Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 8 (1906)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: PROPRIÉTÉS CORRÉLATIVES DU PENTAGONE ET DU

DÉCAGONE RÉGULIERS

Autor: Redl, Franz

DOI: https://doi.org/10.5169/seals-9258

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

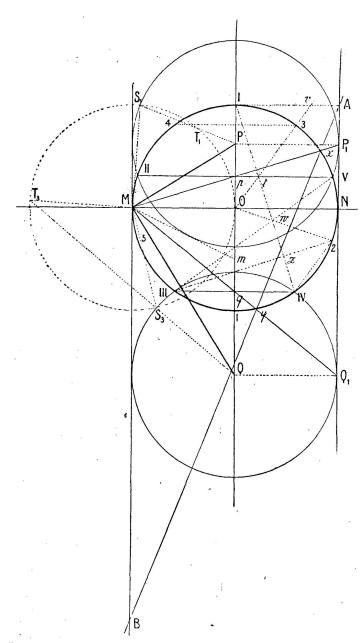
PROPRIÉTÉS CORRÉLATIVES DU PENTAGONE ET DU DÉCAGONE RÉGULIERS

Les mathématiques ne sont, en général, envisagées par les élèves de nos collèges que comme une science dont l'étude offre beaucoup de difficultés mais fort peu d'attraits; et l'on voit souvent des jeunes gens incapables de progresser dans cette branche lors même qu'ils font preuve d'une grande facilité de compréhension et d'assimilation. La cause de cette répugnance provient peut-être du fait que dans l'enseignement la valeur éducative des mathématiques ne produit pas ses effets, qu'il est donné beaucoup trop de place à la reproduction passive d'énoncés et de démonstrations et que l'élève est pour ainsi dire enserré dans une discipline qui lui enlève la faculté de se développer par lui-même et de s'intéresser ainsi d'une manière plus active à cette partie des études secondaires. En lui accordant sous ce rapport plus de libertés et en lui permettant de se livrer à des recherches personnelles, on pourrait parvenir au but désiré. Le maître devrait surtout orienter ces recherches du côté de la géométrie, science qui, par son caractère parfaitement défini, peut procurer beaucoup de satisfaction à ceux qui l'étudient.

C'est dans le but de fournir un exemple à l'appui de cette manière de voir que l'auteur s'est proposé de montrer comment fonctionne le principe des corrélations d'éléments analogues dans le pentagone et le décagone réguliers.

¹ Ce principe est à notre connaissance très peu observé dans l'enseignement bien qu'il soit souvent applicable avec fruit. Ainsi, s'agit-il de transformer un triangle donné en un triangle équilatéral de mème surface, on construit des triangles équilatéraux sur les côtés a, b et c du triangle donné, aussi bien à l'intérieur qu'à l'extérieur de ce dernier. Les points milieux de ces triangles équilatéraux forment eux-mêmes des triangles équilatéraux dont

Représentons par r (voir figure) le rayon du cercle, par s_1 le côté du décagone, par s_2 celui du pentagone, par s_3 celui



du décagone étoilé, enfin par s_4 la diagonale du pentagone. On veut démontrer que s_1 et s_3 d'une part, s_2 et s_4 d'autre part jouent le même rôle dans les relations déduites de la figure.

Soient MN et I1 deux diamètres perpendiculaires; IIV une corde parallèle au diamètre MN et représentant une diagonale du pentagone; sa longueur est donc égale à s_4 ; elle est divisée en p par le rayon OI en deux parties égales; les angles HOP et OIIp valent respectivement 72° et 18°. Repliant le triangle IIOp autour de IIp on obtient le triangle isocèle OIIP, dans lequel OII = PII = r;

l'angle compris entre ces deux côtés est ainsi égal à 36°, de

nous représentons les côtés respectivement par D et d. En désignant par S la surface du triangle donné, nous avons les relations:

$$\frac{2}{3} S \sqrt{3} = D^2 - \frac{1}{6} (a + b^2 + c^2) ,$$

$$\frac{2}{3} \,\mathrm{S} \sqrt{3} = \frac{1}{6} \,\left(a^2 + b^2 + c^2\right) - d^2 \,\,,$$

par addition de ces relations on a :

$$\frac{4}{3} \text{ S} \sqrt{3} = D^2 - d^2$$
, d'où $S = \frac{\sqrt[4]{3}}{4} (D^2 - d^2)$.

Pour le côté du triangle cherché, nous obtenons l'expression $s = \sqrt{D^2 - d^2}$ qu'il est facile de construire.

sorte que la base de ce triangle est le côté s_1 du décagone; d'où la relation :

$$s_1^2 + s_4^2 = 4r^2$$
.

Soit encore de l'autre côté de MN la corde III IV parallèle à la droite MN et égale au côté s_2 du pentagone (comme on le remarque facilement les points I à V sont les différents sommets d'un pentagone régulier). Si l'on désigne par q l'intersection de III IV avec I1 et si l'on replie le triangle OIIIq autour du côté IIIq, on obtient le triangle isocèle OIIIQ dans lequel IIIO = IIIQ = r et l'angle OIIIQ mesure 108°. La base OQ de ce triangle est donc le côté s_3 du décagone étoilé et l'on en déduit:

$$s_3^2 + s_2^2 = 4r^2$$
 ,

formule analogue à I.

On remarque également d'après la figure que l'angle 1IIP est égal à $4 \times 18^{\circ}$ c'est-à-dire à 72° ; mais comme l'angle OPII a la même valeur, le triangle P1II est isocèle et l'on a :

$$II1 = s_3 = r + s_1 . III$$

Les triangles OHP et 1HP ayant tous leurs angles respectivement égaux sont semblables; on en déduit:

$$s_{\scriptscriptstyle 1}: r = r: (r + s_{\scriptscriptstyle 1}) , \qquad \qquad \text{IV}_a$$

et, en tenant compte de la relation III

$$(s_3 - r) : r = r : s_3 .$$
 IV_b

De ces deux dernières relations il résulte que :

$$(r - s_1) : s_1 = s_1 : r$$
, V_a
 $s_3 : r = (r + s_3) : s_3$, V_b

ce qui donné pour s_1 et s_3 les valeurs :

$$s_{\scriptscriptstyle 1} = \frac{r}{2} \left(\sqrt{5} - 1 \right)$$
 et $s_{\scriptscriptstyle 3} = \frac{r}{2} \left(\sqrt{5} + 1 \right)$, VI

et par addition

$$PQ = s_1 + s_3 = r\sqrt{5} . VII$$

On pourrait obtenir directement cette valeur en considérant les relations III et IV_a; la relation III donne:

et avec IV _a
$$r^2 = (s_3 - s_1)^2 = s_3^2 - 2s_{\rm g} s_1 + s_1^2$$
 et avec IV _a
$$4r^2 = 4s_1 s_{\rm g} \ ,$$
 d'où

d'où

$$5r^2 = (s_3 + s_1)^2 .$$

La considération de la figure nous conduit également au même résultat. En effet la proportion IVa a montré¹ que les côtés de l'angle droit des triangles MOP et MOQ sont proportionnels; ces triangles sont donc semblables, l'angle PMQ est droit et si m désigne le milieu du rayon O1, on a:

$$PQ = 2mM$$
.

D'autre part dans le triangle OMm, on a :

$$s_1 + s_3 = PQ = r \sqrt{5}$$
,

puis, en tenant compte de la relation III on obtient

$$r\sqrt{5} = r + 2s_1 = 2s_8 - r$$
.

La relation IV_a combinée avec III ou VII donne:

$$s_1^2 + s_3^2 = 3r^2$$
, $s_1^2 - 3s_1 s_3 + s_3^2 = 0$. VIII

d'où

$$s_1 s_8 = r^2 . IX$$

Le théorème de Pythagore appliqué aux triangles OMP, OMO et PMO conduit à la relation :

$$s_1^2 + s_3^2 + 2r^2 = 5r^2 ,$$

qui avec IX équivaut à VII

$$Q5 = QO = s_3 = r + s_1$$
.

Mais comme $Q_1 = s_1$, il résulte que :

$$s_1(s_1 + 2r) = r(r + s_1)$$
 et $(s_3 - r)$ $(s_3 + r) = s_3^2 - r^2 = r.s_3$. etc.

¹ La théorie de la puissance d'un point par rapport à un cercle nous conduit aussi à cette proportion. En effet, soit sur la circonférence 0,5 le point diamétralement opposé à V, les angles 5IIIO et QIIIO sont respectivement égaux à 72° et 108°, les points Q,III et 5 sont donc situés en ligne droite et l'on a :

Si l'on soustrait cette égalité de II, puis de I, on a :

$$s_2^2 - s_1^2 = r^2$$
 et $s_4^2 - s_3^2 = r^2$, X

relations qui mettent bien en évidence la correspondance qui existe entre les quantités s_1 et s_3 d'une part et s_2 et s_4 de l'autre. On voit maintenant d'une manière claire que PM et QM représentent le côté et la diagonale du pentagone régulier; mais une voie purement géométrique peut de même nous l'indiquer. Traçons en effet de M, P et Q comme centres trois circonférences de rayon r; puis, désignant par S_1 et S_3 les intersections des circonférences P et Q avec la circonférence M, menons les sécantes PS1 et QS3 et appelons T_1 et T_3 les secondes intersections de ces sécantes avec la circonférence M. Des égalités IV_a et IV_b on déduit :

$$S_1 T_1 = s_1$$
 et $S_3 T_3 = s_3$;

il en résulte que les angles S_1MT_1 et S_3MT_3 valent respectivement 36° et $3 \times 36^{\circ} = 108^{\circ}$; mais comme les côtés égaux des triangles isocèles S_1MP et S_3MQ ont pour longueur r et que les angles compris entre ces côtés valent 72° et 144° , il est ainsi prouvé que $PM = s_2$ et $QM = s_4$.

Des résultats obtenus jusqu'à maintenant, on peut concevoir, par l'emploi de deux compas, une construction du pentagone régulier, construction dans laquelle les points P et Q jouent un rôle symétrique; ce procédé ¹ conduit facilement et rapidement au but. Nous allons l'exposer très brièvement.

Après avoir tracé le cercle O et dans ce cercle les deux axes perpendiculaires MN et I1, on détermine le point m, milieu du rayon O1; on porte sur le diamètre I1 avec l'aide d'un second compas le segment mM de part et d'autre de m, ce qui donne les deux points P et Q; puis, de P et Q comme centres on décrit deux circonférences de rayon r; les inter-

¹ Cette note était entre les mains de la Rédaction de cette Revue depuis un an, lorsqu'en novembre 1905 j'ai eu connaissance de la construction publiée par M. H. BODENSTROT (Braunschweig) dans le nº 3 des Unterrichtsblätter für Mathem. u. Phys., t. X. L'auteur désigne le procédé comme construction géométrographique et celle-ci ne diffère de la mienne qu'en ce qu'elle fournit les points P el Q de la division en moyenne et extrême raison par la méthode donnée dans la Géométrographie de Lemoine, Scientia, § XLIII, 3. Qu'il me soit permis d'ajouter que j'ai trouvé la construction ci-dessus d'une façon indépendante il y a déjà plusieurs années.

sections de ces dernières avec la circonférence précédente nous donnent, avec le point I, les sommets du pentagone. Cette construction peut ètre facilement modifiée comme suit: on trace la tangente en N à la circonférence O, on projette sur cette droite les points P et Q en P₁ et Q₁; on relie ces derniers points avec M par deux droites qui coupent le diamètre I1 en p et q; les perpendiculaires à ce diamètre par les points p et q déterminent sur la circonférence les 4 sommets cherchés. Cette modification ne rend pas nécessaire l'emploi du second compas, et la simplicité du procédé n'est en rien atténuée; elle offre en outre une certaine liaison avec la construction élégante donnée par Staudt dans le « Journal de Crelle » (vol. 24) et qui outre le cercle O nécessiste seulement une équerre.

Désignons par x et y les intersections du cercle O avec les droites MP_1 et MQ_1 et prolongeons la corde xy jusqu'à ses rencontres en B et A avec les tangentes en M et N; il est alors facile de voir que les droites NA et MB ont respectivement pour longueur r et 4r. En effet: les angles AxP_1 , BMy et AQ_1y sont égaux, les triangles AxP_1 et AQ_1y sont donc semblabes, d'où la proportion :

$$Ax: (AN + s_3) = AP_1: Ay$$

et l'égalité

$$Ax \cdot Ay = \overline{AN}^2 = (AN - s_1)(AN + s_3)$$
,

ce qui donne

$$s_{\mathbf{1}}s_{\mathbf{3}} \equiv (s_{\mathbf{3}} - s_{\mathbf{1}})\,\mathrm{AN}$$
 ,

ou encore

$$s_1(r + s_1) = r \cdot AN$$

En comparant ce résultat avec la relation IV_a on a : AN = r. Des triangles également semblables AxP_1 et BxM on déduit :

$$AP_1:BM=xP_1:xM,$$

d'où

$$(r - s_1)$$
: BM = $xP_1 \cdot MP_1$: $xM \cdot MP_1 = s_1^2$: $4r^2$.

Puis, tenant compte de la relation

$$s_{\scriptscriptstyle 1}^{^2} = r(r - s_{\scriptscriptstyle 1})$$

déduite de IV_a on conclut que:

$$BM = 4r$$
.

Nous voyons par là qu'après avoir déterminé sur les tangentes en N et M les points A et B, on obtient les points x, y en coupant la circonférence O par la droite AB et les points Q₁, q, P₁, p en menant les droites My, Mx. La construction qui vient d'être exposée est celle qu'on emploie en général lorsqu'il s'agit de résoudre une équation du second degré à l'aide d'un cercle fixe et de la règle; elle est également à la base de l'adjonction apportée par Staudt dans l'article cité plus haut à la méthode de Steiner et Poncelet pour la construction du polygone régulier de dix-sept côtés.

Dans le triangle rectangle MPQ, on a :

$$s_2^2 = s_1 \cdot r\sqrt{5}$$
 et $s_4^2 = s_3 \cdot r\sqrt{5}$, XI

puis, multipliant membre à membre ces égalités et tenant compte de IV_a , on obtient :

$$s_2 \cdot s_4 = r^2 \sqrt{5} \quad , \tag{XII}$$

relation analogue à IX.

Mais de X on déduit :

$$s_2^2 + s_4^2 = 5r^2$$
 ,

de sorte qu'on a

$$s_2 + s_4 = r\sqrt{5 + 2\sqrt{5}}, \ s_4 - s_2 = r\sqrt{5 - 2\sqrt{5}}, \ s_2^2 + s_4^2 = s_2 \cdot s_4 \cdot \sqrt{5}; \ \text{XIII}$$

d'autre part les égalités XI montrent que :

$$s_4^2 - s_2^2 = r^2 \sqrt{5} = s_2 \cdot s_4 = s_2^2 - s_4^2$$
, XIV

relation qui, jointe à la troisième des égalités XIII, donne :

$$s_4 = \frac{s_2}{2} (\sqrt{5} + 1)$$
, $s_2 = \frac{s_4}{2} (\sqrt{5} - 1)$; XV

on en déduit, à l'aide des relations XIV, les valeurs de s_2 et s_4 exprimées en fonction du rayon r. On a, par exemple :

$$s_4 = \frac{r}{2} \sqrt{10 + 2\sqrt{5}} .$$

D'autre part XIII donne par addition :

$$s_{\bf 4} = \frac{r}{2} (\sqrt{5 + 2\sqrt{5}} + \sqrt{5 - 2\sqrt{5}}) \ ,$$

ce qui fournit à l'élève un exemple de la décomposition d'un radical double en deux autres.

On voit par les expressions XV (comparées aux relations VI), comme aussi par la similitude des triangles III O1 et III IV I, que les longueurs s_2 et s_4 jouissent des mêmes propriétés que s_1 et r ou r et s_3 ; elles peuvent en conséquence servir à construire le pentagone régulier dont le côté est donné.

Si nous continuons nos recherches, nous voyons que, par division, les égalités XI donnent :

$$s_2^2: s_4^2 = s_1: s_3 = (\sqrt{5} - 1): (\sqrt{5} + 1)$$

et de là

$$s_{4}^{2} = s_{2}^{2} \cdot \frac{\sqrt{5} + 1}{\sqrt{5} - 1} = s_{2}^{2} \cdot \frac{3 + \sqrt{5}}{2} ,$$

$$xvi$$

$$s_{2}^{2} = s_{4}^{2} \cdot \frac{\sqrt{5} - 1}{\sqrt{5} + 1} = s_{4}^{2} \cdot \frac{3 - \sqrt{5}}{2} ;$$

les formules XV sont ainsi confirmées.

La valeur $s_4 - s_2 = r\sqrt{5 - 2\sqrt{5}}$ représente la moitié du côté t_2 du pentagone circonscrit au cercle O. En effet, soit I_{ν} ce demi-côté; les angles I_{ν} et I_{ν} du triangle I_{ν} sont tous deux égaux à 54° ; les côtés opposés I_{ν} et I_{ν} sont donc égaux; d'autre part:

$$t \text{ IV} = \text{II III} = \vec{s_2}$$
 et $\text{IIV} = s_4$,

il s'en suit que:

$$It = s_4 - s_2 = Iv .$$

Si l'on désigne par w l'intersection des deux diagonales III V et I IV du pentagone, on a également :

$$I_V = wIV$$
, car $I_W = II III = s_2$. d'où $wIV = s_4 - s_2$,

ainsi:

$$I_{\nu} = I_{t} = \omega I_{v} = s_{2} - s_{2} = \frac{s_{2}}{2}(\sqrt{5} + 1) - s_{2} = \frac{s_{2}}{2}(\sqrt{5} - 1)$$
.

Nous déduisons de là une nouvelle construction du pentagone régulier dont le côté s_2 est donné; elle consiste à déterminer le point w, en construisant le triangle III IV w. Cette construction est alors susceptible d'une double interprétation suivant que la longueur donnée représente le côté s_2 du pentagone inscrit ou le côté t_2 du pentagone circonscrit. Dans le premier cas le segment obtenu wIV représente le demi-côté du pentagone circonscrit; dans le second cas où $\frac{1}{2}t_2 = IVw$ est donné, on obtiendra le segment III IV, côté du pentagone inscrit. On remarque en outre que si 2 est le point milieu de l'arc IV V et z l'intersection de III 2 avec I IV, on a

$$2w = 2 \text{ IV} = s_1$$
 et $\text{III } w = \text{III IV} = s_2$.

La longueur IIIz exprime la distance des segments II III et I IV et, cette distance est la même que celle des segments III IV et II V; elle a pour valeur

$$pq = \frac{PQ}{2} = \frac{s_1 + s_3}{2} = s_3 - \frac{r}{2}$$
.

On a aussi $z2 = \frac{r}{2}$ du fait que $2 \text{ III} = s_3$ et comme $w\text{IV} = s_4 - s_2$ il en résulte que

$$z \, IV = \frac{s_4 - s_2}{2}$$
 et $z \, I = \frac{s_4 + s_2}{2}$

la puissance du point z par rapport au cercle O a pour valeur

$$\frac{s_4^2 - s_2^2}{4} = \frac{r}{2} \cdot \frac{r}{2} \cdot \sqrt{5}$$

c'est encore la relation XIV.

Les triangles semblables II pO et III IVz nous fournissent la démonstration géométrique de la seconde partie de la relation XIV; on a en effet:

$$\frac{s_4}{2}$$
: $r = \frac{r\sqrt{5}}{2}$: s_2 .

Les triangles semblables I III IV et III IV ω permettent de trouver la valeur du segment Iq. En effet, on a :

$$Iq: s_4 = r\sqrt{5}: 2s_2$$

d'où

$$Iq = \frac{r\sqrt{5}}{2} \cdot \frac{s_4}{s_2} = \frac{r}{4} (5 + \sqrt{5}) .$$

Cette valeur peut être aussi directement déduite de la figure, dans laquelle

$$Iq = r + \frac{s_3}{2} = \frac{3r + s_1}{2} .$$

Il serait encore possible de comparer les triangles III OQ et I II V puis les triangles 2wIV, O III IV et Ivt. Comme propriétés que les élèves pourraient démontrer, nous citons les suivantes :

- 1. Les points 4, P et V ainsi que les points 2, IV, Q sont situés en ligne droite.
- 2. Le prolongement de la diagonale du quadrilatère 132 w passe par le point Q.
- 3. Représentant par t_4 le côté du pentagone étoilé circonscrit au cercle O, on a la relation

$$\frac{t_4}{2} = s_2 + s_4 = r\sqrt{5 + 2\sqrt{5}} \ .$$

4. Démontrer au moyen de la figure les proportions :

$$s_2: s_3 = \sqrt{5}: \sqrt{5+2\sqrt{5}}$$
 ;

$$s_4: s_1 = \sqrt{5}: \sqrt{5-2\sqrt{5}}$$

On pourrait également de mander de calculer les segments P3, P2, PV, PIV, QV et $\rm Q_3$.

Franz Redl (Brunn-Harland, Basse-Autriche).

(Traduction de Georges Bertrand, Genève).