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« Reçu de M. Legendre la somme de etc—, pour frais d'expédi-
« tion d'un acte de décès. »

Paris, le 16 mars 1907.
Le Caissier des archives,

(Illisible).

— Mais je ne m'appelle pas Legendre, et je ne suis pas mort.
Je m'appelle Renard, et je suis toujours vivant.

— Ça ne fait rien, ça n'a pas d'importance.
Sur cette parole admirable, la conversation pris fin. Quelques jours

après, M. Renard, ayant fait un nouveau voyage aller et retour
d'un bout à l'autre de Paris, me remettait l'expédition de l'acte de
décès, que je ne trouve pas d'un prix trop élevé : 1° parce qu'elle
contient la solution d'une question d'histoire scientifique intéressante

; 2° parce que, en raison des circonstances que je viens de
rappeler, elle fournit un petit paragraphe additionnel à

l'inépuisable'chronique de la sottise administrative.
En définitive, il est désormais acquis, d'après l'acte de décès,

que Adrien-Marie Legendre était né à Paris, qu'il y est mort, en
sa demeure, quai Voltaire, n° 9, à l'âge de 80 ans, le 9 janvier 1833,
à six heures du matin (et non le 10 janvier, comme l'indiquent,
quelques biographies), Legendre à sa mort, était Membre de
l'Académie des Sciences et officier de la Légion d'honneur.

C. A. L.

Sur le cercle passant par les pieds des bissectrices intérieures.

1. — Soient P et P' deux points quelconques du plan ABC.
Nous désignons par Ai, Bi, Cd A\ BÇ C'd les intersections
respectives de AP, BP, CP, AP', BP', CP' avec BC, CA, AB.
Lorsque ces six points d'intersection sont concycliques, nous
avons fait voir (Nouvelles Annales, Août 1906), que le point P' est
le réciproque de l'anticomplémentaire d'un point dont les
coordonnées barycentriques sont

a2 b2 c2

x(j + z) y(z + x) ' zix + y)
'

x, y, z étant les coordonnées barycentriques de P.
2. — D'après cela il est facile de voir, que si P est le centre I

du cercle inscrit à ABC le point P' a pour coordonnées barycentriques

a b c

a -{- kp cos A b -f- kp cos B c -{- cos G
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On vérifie aisément, que ce point appartient à l'hyperbole de

Kiepert de ABC.
3. — Les triangles A1 Q et A\ B'4 sont les triangles

diagonaux des quadrilatères ABCI, ABCPL Ces triangles sont donc
autopolaires aux hyperboles équilatères ABCI (hyperbole de
Feuerbach) et ABCP' (hyperbole de Kiepert). Comme le cercle
circonscrit à un triangle autopolaire à une hyperbole équilatère
passe par le centre de cette courbe et comme le cercle d'Euler
est le lieu des centres des hyperboles équilatères ABC, nous
pourrons dire : le cercle passant par les pieds cles bissectrices
intérieures coupe le cercle d'Euler. aux centres des hyperboles de
Feuerbach et cle Kiepert.

Emile Weber (Liège).

Simple remarque sur un théorème de géométrie.

Nous avons en vue le théorème :

Si P est un point pris à l'intérieur d'un triangle ABC, on a

BP + PC < AB -p AC

La démonstration donnée dans les ouvrages classiques gagnerait
— ce nous semble — en clarté à être exposée comme suit.

Lemme. — Si l'on prend un point P sur un côté AC d'un triangle

ABC, entre A et C, on a BP PC << BA AC.
La démonstration est immédiate.
Théorème. (Enoncé ci-dessus). — Prolongeons BP jusqu'à sa

rencontre en R avec AC. En appliquant le lemme aux triangles
BRC, ABC, on a

BP + PC < BR + RC < BA + AC

C. q. f. d.
Emile Weber (JLiège).

Sur la relation entre les côtés d'un triangle rectiligne.

Cette petite note est destinée à attirer l'attention des professeurs
sur un défaut de méthode, dans tous les traités de géométrie
élémentaire qui nous sont connus. Il s'agit de trois théorèmes qui
se rapportent à l'expression de la valeur du carré d'un côté du
triangle en fonction des deux autres. Tous les auteurs que nous
avons lus distinguent trois cas suivant que le côté est opposé à

un angle droit, à un angle aigu ou à un angle obtus. Au fond, ils
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