de p : autrement on aurait F (x) 0, quel que
soit x. Une telle congruence est dite identique. Réciproquement,

si on a F (x) 0 quel que soit x, les coefficients sont
tous des multiples de p.

Remarques. 1° Euler avait esquissé, en 1754, une démonstration

de ce théorème, qu'on peut présenter ainsi : Si les
(n + 1) premiers entiers étaient racines de F (x) 0, les
valeurs correspondantes de F (x) et leurs différences premières,
secondes, seraient 0. Or la différence ne est égale à An î

quantité1 incongrue à p. La supposition est donc fausse, et
la congruence a des non-racines ^ n + 1.

2° Si le premier membre F (pc) peut se décomposer en
deux facteurs entiers f (x), y (x) de degrés k et n — k et
que la congruence F (x) 0 ait n racines, les congruences
f'(x) 0, «p (x) E 0 en ont respectivement k et n — k (La-
grange.) En effet chacune ne peut en avoir davantage et elles
ne peuvent en avoir moins, car toutes les racines doivent se

retrouver dans la congruence f(x) 9 [x) 0.

Euler avait auparavant démontré cette proposition, dans
un cas particulier.

Cor. X. Critérium d*Euler. 1° Soit a2 i\ on aura également

(p — a)2 r : la congruence x2 r n'a que les deux
racines a et — a *, car on peut l'écrire [x + r) (x — r) 0.

.Les p — 3 entiers inférieurs à p et différents de a et de

— a se partagent en ——^
groupes de deux nombres dont

le produit est r. Comme a (p — a) — a2 — r, on a,

en multipliant, ces p ~ 1

groupes et posant p 2m + 1,

Cd \p — L — r"1

1 Pour abroger, on écrit souvent — a au lieu de p — a.
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2° Puisque dans certains cas, la congruence ér2 z a deux
racines, il y a, au-dessous de p, des valeurs p, de z, qui ne

permettent pas de satisfaire à cette congruence1. On peut
donc former, avec les p — 1 premiers entiers, groupes
de deux nombres dont le produit est p, et par suite on
peut écrire :

(5) (p — 1) pm

3° La valeur 3 J permet visiblement de satisfaire à la

congruence s2 ££ Z : on n'a qu'à faire x — z 1. Donc,
puisque le nombre rm est congru à une constante, on peut
écrire

rm im — J et de là p"1 — /•'" =E — 1

Ainsi, selon que la valeur de z permet ou ne permet.pas
de satisfaire à la congruence x2 z, on a :

t z»1 ± 1

Cette démonstration est due à Lejeune-Dirichlet.
Cor. XI. Représentons par skln la somme des rCs puissances

des k premiers entiers, on a, pour n < p — 1,

(6) sp— 1 n
^ ' (Gauss et Libri.)

Démonstration de Poinsot (1845). Ecrivons ax=b, d'où
(ax)n bn\ il s'ensuit que, pour a — 1, 2, 3, p — 1, les
restes de (ax)n seront, dans un certain ordre, les mêmes que
ceux de a11. On a donc, en comparant les deux séries de
résultats et additionnant,

ix»-l)sp_1^=0.
Prenons pour x une des non-racines de xtl — 1=0, il

viendra la relation annoncée.
Autre démonstration. L'expression (x + 1)" — xn est la

somme des n termes

(x -f- i)n—1, (x 1 )»—- X (X + 1)"—3 X2, Xn—1

1 Les valeurs clo c sont appelées résidus 011 non-résidus de p, selon qu'elles permettent
ou non la réalisation de la congruence x2.= z.
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et par suite, elle comprend visiblement n fois le terme xn~x,

plus des termes en xn~~2,-xn,~:K On a donc :

(x + 1)" — xA — + A#»—2 Bx"—3 -f- La? + 1

A, B, désignant des coefficients indépendants de x. Changeant

successivement x en 1, 2, 3, a — 1 et additionnant,
il viendra :

an nsa_l n__1 + Asa_1 n__2 +.. + ;1 + « ;

de sorte que si sa—i,n—21 3\ sont des multiples de a

et que a ne le soit pas, sa—i,n—\ le sera également.
Or .ça_i, 1 est un multiple de a ; il en est donc de même de

s a —1,2 puis de Sa—1,3, etc.

Cor. XIL Lemine cle Gauss. Divisons par p les m

premiers multiples de a ; les restes seront, dans un certain
ordre et avec des signes divers, les nombres ± 1, ± 2, ± 3,

± m. Posons en conséquence :

a EE 71! 2a — i'i t ma EE rm

011 aura, en multipliant, n désignant le nombre des restes
négatifs,

m am ~ rt r2 rm — (— m

d'où

(7) am ~ (— !)«

Application. Soit a 2. Les restes ne sont autres que les
produits eux-mêmes 2, 4, 6, 2m — p — 1. Les produits

1

plus petits que — p donnent des restes positifs. Or le nombre

des produits 2, 4, 6, p -— 1, inférieurs à ~ p est pair, si

p —8 + 1 ou 8 + 3 ; et il est impair si p 8 + 5 ou 8 4 7.
Mais le nombre total m des produits est pair pour 8+1 ou
8 + 5, et impair pour/7 8 + 3 ou 8 + 7. Le nombre n des

restes plus grand que — /7, est donc pair ou impair selon que

p 8 dt 1 ou p — 8 =k 3.
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En résumé, on a :

(8) 2'« ~ (— 1)
8

Cor. XIII. Théorème d'Elder. Les nombres a et h étant
premiers entre eux, on a :

(9) a? ^ 1 (mod. b)

<p(b) désigne, d'après Gauss, le nombre des entiers inférieurs
a b et premiers avec lui, 1, a, a', a", b — 1.

Démonstration de Gauss. Appelons II le produit lax a"...
(b — 1), il viendra, en se rappelant le Cor. IV.

nII • ou II — 1] 0 (mod. b\

d'où la relation (9).

Remarques. 1°. Si b est un nombre premier p, comme
$>{p) — p — 1, la formule (9) devient

(10) « ap~x 1

et constitue le théorème de Fermât.
2° Démonstration de Poinsot. Joignons de a en a les b

sommets d'un polygone ; b étant premier avec <2, on retombera

sur le point de départ. Autrement celui auquel on aboutit

pourrait être considéré comme le point de départ d'un
certain polygone fermé. Si on suppose que, dans cette
construction, on ne passe que par n sommets, le nombre total
des sommets rencontrés en répétant cette construction pour
chacun des b sommets, serait ainsi na, nombre divisible par
b puisqu'on parcourt une ou plusieurs fois le polygone, n

est donc multiple de b et ne peut être que b.

Ayant joint les b sommets de a en a, à partir d'un sommet
déterminé, on aura un second polygone de b côtés qu'on
traitera de même, ce qui en donnera un troisième ; et ainsi
de suite, jusqu'à ce qu'on retrouve le premier polygone. On

aura ainsi n polygones différant entre eux et qui seront tout
ou partie des polygones étoilés possibles, lesquels sont au
nombre de y (ft), d'après ce qui a été dit plus haut. Dans ce
second cas, n sera un diviseur de cp (b) ; en effet prenons un
des o(b) polygones qui ne se trouvent pas dans la série des
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il polygones différents qu'on vient de définir; on pourra de

même en tirer n1 polygones différant entre eux et différents
des premiers ; car les constructions dérivant de la même loi,
si un polygone de la première série était identique à un de la

seconde, par exemple, les deux séries seraient forcément
identiques. Ainsi les polygones non compris dans le premier
groupe se partagent également en groupes de n.

Mais le procédé revient à prendre les sommets de a en a,
de a2 en a2, de a3 en <23, de an en a11 ; or dans ce dernier
cas, les sommets sont pris de 1 en 1 : on a donc

a"> — 1 (mod. b)

d'où (9) en élevant à la puissance entière
Cor. XIV. Théorème cle Wilson. On a :

(11) (p - 1) — 1

Démonstration de Gauss. Associons deux à deux les nom-
1

bres 2, 3, p — 2; il viendra en multipliant ces — {p — 3)

groupes,
(12) 2.3 (p — 2) 1

d'où (11) en multipliant par p — 1.

Remarques. 1°. Ce beau théorème parait avoir été entrevu
par Leibniz ; Waring [Med. alg. 1770) en fait honneur à Jean
Wilson. La première démonstration en a été donnée par
Lagrange en 1771 : il considère l'égalité

(«) (x + 1) (^ + 2) (x -j- p — 1) — xp~~X -f- kxp~'2

+ Bxp~3 + + Kx + L

et compare les deux résultats obtenus, 1° en changeant dans
(a)x en x + 1, 2° en multipliant [a) par x + p. Il tire de là
les relations

A EE 0 B 0 K 0 L + l — 0.
(13) | (p 1) L — ^p,p "b Vp__x )P — \ A + Cp_2 13 + • •

1 + A + B + + K.
(14) (x + 1) (x + 2) [x 4- p — \) - xp—1 q- 1 o

1 Le nombre n des polygones différents obtenus est indépendant en effet de la position des
b points : il doit être le môme, quel que soit le polygone dont on part.
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Si x est nul ou congru à /;, la relation (14) donne le théorème

de Wilson. Dans les autres cas, il conduit au théorème
de Fermât.

2°. Le théorème de Wilson fournit un moyen de reconnaître

si un nombre donné est premier; en effet si p était
multiple de a, par exemple, a diviserait (/? — 1) î et par
suite ne pourrait diviser (p — 1) î + 1. Malheureusement ce

moyen est impraticable à cause des immenses calculs que
nécessiterait cette recherche, même dans le cas de nombres
peu considérables.

3°. Généralisation de Gauss. Le produit des f (b) nombres
plus petits que b et premiers avec lui, est de l'une des deux
formes =b 1 (mod. b). Poinsot a donné, de ce théorème les
trois démonstrations que voici :

Si a est l'un des nombres a, a', a", b — 1, l'un des
nombres aa, aoé, est de la forme 1 (mod. b). Soit aa 1

(mod. b) et supposons d'abord a a, il viendra a [b — a)
— 1 (mod. b) ; le produit des couples de la forme a (b — à)

sera donc ± 1 (mod. ô), selon que leur nombre sera pair ou

impair. Ce nombre n'est d'ailleurs autre chose que celui des
racines de la congruence x2 1 (mod. b).

Soit maintenant a différent de a. Les produits analogues à

a a. seront tous de la forme 1 (mod. b) et aucun des nombres
considérés tout à l'heure ne se retrouvera parmi ces derniers,
puisqu'à chaque nombre a donnant a2 1 (mod. 6), ne
correspond qu'un nombre a' — b — a, donnant aa1 — 1

(mod. 6), et qu'à chaque nombre «, différent de son associé

a, ne correspond qu'un seul nombre a tel que clol 1

(mod. b).

Multipliant tous ces couples, on obtient le théorème.
Gauss distingue les cas où il faut le signe -f- ou le signe —,

mais nous nous en tiendrons là.
Autre démonstration. Posons (b — i) El ; les

nombres

sont tous différents et premiers avec b. Les restes de leur
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division par b seront les nombres «, a ; de là, en
multipliant, la congruence

1 n 3
d'où n?(^] II2 (mod. b)

Autre démonstration. Joignons, de a en a, les sommets
d'un polygone P, de b côtés, et, de x en .z:, ceux du
deuxième polygone P' ainsi obtenu, x étant choisi tel que le
troisième polygone coïncide avec le premier P. On a ainsi
pris les sommets de ocx en ax, ce qui produit le même résultat

que si on les avait pris de 1 en 1. Ainsi si a est premier
avec b, il y aura toujours un nombre x tel que ax i
(mod. b) b

Si x — a, et qu'on prenne les sommets de P' de b — a en
b — s, on retombera sur le polygone P renversé ; donc
cf. [b — a) revient à — 1 ou bien a (b — a) — 1 (mod. b).

Ainsi, dans tous les cas, les nombres 1, a, a\ b — 1

peuvent s'associer de manière que leur produit soit de la
l'orme ziz 1 (mod. b) : on peut donc écrire

Il EE ± 1 (mod. b).

selon que le nombre des produits de la forme — 1 (mod. b),
est pair ou impair2.

Exercices.

1. La somme des quotients provenant de la division par b

des nombres a, la, 3a, [b — 1) a, est égale à ^ (a — 1)

(ib — 1). (Gauss).

1 De là, une solution graphique de la congruence ax — by — 1. (Poinsol).
2 Si b est un nombre premier p, la démonstration se simplifie ainsi, d'après Caylev.
D'après ce qui a été dit, Cor. XIII, 2°, premier alinéa, b points disposés régulièrement sur

CP (frj _i_ i
une circonférence sont les sommets de ^ polygones réguliers de b côtés ; d'où, si q

1
est premier et égal :A p, - (p — 1) polygones.

Or le nombre total des polygones, tant réguliers qu'irréguliers, est évidemment la moitié
du nombre des permutations de p — 1 objets, puisque ces polygones se reproduisent deux à
deux. D'un autre côté, si nous faisons tourner autour de son centre, et successivement des

27T 47T fi TT 2[p— 1)71
angles — — — un polygone irrégulier quelconque, nous obtiendrons.

p — 1 autres polygones irréguliers : le nombre des polygones irréguliers possibles est donc
un multiple dep. Do là, la relation

| (p-il)EEO
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2. Si x a, y ß est une solution de ctx — by — \

x — ca, y — c[3 en est une de ax — by c.
3. Trouver x tel que x a (mod. a) et x ß (mod. b).
On cherche bA 1 (mod. a) et aB 1 (mod. ô), ce qui

donne
x Aba + Baß (mod. ab)

4. Soit g celui des b — 1 premiers entiers positifs qui rend
c — cig multiple de b, l'équation ax -f- by — c a un nombre
de solution représenté par la formule de Paoli,

(c — ag\
\ ab / -M •

5. La solution de ax — by c est donnée par la formule
de Libri,

(2c — a) /»TT

sm —-
C — 1

-j "N?^ 2 ^àk= 1\k=i ahn
sm —

6. Soit [i le plus grand commun diviseur des nombres
donnés a, ß, y, Qn peut toujours déterminer les nombres
A, B, C, de manière qu'on ait

A B- + | + ••• P- (Gauss).

7. Résoudre les équations

x'y" — x"y' — a x"y — xy" — a' #y' — x'y — a". (Gauss)

8. Soit à résoudre les équations

x — ay a — bz — cw y — -

a, c, étant premiers deux à deux. On pose P abc
et on calcule af, c', de manière qu'on ait

— a' 1 (mod. a) — // 1 (mod. />)

d'où

.=p^-+¥+...
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p
Le problème est ramené au calcul des associés de —

(Voir exercices nos 10, 11 et 22).
9. Regula cœci. Partager A en n parties telles que a fois la

première, b fois la deuxième,... fassent ensemble une somme
B.

Supposons que a est le plus petit des nombres a, 6, c,
On a :

— ci) y -j— [c — ci) z —j— ~ B — (iAl.

équation de la forme <xy + ßz -f- G, qu'on résout en
remarquant qu'il y a au moins deux coefficients, a et ß par
exemple, qui sont premiers entre eux, ce qui permet de poser

av/ -J- ßßf — 1 d'où x — a' (C — ya — -f- ß\ '

y ß' (C — 7a — -f- ap

À, (a, désignant des quantités indéterminées.
10. Divisons a par 6, b par le reste, ce reste par le second

reste, et ainsi de suite, de sorte qu'on ait

a — ah c b — ßc -\- d c — yd -f- e

a, /3, sont entiers et b, c, diminuent jusqu'à ce qu'on
parvienne à m jjji -f- t.

Formons les expressions

[«] " a ~ A

|«,/3| (3A + 1 B

[a.jS.y] =yB + 1 C-,

on aui'a
|a, p. p] [|3, X] — [a, Xj [ß pt] ± 1

De là le moyen de résoudre ax — by — dz l1.
11. Soient /'i r2, r%, et qi, ^3, les restes et les

quotients obtenus successivement en divisant p para, r%, r2,
Les restes sont tous différents de zéro et décroissent jusqu'à
ra 1. On a :

acii?2 • • ~ (—

Les theories que contiennent les exercices 2, 3, 8. 9 et 10 étaient connues des Indiens,
comme on le voit chez Brahmegupta et Bhaskara. Mais c'est seulement Bachot qui a
commencé à les exposer avec méthode et en détail.
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De là, la solution de ax ±ï. (Binet).
12. a et b étant premiers entre eux, le produit

X& — 1 xb 1

x — i X — i

est divisible par ~ (Gauss).

13. Si on peut écrire a2 r et b2 — r, on a : x2 — 1

(Euler). En effet posons ax b, il viendra a2x2 b2 — a2.

(Gauss).
14. Soient a2 /*, b2 rs, on peut écrire x2 s (Euler).

En effet posons ax= b, il viendra rs b2 a2x2 rx2.
(Gauss).

15. Soit aß ah /\ g et h étant premiers entre eux, on

peut écrire rz a. En effet posons gx — hy 1, il viendra

rx cfix — ciry ' (Legendre).

16. Aucun nombre non décomposable en deux carrés
entier ne l'est pas non plus en deux carrés fractionnaires (Fer-
mat).

17. L'égalité ax2 — y2 1 ne peut avoir lieu si a n'est pas
la somme de deux carrés. (Brahmegupta).

18. Les diviseurs du nombre a2 — 3b2 sont de l'une des
formes quadratiques ± x2 =p 3y2, ou de l'une des formes
linéaires 12 =b 1. (Lagrange).

19. Les nombres "aé + 1 et a4 — a2 + 1 sont respectivement

des deux formes linéaires 8 + 1 et 12 + 1. En effet
on peut les écrire

(a2 — l)2 + 1 et (a2 — l)2 + a2 (a2 + î)2 — oa2. (Serret).

20. Si l'un des coefficients A, B, est multiple de p, la

congruence Ax11 + B.r'i_1 + -f M e 0 ne saurait avoir n

racines.
Il en est de même si M 0.

Si elle a n racines, a, ô, on peut l'écrire AÇx — a)

(x — b) 0 et l'on a :

A (a + /; + .+ + B 0 «/>... s ± M
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21. Du Cor. XI, déduire la relation

sp—i,p—i ip P •

ainsi que le Cor. IX.
22. Posons ce

(b) kb + 1, on aura

a — b{ck) a

305

d'où une solution de ax — by — c (Poinsot). Ainsi l'associé
de a relativement à b est

<p{£)-i
x — a

23. Trouver x tel que x ol (mod. a) et ß (mod. b). On a :

Ainsi les nombres à la fois des deux formes 3 -f 1 et 4 — 1

sont de la forme 12 + 7 ; ceux des formes 3 — 1 et 4 + 0
de la forme 12 + 5 ; ceux des formes 3 ± 1 et 4 ± 1, de la

forme 12 ± 1.

24. Changeons successivement x et y en 1, a, a', b — 1

dans la relation a xy (mod. b) et multiplions, il viendra
ay(b) — q2 (mod. b) d'où n2 s 1 (mod. lÉ)

25. Démontrer les relations

X a am p (mod. ah).

(_P — jj (P — 2) »'

(« — (p —a)!m (— î)a (Lagrange).

A. Aubry (Beaugency, Loiret).

L'Enseignement mathém., 9e année; 1907. 21
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