Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 8 (1906)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Kapitel: Classe de Philosophie (2 heures pour les mathématiques; 1 demi-heure

pour la cosmographie).

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Points qui partagent une droite dans un rapport donné. — Lignes proportionnelles.

Triangles semblables. Définitions du sinus, du cosinus, de la tangente et

de la cotangente d'un angle.

Définition des figures homothétiques. Polygones semblables. Pantographe.

Relations métriques dans un triangle rectangle.

Propriétés des sécantes dans le cercle. — Constructions de la quatrième proportionnelle et de la moyenne proportionnelle.

Polygones réguliers : carré, hexagone et triangle équilatéral.

Mesure de la circonférence du cercle (énoncé).

Mesure des aires du rectangle, du parallélogramme, du triangle, du trapèze, des polygones, du cercle.

Rapport des aires de deux polygones semblables.

Seconde A, B (2 heures pendant le premier semestre).

Algèbre. — Exercices sur les équations du premier degré et la représentation des variations de la fonction ax + b.

Géométrie. — Du plan et de la droite dans l'espace.

Angle dièdre. Droites et plans parallèles. Droite et plan perpendiculaires.

Définitions des angles polyèdres, de la pyramide, du prisme.

Enoncé des règles relatives aux surfaces et aux volumes des prismes, pyramides, cylindres, cônes et sphères.

Première A, B (2 heures pendant le second semestre).

Algèbre. — Exercices sur les équations numériques du premier degré a une ou plusieurs inconnues, et du second degré à une inconnue; représentation des variations de x^2 et $\frac{1}{x}$.

Géométrie. — Mesure des angles. Figures planes semblables. Définition du sinus, du cosinus et de la tangente d'un angle compris entre 0 et 2 droits.

Relations métriques dans le triangle et dans le cercle. Mesure des aires planes.

Enoncé des règles relatives aux surfaces et aux volumes des prismes, pyramides, cylindres, cônes et sphères.

Classe de Philosophie

(2 heures pour les mathématiques; 1 demi-heure pour la cosmographie).

Mathématiques. — Rappel des principales règles relatives au calcul des nombres positifs ou négatifs; développements de $(a+b)^2$, $(a+b)^3$; idendité:

$$a^{n+1} - b^{n+1} = (a-b) (a^n + a^{n-1}b + \dots + b^n).$$

Notions sur l'algèbre géométrique des Grecs : représentation d'un nombre par une ligne, d'un produit par la surface d'un rectangle; figures équivalentes aux identités :

$$(a \pm b)^2 = a^2 \pm 2 \ a \ b + b^2, \quad \left(\frac{a+b}{2}\right)^2 - \left(\frac{a-b}{2}\right)^2 = a \ b.$$

Carré construit sur l'hypoténuse d'un triangle rectangle.

Construction d'un rectangle ayant un côté donné et équivalent à un rectangle donné.

Construction d'un rectangle équivalent à un carré donné, connaissant la somme ou la différence de ses côtés; expressions de ces côtés qui résultent de la construction.

Résolution algébrique de l'équation du second degré. Application au problème précédent; comparaison des résultats.

Avantages de la notation moderne et en particulier de l'introduction des nombres positifs et négatifs.

Détermination, au moyen de deux nombres positifs ou négatifs, d'un point d'un plan; représentation inverse d'un système de deux nombres ou moyen d'un point d'un plan.

Extension de la notion de coordonnées; longitude et latitude d'un point d'une sphère.

Représentation graphique de la variation d'un phénomène qui dépend d'une seule variable; courbes des températures, des pressions; application à la statistique. Notion de fonctions; représentation graphique de fonctions très simples:

$$y = a x$$
, $y = a x + b$, $y = x^2$, $y = x^3$, $y = \frac{1}{x}$.

Construction d'une droite définie par une équation numérique du premier degré entre x, y; coefficient angulaire 1 , ordonné à l'origine. Coefficient angulaire de la droite qui joint deux points.

Usage du papier quadrillé. Résolution de deux équations numériques du premier degré à deux inconnues par l'intersection de deux droites, des équations numériques de la forme :

$$x^2 + px + q = 0$$
, $x^3 + px + q = 0$

par l'intersection des courbes (une fois tracées), ayant pour équations :

$$y = x^2$$
, $y = x^3$

avec la droite dont l'équation est y + p x + q = 0.

Graphique des chemins de fer.

Courbes fournies par les appareils enregistreurs.

Construction de quelques courbes simples définies géométriquement; équations de ces courbes.

Notion de la tangente et de la dérivée. Exemples de tangentes obtenues géométriquement comme limites d'une sécante (cercle, parabole). Coefficient angulaire de la tangente : applications à quelques cas simples :

$$y = x^2, \quad y = x^3, \quad y = \frac{1}{x}.$$

Notions sur l'usage de la dérivée pour reconnaître le sens de la variation d'une fonction.

¹ Le coefficient angulaire sera défini comme étant le coefficient de x dans l'équation résolue par rapport à y, ou comme l'ordonnée du point d'abscisse égale à l'unitè de la parallèle menée par l'origine.

Evaluation approximative de l'aire d'une courbe tracée sur du papier quadrillé en comptant les carrés contenus à l'intérieur de la courbe : limite de l'erreur fournie par le nombre des carrés que traverse la courbe; cette erreur peut être rendue très petite en employant un quadrillage très fin.

Aire du triangle obtenue comme la limite commune de deux sommes de rectangles dont l'une est inférieure, l'autre supérieure à l'aire cherchée. Aire de la parabole. Problème inverse de la recherche d'une dérivée. Aire d'un triangle, ou d'une parabole, obtenue par la recherche d'une fonction dont la dérivée par rapport à x est a x ou a x^2 .

Application de la méthode infinitésimale à l'évaluation des volumes ou

des surfaces des corps considérés en géométrie élémentaire.

Conseils généraux. — Le professeur n'oubliera pas que les élèves auxquels il s'adresse n'ont pas l'habitude des mathématiques; il évitera donc toute théorie abstraite; il ne mettra pas en avant les idées générales, mais cherchera à les faire ressortir sur des exemples particuliers développés avec la lenteur et le détail qu'il jugera nécessaires pour être bien suivi. Le programme précédent est destiné à le guider, mais ce n'est pas un programme strict. Le maître sera libre d'en développer plus ou moins certaines parties suivant l'aptitude de ses élèves, suivant l'intérêt qu'il aura su exciter en eux. Ces observations concernent en particulier les applications qui sont mentionnées à la fin du programme et qui, dans tous les cas, devront être traitées largement, sans trop s'attacher à la rigueur.

Il est recommandé au maître d'introduire dans son enseigement quelques notions historiques; ainsi il pourra parler de la méthode d'exhaustion chez les anciens (Euclide, Archimede) et donner quelques détails sur l'invention du calcul différentiel et intégral. Son but est de contribuer au développement philosophique de ses élèves en leur faisant acquérir des idées

importantes.

Cosmographie. — Système de Copernic. — Le Soleil. Ses dimensions, sa distance à la Terre. Constitution physique, rotation, taches.

Notions sommaires sur les planètes. — La Terre. Forme et dimensions. Rotation, pôles, équateur, méridiens, parallèles. Longitude. Latitude.

La Lune. Mouvement. Constitution physique.

Comètes. Etoiles filantes. Bolides. — Etoiles. Nébuleuses. Voie lactée.

Les programmes ci-dessus seront obligatoires :

A partir de l'année scolaire 1905-1906, pour les classes de Cinquième B et Quatrième A (1^{er} cycle), ainsi que pour la classe de Seconde A, B, C, D (2^e cycle);

A partir de l'année scolaire 1906-1907, pour les classes de Quatrième B et Troisième A (1^{er} cycle), ainsi que pour la classe de Première A, B, C, D (2^e cycle);

A partir de l'année scolaire 1907-1908, pour la classe de Troisième (1^e cycle), ainsi que pour les classes de Philosophie et de Mathématiques (2^e cycle).

Cours universitaires.

Semestre d'hiver 1905-1906.

(Suite.)

Cambridge; University. — Michaelmas term, 1905. — A. R. Forsyth: Partial differential equations, 3 hours. — G. H. Darwin: Theory of potential and attractions, 3. — Sir R. S. Ball: Planetary theory, 3. — J. Larmor: